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Abstract

The paper addresses the mechanism design problem of eliciting truthful information from a committee of
informed experts who collude in their information disclosure strategies. It is shown that under fairly general
conditions full information disclosure is possible if and only if the induced outcome is Pareto undominated
for the committee members.
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1. Introduction

Specialized committees are routinely created by political institutions. The purpose of a com-
mittee is gathering information that would allow for better policy decisions. Yet its members
may have biased interests relative to those of the public (represented by a policy maker or a
legislative body), so they may be tempted to manipulate policy decisions by hiding or distorting
information.

An important feature of a committee is that its members debate about which information to
disclose, or which advice to give to the policy maker. As a result, any information disclosed by
the committee is an agreement that equilibrates interests of its members and that, in general,
could be different from the truth. This paper addresses the question of how, and under what
conditions, truthful information can be elicited from committees.
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A considerable body of literature addresses the problem of eliciting truthful information from
informed and biased experts, via cheap talk communication [2,3,8,10,13,23], through commit-
ment to certain legislative rules [6,22,31] or by (constrained) delegation of decisions to the
informed party [1,11,12,15,16,21,28,29]. The underlying assumption in the above literature is
that experts communicate information independently or privately. In contrast, this paper focuses
on experts who can collude in their actions. It is harder to elicit the truth from experts in this case,
since the experts have more freedom in manipulating the policy maker’s decisions. An illustrative
example is the problem of consulting with a committee whose members have interests biased in
similar directions. Suppose that a policy maker considers cutting social benefits to a certain group
of population and consults two experts whose preferences are biased towards higher social bene-
fits. Even when cutting the benefits is socially optimal, the experts are not likely to give that rec-
ommendation, as, for instance, the advice to do nothing is Pareto superior. For another example,
consider two experts whose interests are biased in the opposite directions with asymmetric mag-
nitude. As disclosing the truth would favor one of them relative to the other, instead the experts
might coordinate on communicating false information that would balance their interests better.

We present a model where a policy maker, who acts on behalf of the society, has to choose
a (multidimensional) policy whose exact effect is uncertain. In order to make a correct policy
choice, the policy maker appoints a committee of n experts, who find out the relationship between
policies and their outcomes, and then give advice to the policy maker. The committee members
have biased interests relative to the policy maker and relative to one another. Before any advice is
given, the policy maker commits to a policy rule that specifies how she will deal with the advice.
Then the committee members engage in bargaining over possible outcomes that their advice
could induce through influencing the policy maker’s decision. This paper uses the axiomatic
approach to the bargaining problem. In other words, we are interested in results that hold under a
wide range of specifications of bargaining procedures that satisfy a few requirements (axioms).

The basic insight of the paper is that under a wide range of circumstances there is no loss for
a policy maker for dealing with committees, as compared to independent, non-communicating
experts. We show that whenever truth-telling is not Pareto inferior to any other outcome, thus
being a viable prediction in the case of independent experts, it remains achievable in the case of
colluding experts (provided the policy maker can commit to a policy rule).

Our main result (Theorem 1) states that for every bargaining solution that satisfies certain
axioms, there exists a rule that implements the first best outcome for the policy maker if and
only if it is Pareto undominated for the committee. Our axioms are very basic. We demand the
solution to be Pareto efficient, continuous, and to satisfy the dummy axiom (i.e., the bargaining
solution should not depend on dummy experts whose actions have no effect on the policy mak-
er’s decision). The proof is constructive: we show that every Pareto undominated outcome can
be implemented by a closed rule. Under a closed rule, if the committee unanimously agrees on
some policy, then it is adopted with certainty. However, if the committee disagrees and offers
a menu of policies, the policy maker randomizes over the experts’ proposed policies with the
probabilities that depend on the identities of the experts, but not on their proposals. By choosing
the probabilities of adopting experts’ proposals, the decision maker influences the experts rela-
tive “bargaining strength”, and hence manipulates the bargaining solution to achieve the desired
outcome, as illustrated by example in Section 4.

A crucial assumption for the main result is the ability of the policy maker to randomize over
policies. Yet one may wonder whether implementation of the first best outcome is possible by de-
terministic policy rules. We illuminate some difficulties of deterministic first best implementation
and argue that it cannot be done by many simple deterministic rules. We also show that in the
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model with two experts, the first best outcome cannot be implemented by deterministic rules un-
der fairly general conditions if the outcome space is unidimensional, but we provide an example
of first best implementation on a multidimensional outcome space.

The results presented in this paper are qualitatively different from those in the cheap talk lit-
erature. In the case of two experts, the major insight from the literature is that full information
revelation is always possible if the policy maker is unconstrained in her out-of-equilibrium be-
liefs [8], if the state space is multidimensional and the expert’s biases are not collinear [8], or if it
is unidimensional and the experts’ biases are small relative to the size of the state space [13,22].
This paper contributes to the literature by showing that if experts can collude, full information
revelation is not possible whenever the policy maker’s first best outcome is not Pareto efficient
for the experts.1 In particular, in contrast to Battaglini [8], in our model with two experts and
multidimensional state space, the first best outcome is Pareto dominated for generic biases (it
is undominated only if the biases are exactly opposing), hence full information extraction is, in
general, impossible.

The paper is closely related to Martimort and Semenov [27] (henceforth, MS) who study in-
formation effects of collusive behavior among informed parties.2 Like in our model, in MS the
informed parties are allowed to collude in their information disclosure actions. The bargaining
problem of a coalition is resolved by a special type of bargaining solution: a side mechanism de-
signed by a mediator who organizes collusion between the parties in exchange for side payments,
and whose objective is to maximize his revenue.3 Though the informed parties are assumed to
hold different pieces of information relevant for the legislature (whereas in our model all experts
are identically informed), MS consider the type of coalition where all information is observable
to its members, called strong coalition, in which case the situation identical to our model. The
model of MS is limited to unidimensional policies, two informed parties, and special forms of
utility functions, and MS study only deterministic policy rules. For this environment, Proposi-
tion 4 in our paper shows that a first best continuous deterministic rule does not exist, whereas MS
(Proposition 2) find the second best continuous deterministic rule. MS (footnote 17) comment
that “It is not known whether random mechanisms could help in our context with a continuum of
types.” Our main result answers this question.

Other related papers are Mylovanov and Zapechelnyuk [31] that characterizes optimal
stochastic rules for an uninformed principal in a model with a unidimensional state space and
two experts, and Mylovanov and Zapechelnyuk [30] that deals with first best stochastic rules
in a multidimensional environment with two experts. Closed rules in the current paper are sim-
ilar to stochastic rules in Mylovanov and Zapechelnyuk [30,31] in that experts’ disagreements
are punished by randomized policies. As Mylovanov and Zapechelnyuk [30,31] do not consider
collusion of experts, in their models uncertainty after a disagreement is simply a tool to pro-
vide incentives to the experts to agree on the truth. In contrast, in this paper the choice of the
probability distribution over policies after a disagreement is the policy maker’s instrument for
manipulation of the experts’ collusive behavior.

1 Assuming that collusive agreements are binding. See Proposition 4 in Battaglini [8] for a counterexample for the case
of non-binding collusion (more discussion in Remark 2 in Section 3).

2 Another related paper is Wolinsky [36], whose model is different from ours in that (i) it assumes that the experts are
not fully informed and hold distinct pieces of information (like in Martimort and Semenov [27]); and (ii) experts who are
allowed to communicate are assumed to have identical preferences, so no conflict of interests arises.

3 Cf. Laffont and Martimort [25], where a side mechanism is a benevolent entity that maximizes the sum of the parties’
utilities.
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This paper is also related to the noncooperative theory of multilateral bargaining that goes
back to Rubinstein [35] and has been further developed by Binmore [9], Hart and Mas-Colell
[14], Krishna and Serrano [24], Okada [33,34], with particular focus on bargaining in legisla-
tive bodies in Baron and Ferejohn [7], Jackson and Moselle [17], and Banks and Duggan [4,5].
This paper is different in two aspects. First, the above literature assumes complete informa-
tion, whereas we assume asymmetric information between the policy maker and the committee.
Second, in this paper, instead of specifying a noncooperative procedure for bargaining (as the
above literature does), we consider an arbitrary bargaining solution that satisfies a few basic re-
quirements. These requirements are weak and satisfied by all well known bargaining solution
concepts, such as (asymmetric) Nash bargaining solution [32,18], Kalai–Smorodinsky solu-
tion [20], and the egalitarian solution (more generally, the proportional solution) [19].

2. The model

2.1. Preliminaries

There are a policy maker and n � 2 experts. The policy maker would like to implement out-
come x0 (normalized to be the origin) in set of outcomes X = Rd and he chooses a policy from
Y = Rd, d � 1. When a policy y ∈ Y is chosen, an outcome is x = y + θ , where θ ∈ Θ = Rd is
an unobserved state.4

Before making any decision, the policy maker appoints a committee of n experts who observe
state θ and make proposals about a policy to choose. That is, each expert i proposes policy
mi = mi(θ) ∈ Y .

The policy maker follows a rule μ : Yn → �(Y), a measurable function whose image on
�(Y) is closed5 that stipulates for every tuple of the experts’ proposals m = (m1, . . . ,mn) to
choose a policy (or a lottery over policies) μ(m).

The payoff of the policy maker is given by u0(x) where x = y + θ is the implemented out-
come. The payoff of each expert i = 1, . . . , n is given by ui(x − bi), where bi ∈ Rd is the most
preferred outcome for i, in other words, expert i’s bias. We assume that ui(·) is differentiable,
strictly concave and attains the maximum at 0 for every i = 0,1, . . . , n.

The following notations are in order. For any vector a = (a1, . . . , an) we write aS for (ai)i∈S .
For a function h : A → B and a subset A′ ⊂ A we write h(A′) for set {h(a): a ∈ A′}.
2.2. The bargaining problem

The committee members, N = {1, . . . , n}, after observing state θ and rule μ but before releas-
ing a tuple of proposals to the policy maker, bargain about what they should propose.

A bargaining problem for the committee is defined as a map that associates every tuple of
proposals with a payoff vector to all its members. For a given rule μ and state θ , every tuple of
proposals m = (m1, . . . ,mn) yields to each expert i expected payoff

Eμ(m)

[
ui(y + θ − bi)

]
,

where Eμ(m)[·] denotes the expectation with respect to distribution μ(m) over policies. This is a
composition of rule μ(m) that maps proposal tuple m into a (randomized) outcome and payoff

4 State space Θ and policy set Y need not be unbounded for our results to hold; it is sufficient to require that Θ and
Y are rich enough such that {y + θ : y ∈ Y } contains the policy maker’s and experts’ most preferred outcomes for any
given θ , and so does {y + θ : θ ∈ Θ} for any given y. The outcome set is thus X = {y + θ : y ∈ Y, θ ∈ Θ}.

5 This assumption is needed for some notions, in particular, Pareto efficiency, to be well defined.



JID:YJETH AID:4143 /FLA [m1+; v 1.160; Prn:25/04/2013; 14:32] P.5 (1-19)

A. Zapechelnyuk / Journal of Economic Theory ••• (••••) •••–••• 5
function ui(y + θ − bi) that maps realized outcome y into a payoff of i. We also assume that
proposal tuples that lead to very extreme negative payoffs are never supposed to be realized and
thus irrelevant for the bargaining. Fix a large constant L > 0 (much larger than maxi,j ‖bi − bj‖)
and define

F
μ,θ
i (m) = max

{
Eμ(m)

[
ui(y + θ − bi)

]
,−L

}
. (1)

Thus we have imposed a lower bound on the payoffs. This assumption is needed for compactness
of the bargaining problem and it does not affect the results so long as L is sufficiently large.

Let Fμ,θ (m) = (F
μ,θ
1 (m), . . . ,F

μ,θ
n (m)).

Definition 1. For every rule μ and state θ , function Fμ,θ : Yn → Rn defined by (1) is called the
bargaining problem for n experts.

Denote by Fk the set of all k-player bargaining problems, and let Fn = ⋃n
k=1 Fk .

Definition 2. A bargaining solution on Fn is a mapping φ that associates with every bargaining
problem F in Fk a proposal tuple φ(F ) in Y k .

Here we do not specify an underlying strategic-form game. A bargaining solution φ is seen
as a “black box” that takes state θ and the policy maker’s rule μ as inputs and provides a tuple
of proposals, m, to be sent to the policy maker as an output, and that satisfies three simple
requirements (axioms) described below.

A proposal tuple m ∈ Yn is said to be ex-post Pareto efficient if there does not exist another
proposal tuple, m′ ∈ Yn, m′ �= m, where all experts in N are better off and some are strictly better
off.

Pareto Efficiency (PE). For every bargaining problem F ∈ Fn, φ(F ) is ex-post Pareto efficient.

An expert i is called dummy if her proposal does not affect the payoffs, that is, F(mi,m−i ) =
F(m′

i ,m−i ) for all mi,m
′
i ∈ Y and all m−i ∈ Yn−1. The next axiom states that if expert i is

dummy, the bargaining solution for the others should not depend on whether i is included to the
problem or excluded from it.

Denote by F̂−i the restriction of F to the coordinates of the experts other than i, assuming
that i is dummy.6

Dummy (D). For every bargaining problem F ∈ Fn, if expert i is dummy, then φj (F ) = φj (F̂−i )

for every j ∈ N\{i}.

Finally, we assume that a bargaining outcome does not change drastically in response to any
small change of a bargaining problem.

Continuity (C). φ is continuous.7

No further constraints on a bargaining solution are necessary for our results.

6 That is, F̂j (m−i ) = Fj (mi,m−i ) for all (mi ,m−i ) and all j �= i.
7 Specifically, φ :Fk →Rk is continuous w.r.t. the topology of uniform convergence on Fk , ∀k � n.
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3. First best implementation

We now establish necessary and sufficient conditions under which the first best outcome is
implementable, and construct a rule that implements it.

We say that for a given tuple of biases b = (b1, . . . , bn) and a given bargaining solution φ,
rule μ implements outcome x if in every state θ bargaining outcome φ(Fμ,θ ) leads to policy
outcome x,

μ
(
φ
(
Fμ,θ

)) + θ = x for all θ ∈ Θ. (2)

Note that this is unique implementation: rule μ that satisfies (2) implements the unique out-
come, x.8

Outcome x is said to be implementable if there exists a rule that implements it. Rule μ is
called first best if it implements the policy maker’s first best outcome, x0 = 0.

For every subset of experts S let

US(x) = (
ui(x − bi)

)
i∈S

.

We say that outcome x is Pareto undominated for experts in S (or just Pareto undominated if
S = N ) if there does not exist another outcome x′ with US(x′) � US(x).9 The set of Pareto
undominated outcomes (Pareto set) for the experts in S is denoted by PS .

We now state the main result.

Theorem 1. For every bargaining solution φ that satisfies Axioms PE, D and C, the first best
outcome is implementable if and only if it is Pareto undominated.

This theorem follows from Propositions 1 and 2 below that establish, respectively, only if and
if statements.

Proposition 1 (Necessity). For every bargaining solution φ that satisfies PE, outcome x is im-
plementable only if it is Pareto undominated.

In other words, there does not exist a rule that implements a Pareto dominated outcome under
any bargaining solution φ that satisfies Pareto Efficiency. This is a very intuitive result. Assume
that outcome x0 is implementable by rule μ and Pareto dominated by some x′, and fix state θ .
Then x0 can be an outcome of φ only if x′ is not achievable, i.e., μ(m) + θ �= x′ for all m ∈ Yn.
But then, at state θ ′ = θ + x′ − x0, outcome x0 is not achievable either, hence it is not imple-
mentable at that state, a contradiction.

The proof of the if part of Theorem 1 (the possibility of implementation of any Pareto un-
dominated outcome) is constructive. We design a special class of rules for the policy maker,
called closed rules, that utilize information about the experts’ biases and manipulate the bargain-
ing problem among experts in such a way that the bargaining solution yields exactly the desired
policy at each state.

8 By definition, φ is a function, i.e., for any (μ, θ) the bargaining outcome φ(Fμ,θ ) is unique. However, in practice,
a bargaining outcome is an equilibrium of some noncooperative bargaining game that may have multiple equilibria
(exceptions are rare, such as the unique subgame perfect equilibrium in Rubinstein [35]). In this case, bargaining solution
φ picks a specified equilibrium, and implementation is not unique.

9 We write z � z′ if z is greater than z′ in every coordinate and strictly greater in some.
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A closed rule is informally described as follows. The policy maker consults with a committee
about what policy to select. If the committee unanimously recommends some policy, then that
policy is adopted. If the committee disagrees and offers a menu of policies, the policy maker
randomizes over the experts’ proposed policies with the probabilities that depend on the identities
of the experts, but not on their proposals.

Definition 3. A rule μ is called closed if there exists p = (p1, . . . , pn) ∈ �(N) such that for all
m = (m1, . . . ,mn) ∈ Yn, μ(m) chooses policy mi with probability pi .

A closed rule defined by probability distribution p ∈ �(N) is denoted by μp .

Proposition 2 (Sufficiency). For every bargaining solution φ that satisfies Axioms PE, D and C,
and for every Pareto undominated outcome x there exists p ∈ �(N) such that closed rule μp

implements x.

The sketch of the proof is as follows. To begin with, assume that outcome x coincides with
the most preferred outcome for expert i (i.e., i has zero bias). Then x is trivially implemented
by closed rule μp where pi = 1, so expert i is the “dictator” and all the other experts are dum-
mies. By Dummy axiom (applied recursively to each dummy), the bargaining outcome depends
entirely on expert i’s choice, and by Pareto Efficiency, i will choose the policy that leads i’s most
preferred outcome, which coincides with x.

Next, suppose that x is located on the Pareto set P{i,j} for some pair of experts, i and j .
Then x can be implemented by closed rule μp with pi = 1 − pj , and pk = 0 for all k /∈ {i, j}
as follows. Again, by Dummy axiom, the bargaining solution depends only on the choice of
{i, j} and by Pareto Efficiency it will be in P{i,j}. The two end-points of the interval P{i,j} are
implemented by choosing pi = 0 and pi = 1, respectively. By Continuity axiom, assigning prob-
abilities (pi,pj ) = (t,1 − t) and moving t from 0 to 1 will span the entire interval P{i,j}. The
proof then proceeds by induction w.r.t. increasing subsets of experts. The complete proof is de-
ferred to Appendix A.

Remark 1. Although Proposition 2 does not tell us how probability vector p should be chosen,
the sketch of the proof provides some intuition. One can conjecture that proposals of experts with
smaller biases should be assigned higher probabilities. The experts’ relative bargaining strength
depends on the assigned probabilities, since a relatively high probability pi means that expert i’s
opinion carries a large weight, and thus she has less to lose in case of a disagreement. So, experts
whose interests are less conflicting with the policy maker (i.e., whose biases are smaller) should
be granted greater bargaining power to be able to pull the bargaining outcome closer to their
preferred outcomes. This is illustrated by the application of Proposition 2 to Nash bargaining
solution in the next section.

Remark 2. An important assumption behind Theorem 1 is that the bargaining agreement among
the experts is binding. It exacerbates the problem of first best implementation, as it precludes
(unilateral) deviations of the experts and thus allows the experts to sustain any agreement. Indeed,
Battaglini [8] shows that without this assumption, almost all outcomes10 in a multidimensional

10 Excluding those on the line that passes through the most preferred outcomes of the two experts.
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space can be implemented by consulting with just two experts. Battaglini’s equilibrium construc-
tion is collusion proof, in the sense that collusion on any outcome that is Pareto superior to the
first best outcome is unsustainable (i.e., some expert has incentive to deviate).11 In contrast, in
our model collusive agreements are binding, thus the experts are always able to sustain a Pareto
superior outcome.

Another important assumption is that the policy maker receives no information in addition
to a tuple of the experts’ reports. For example, she cannot distinguish whether the experts
have reached an agreement or, if not, which experts have deviated (or any other details of the
underlying bargaining procedure). This assumption also exacerbates the problem of first best
implementation, as observing more information would allow to construct more versatile mecha-
nisms that, possibly, could implement some Pareto dominated outcomes.

Remark 3. Suppose that the first best outcome is Pareto dominated, and thus unimplementable by
Proposition 1. Then the second best outcome (that is implementable) is simply the undominated
point that is closest (w.r.t. the policy maker’s preferences) to the first best outcome.

4. The Nash bargaining solution

Let us consider an application of Theorem 1 to a problem with n experts who resolve the
bargaining problem according to the Nash bargaining solution [32].12

Let the outcome space be X = Rn−1. For a given bargaining problem Fμ,θ define the dis-
agreement payoff profile dμ,θ = (d

μ,θ
1 , . . . , d

μ,θ
n ) as follows. If the experts fail to agree, we

assume that they choose proposals noncooperatively and sequentially, in a random order (all
orders are equally likely).13 For every order a subgame perfect equilibrium is specified (if it is
not unique). The disagreement payoff d

μ,θ
i of expert i is her ex ante (before the order is drawn)

expected payoff from the described disagreement game.
The Nash bargaining solution for bargaining problem Fμ,θ is the proposal tuple m∗ that

maximizes the product of the experts’ surpluses,14

m∗ = arg max
m∈Yn

∏
i∈N

(
F

μ,θ
i (m) − d

μ,θ
i

)
. (3)

A noncooperative model that implements the Nash bargaining solution is, for instance, the ran-
dom proposer model of Okada [33,34].15 At every round t = 1,2, . . . one player is selected as
a proposer with equal probability from the set of active players, denoted by Nt (with N1 = N ).
The selected player i proposes (i) a coalition S ⊂ Nt with i ∈ S and (ii) an action tuple mS for
that coalition. All other players in S either accept or reject the proposal sequentially (the order of
responders does not affect the results in any crucial way). If all the other players in S accept the

11 This result is proven for quadratic payoff functions of the experts.
12 See Lensberg [26] for the axiomatic extension to multilateral bargaining.
13 The structure of the order of moves is unimportant for the results of this section (for instance, the experts can move
simultaneously), since we will show later that under any closed rule each expert has a unique dominant action. The reason
for this assumption is that, in general, subgame perfect equilibrium of the game with a given order of sequential moves
typically is unique, so there is no ambiguity about the disagreement payoffs.
14 There exists a unique solution, since Fμ,θ is strictly convex and bounded, and by construction dμ,θ � Fμ,θ (m) for
some m.
15 For other noncooperative procedures that lead to the multilateral Nash bargaining solution, see Hart and Mas-Colell
[14] and Krishna and Serrano [24].
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Fig. 1. The problem with three experts.

proposal, then it is agreed upon, and players in S commit to mS . The remaining players outside S

become active players for the next round, Nt+1 = Nt\S, so long as Nt+1 is nonempty. If at least
one responder rejects the proposal, with probability 1 − ε the negotiations continue in the next
round with Nt+1 = Nt . With probability ε the negotiations break down and all players obtain
their disagreement payoffs. Okada [34, Theorem 1] shows that as ε → 0, the payoff profile in
any stationary subgame perfect equilibrium of this game approaches the payoff profile of the
Nash bargaining solution.

Suppose that the experts’ preferences satisfy the following assumptions:
(C1) The payoff functions are quadratic,16 ui(x − bi) = −‖x − bi‖2, i ∈ N .
(C2) The experts’ biases are vectors whose directions are symmetric w.r.t. the origin (the angle

between any pair of vectors is arccos[−1/(n − 1)]).
Fig. 1 illustrates the outcome space for n = 3. The most preferred outcomes of the experts are

labeled by b1, b2 and b3, respectively. The directions of the biases are symmetric so that the angle
between each pair is equal to α = 120◦. The shaded area depicts the set of Pareto undominated
outcomes.

Let us now assume that the policy maker applies closed rule μp (that is, she chooses the
proposal of each expert i with fixed probability pi that is independent of the proposals) and
determine probability vector p = (p1, . . . , pn) as a function of experts’ biases such that the Nash
bargaining solution implements the first best outcome for the policy maker, the origin.

Note that under any closed rule μp , the dominant disagreement action of any expert i is to
propose her most preferred action, mi = bi − θ .17 Consequently, the disagreement payoff of i is
independent of θ and given by

d
μp,θ

i = −
∑
j∈N

pj‖bi − bj‖2. (4)

The Nash bargaining outcome is a function of the set Fμp,θ (Y n) of feasible payoff vectors and
the disagreement payoff vector dμp . Note that under any closed rule, Fμp,θ (Y n) is independent

16 We write ‖ · ‖ for the Euclidean norm on Rn.
17 To see this, assume that i is the last to choose an action. Then, irrespective of what the others have chosen, expert i’s
payoff is maximized when mi = bi − θ . The argument is complete by backward induction.
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of p, since the experts can induce any outcome x in X by proposing m = (x − θ, . . . , x − θ). But
dμp depends on p. The policy maker achieves the desired outcome by adjusting the disagreement
payoffs with the choice of p. For example, increasing pi strengthens the bargaining position of
expert i and shifts the bargaining outcome towards the most preferred outcome of i.

Proposition 3. Suppose that (C1)–(C2) hold. Let the experts choose their proposals according
to the Nash bargaining solution. Then the first best outcome for the policy maker is imple-
mentable by closed rule μp where p = (p1, . . . , pn) is the probability distribution that satisfies
pi = wi/

∑
j∈N wj , where

wi = 1

‖bi‖2
− 1

‖bi‖
n − 3

n − 1

(
1

n

∑
j∈N

‖bj‖
)−1

, i ∈ N.

In particular, for n = 3,

wi = 1

‖bi‖2
, i = 1,2,3,

and the dot labeled by b̂ on Fig. 1 shows the weighted average of the depicted biases.
The proof is deferred to Appendix A.
The above proposition shows that probability pi assigned to a proposal of expert i is decreas-

ing in length of her bias, approaching zero as ‖bi‖ → ∞. Also, pi is increasing in the length of
bias of any other expert j �= i and approaches zero as ‖bj‖ → 0.

As concerns general biases (assumption (C2) dropped), even for n = 3 the analytical solution
for probabilities pi is very cumbersome, as it depends not only on lengths of biases, but also
on their directions. We omit the solution but note the following properties. Consider Fig. 1 and
assume that angle α between biases of experts 2 and 3 increases, while keeping these biases
symmetric w.r.t. the horizontal axis. Then the probability p1 assigned to expert 1 goes down.
Eventually, as b2 and b3 become vertical and opposite to each other, expert 1 becomes redundant,
so p1 = 0. And vice versa, if α decreases, then the probability p1 assigned to expert 1 goes up.
So an expert’s opinion matters more not only when her bias is small relative to the others, but
also when the conflict of interests with all other experts is large.

5. Deterministic rules

A rule μ is said to be deterministic if it chooses a non-random policy for every tuple of pro-
posals, μ(m) ∈ Y for all m ∈ Yn. In this section we discuss some difficulties of deterministic first
best implementation and argue that it cannot be done by many simple deterministic rules. We also
show that if the outcome space is unidimensional, the first best outcome cannot be implemented
by continuous deterministic rules, but we provide an example of first best implementation on a
multidimensional outcome space for n = 2.

Consider the Nash bargaining solution.18 The policy maker who wishes to implement out-
come x0 should be able to choose a rule μ as a function of the experts’ biases so that the outcome

18 The arguments in this section apply to any bargaining solution that depends entirely on the set of feasible payoff
vectors for the experts and the disagreement payoff vector, such as asymmetric Nash solution [18], Kalai–Smorodinsky
solution [20], and egalitarian solution (more generally, proportional solution) [19].
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of the resulting bargaining problem implements exactly x0. As we have seen in the previous sec-
tion, under the Nash bargaining solution, the outcome depends only on the experts’ disagreement
payoffs19 dμ,θ , which, in turn, depend on μ.

Let us consider two simple classes of rules and identify some issues that prevent these rules
from implementing the first best outcome.

Weighted average rules. A weighted average rule is defined by μ(m1, . . . ,mn) = ∑
i∈N wimi

for some weights satisfying 0 � wi � 1 for all i and
∑

wi = 1.
Suppose that x0 is in the interior of the set of Pareto undominated outcomes (as on Fig. 1).

Then, under the weighted average rule, the disagreement payoffs are the expected payoffs from
a fixed lottery over the set {b1, . . . , bn} of the most preferred outcomes of the experts. That is,
dμ,θ does not depend on the choice of weights (w1, . . . ,wn), hence the bargaining outcome is
constant and, in general, need not coincide with the first best outcome x0.20

Let us explain why the above is true. To implement outcome x0 in the interior of the set of
Pareto undominated outcomes, no expert should be dummy, i.e., wi > 0 for all i. Recall our as-
sumption that the disagreement in the Nash bargaining problem is defined by the noncooperative
game among the experts where they move sequentially, according to a random order. Notice that
the last expert in that order, called i, is able to induce her preferred outcome by proposing

mi = 1

wi

(
bi − θ −

∑
j �=i

wjmj

)

so that μ(m) + θ = bi . As all orders are equally likely, the disagreement outcome is the equal-
probability lottery over the set {bi}i∈N of the most preferred outcomes of the experts, which is
independent of the weights.

Clearly, the problem described above is not specific to the weighted average rule, it will per-
sist in many other rules that aggregate the proposals. Moreover, it will persist for some other
definitions of disagreement. For instance, suppose that an expert can unilaterally disagree with
the others, and her disagreement payoff is determined by what she can secure if she anticipates
that the rest of the experts induce the bargaining outcome for their (n − 1)-player problem. In
this case, under the weighted average rule, the disagreement payoff vector still depends on the
biases of the experts, but not on weights (w1, . . . ,wn).

Majority rule. The majority rule stipulates to choose the action that the majority of experts,
k > n/2, propose. If no action has the majority, then a constant punishment action ŷ ∈ Y is
chosen.

There are two problems associated with a constant punishment action. First, ŷ cannot depend
on state θ (which is unknown to the policy maker). At some state θ action ŷ may be extreme,
in the sense that each expert prefers all undominated outcomes (including the most preferred
outcomes of the others) to the punishment outcome ŷ+θ . But there may be another state θ ′ where
ŷ is not extreme, for example, it is the most preferred action for some expert i, i.e., ŷ + θ ′ = bi .
So, at different states the experts may face different bargaining problems and hence agree on

19 It also depends on the set of outcomes achievable for the experts, but it is constant across all rules that implement x0
as argued in the proof of Proposition 1.
20 See Remark 4 in Appendix A.1 for a technical explanation why Proposition 2 does not hold if we replace closed rules
by weighted average rules.
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Fig. 2. Disagreement outcomes under the majority rule.

different bargaining outcomes, while the policy maker’s objective is to make them agree on the
same outcome x0.

Even if we assume that the set of states is bounded, so that there exists action ŷ that is extreme
at all states, there is another problem. As ŷ is extreme, in the disagreement game no expert
would take any actions that lead to ŷ being chosen. That is to say, the disagreement outcome
cannot depend on ŷ. Hence, the bargaining outcome is constant w.r.t. ŷ and, in general, different
from the first best outcome x0.

For illustration, let us solve the disagreement game under the majority rule for n = 3. Fix an
order, say, {1,2,3}. We proceed by backward induction. The last in the order, expert 3, will form
the majority with either expert 1 or 2, by choosing action m3 ∈ {m1,m2} that gives her the higher
payoff among the two. Expert 2 chooses an action that maximizes her payoff among all actions
that provide to expert 3 a greater payoff than that at m1. Expert 1 then chooses m1 optimally,
such that there does not exist action m2 that provides a greater payoff to 2 and a weakly greater
payoff to 3.

This is illustrated by Fig. 2. The optimal action of expert 1 is chosen to induce outcome d1
(that is, m1 = d1 − θ ), where d1 is her preferred outcome among Pareto undominated outcomes
for the pair of experts {2,3} (the dashed line depicts expert 1’s highest indifference curve that is
tangent to segment [b2, b3]). Then the optimal response of expert 2 is to choose m2 = m1, since
any action that would benefit expert 2 relative to m1 will make expert 3 worse off, who would
then block m2 by forming the majority with expert 1, m3 = m1. The disagreement outcomes for
order {1,3,2} coincides with d1. Similarly we obtain points d2 and d3 for orders where 2 and 3
move first, respectively. As each order is equally likely, the resulting disagreement outcome is the
equal-probability lottery over outcomes {d1, d2, d3}. The bargaining outcome is thus a function
of the expert’s biases, but not of the punishment action ŷ.

Clearly, the described problems are not specific to the majority rule and generally apply to
rules that rely on a constant punishment.

As concerns a broader class of deterministic rules, we consider the case of n = 2 and show
that, in general, the first best outcome cannot be implemented by continuous deterministic rules
if the outcome space is unidimensional.

A bargaining solution φ is called disagreement dependent if for every bargaining problem F ∈
F2, it is a function only of the set of feasible payoff vectors, F(Y 2), and a disagreement payoff
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Fig. 3. First best rule for n = 2 and X = R2.

vector that the experts obtain in equilibrium by playing noncooperatively, either simultaneously,
or sequentially with random order.

Proposition 4. Let n = 2 and X = R. Let the experts choose their proposals according to a dis-
agreement dependent solution that satisfies PE. Then for almost every21 bias tuple b = (b1, b2)

in X2, there does not exist a continuous deterministic rule that implements the first best outcome.

The proof is deferred to Appendix A.
As concerns the case of X = Rd, d � 2, we now construct a first best continuous deterministic

rule for X = R2 as follows (it is easily extended to any d > 2). Assume that the biases are
opposing (otherwise the first best outcome is not implementable by Proposition 1). W.l.o.g. let
b1 = (b1,0) and b2 = (b 2,0) such that b1 � 0 � b 2. Fix an angle α ∈ [0,π/2] and suppose that
expert 1 chooses a line l1 in R2 with slope tanα and expert 2 chooses a line l2 with slope − cotα.
The implemented policy is the intersection of these lines, as shown on Fig. 3. Formally, for every
(m1,m2) ∈R2 define

μα(m1,m2) = (
m1 sin2 α + m2 cos2 α, (m2 − m1) sinα cosα

)
.

Then sets μα(R,m2) and μα(m1,R) are the lines in R2 given by

l1(m1) = μα(m1,R) = {
(t, z) ∈ R2: z = (t − m1) tanα

}
,

l2(m2) = μα(R,m2) = {
(t, z) ∈ R2: z = −(t − m2) cotα

}
.

Let us now find the disagreement outcomes for two different orders, {1,2} and {2,1}. If expert 1
moves first, then expert 2 responds by choosing m2 = m∗

2(m1) to minimize the distance between
b2 − θ and the intersection of l2(m2) with l1(m1) that is the closest point to b2 − θ (i.e., l2(m2)

and l1(m1) are orthogonal). Anticipating that response, expert 1 chooses m1 to minimize the
distance between b1 − θ and the intersection of l1(m1) and l2(m

∗
2(m1)). It is easy to see that the

experts will optimally choose m1 = b1 − θ and m2 = b2 − θ irrespective of the order of moves,
as illustrated by Fig. 3 for θ = 0. The disagreement outcome, labeled by dα on Fig. 3, is the same
for both orders {1,2} and {2,1}.

The set of disagreement outcomes induced by rules μα for various α ∈ [0,π/2] is the arc
depicted by the dashed line on Fig. 3. As α increases, dα moves from b2 to b1 along the arc.

21 Excluding a measure zero subset of X2. For example, with biases (0, b2) (expert 1 is unbiased) the first best outcome
is trivially implemented by μ(m1,m2) = m1.
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The disagreement payoff of expert 1 increases and the disagreement payoff of expert 2 decreases
monotonically and continuously. As the Nash bargaining outcome depends on dα only, any out-
come between b1 and b2 can be implemented by an appropriate choice of α.

Appendix A

A.1. Proof of Proposition 2

Consider bargaining problem Fμp,θ defined by closed rule μp and state θ . Let φ be a bar-
gaining solution that satisfies Axioms PE, D and C.

Note that, since the experts’ payoff functions are strictly concave, every nondegenerate lottery
over actions is Pareto inferior to some deterministic action. Hence by Pareto Efficiency, for every
bargaining problem Fμp,θ , φ(Fμp,θ ) = (y, . . . , y) for some action y ∈ Y . With abuse of notation,
we will write φ(Fμp,θ ) = y.

We would like to establish that for every x ∈ PN one can find p ∈ �(N) such that the bar-
gaining solution of Fμp,θ is exactly the policy that leads to outcome x for every state θ , i.e.,

φ
(
Fμp,θ

) + θ = x for all θ ∈ Θ. (5)

Note that any closed rule μp has the following property. For every (m1, . . . ,mn) ∈ Yn and
every θ ,

Fμp,θ (m1 − θ, . . . ,mn − θ) = Fμp,0(m1, . . . ,mn).

Hence, the bargaining solutions of Fμp,θ and Fμp,0 are the same up to translation by θ , so
φ(Fμp,θ ) + θ = φ(Fμp,0) for all θ ∈ Θ .

Define ξ : �(N) → X by ξ(p) = φ(Fμp,0), which is continuous, since Fμp,0 is uniformly
continuous in p by construction and φ is continuous w.r.t. the uniform convergence topology by
Continuity axiom. Let N ′ be the minimal subset of experts whose Pareto set coincides with the
Pareto set for N , i.e., PN ′ = PN , and PS � PN for all S � N ′. Using these notations, (5) can be
equivalently written as PN ′ ⊂ ξ(�(N)).

For every S ⊂ N denote by �S ⊂Rn the set of probability distributions in �(N) with support
on the coordinates in S only,

�S = {
p ∈ �(N): pi = 0 for all i /∈ S

}
.

The proof of PN ′ ⊂ ξ(�(N)) is split into two steps.

Step 1. We show that

ξ(�S) ⊂ PS for all S ⊂ N ′. (6)

Step 2. By induction in the cardinality of S we show that ξ(�S) = PS for all S ⊂ N ′.

By Step 2 it follows that PN ′ = ξ(�N ′) ⊂ ξ(�(N)).

Proof of Step 1. Let S ⊂ N ′ and consider p ∈ �S , so that pj = 0 for all j ∈ N\S. Then, under
rule μp , for every i ∈ N ,
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F
μp,θ

i (m) =
∑
j∈S

pjui(mj + θ − bi) +
∑

j∈N\S
pjui(mj + θ − bi)

=
∑
j∈S

pjui(mj + θ − bi).

Hence, Fμp,θ is independent of mN\S . In other words, all experts in N\S are dummies. Applying
Dummy axiom repeatedly for all j ∈ N\S yields that φi(F

μp,θ ) is equal to the solution of the
bargaining problem among experts in S, and by Pareto Efficiency, φ(Fμp,θ ) ∈ PS . Consequently,
ξ(�S) ⊂ PS . �
Proof of Step 2. Now let us show that ξ(�′

N) = PN ′ ≡ PN . We proceed by induction in the
cardinality of S ⊂ N ′. First, let S = {i} for some i ∈ N ′. Observe that P{i} = {bi} (since ui(x−bi)

is strictly concave and maximized at x = bi ). As ξ(�{i}) is nonempty (it is a singleton) and,
by (6), ξ(�{i}) ⊂ P{i} = {bi}, we have ξ(�{i}) = P{i}.

Next, let S ⊂ N ′, |S| � 2. For each i ∈ S, suppose that ξ(�S\{i}) = PS\{i}. We will now prove
that ξ(�S) = PS .

Note that PS is homeomorphic to set �S , i.e., there exists a continuous bijection hS : �S →
PS .22 Moreover, for every i ∈ S, PS\{i} = hS\{i}(�S\{i}). As ξ(�S) ⊂ PS by (6), condition
ξ(�S) = PS is equivalent to h−1

S (ξ(�S)) = �S .
Denote by ∂�S the boundary of the set {p ∈ �(N): pi > 0 for all i ∈ S} and let ∂PS =

hS(∂�S). By induction assumption, PS\{i} = ξ(�S\{i}), hence

∂PS ⊂
⋃
i∈S

PS\{i} =
⋃
i∈S

ξ(�S\{i}) = ξ

(⋃
i∈S

�S\{i}
)

⊂ ξ(�S).

Now, the homotopy group of set ξ(�S) is trivial (i.e., it has no “holes” inside), since ξ is con-
tinuous and we can construct a retraction r : PS × [0,1] → PS that contracts ξ(�S) to a point as
follows. Fix i ∈ S and denote by δ{i} the unique point in �{i}. For every x ∈ ξ(�S) define

r(x, t) = ξ
(
tδ{i} + (1 − t)h−1

S (x)
)
.

In particular, r(∂PS, ·) contracts ∂PS (the “boundary” of PS ) to point bi ∈ PS . Consequently,
ξ(�S) = PS . �
Remark 4. This proof does not go through if we consider weighted average rules (defined in
Section 5) instead of closed rules, for the following reason. Let {μp}p∈�(N) be the class of
weighted average rules. Then function ξ : �(N) → X defined above is not continuous (and hence
Step 2 does not hold), since Fμp,0 is not uniformly continuous in p. To see this, fix expert i and
consider a sequence {pk} with pk → p̄ as k → ∞ such that pk

i > 0 for all k and p̄i = 0. Then at

22 For every p ∈ �S , one can think of p as a direction in Rn+. Maximizing payoff vector UN(x) in direction p yields
point h(p) = arg maxx∈UN (X) p ·x on the Pareto frontier for the experts in S. Function h is well defined, since the payoff
functions are strictly convex and bounded from above, and it is continuous by the Maximum theorem. Moreover, since
S ⊂ N ′, for every point x in the Pareto set PS there exists a unique direction p ∈ �S such that h(p) = x, i.e., h is an
onto mapping. Thus hS : �S → PS is a homeomorphism.
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p̄ expert i is dummy, so F
μp̄,0
i (mi,m−i ) = ui(

∑
j �=i p̄jmj − bi) is constant w.r.t. mi . However,

for all k, F
μ

pk ,0

i (mi,m−i ) = ui(
∑

j∈N pk
jmj − bi) = ui(0) if

mi = 1

pk
i

(
bi −

∑
j �=i

pk
jmj

)
.

Hence for every m̄−i such that
∑

j �=i p̄j m̄j �= bi and every k we have

max
mi∈Y

∣∣Fμ
pk ,0

i (mi, m̄−i ) − F
μp̄,0
i (mi, m̄−i )

∣∣ �
∣∣∣∣ui(0) − ui

(∑
j �=i

p̄jmj − bi

)∣∣∣∣ > 0.

A.2. Proof of Proposition 3

By (3), (4), and concavity of the experts’ payoff functions, the Nash bargaining solution will
choose the tuple of proposals m∗ = (x − θ, x − θ, . . . , x − θ), where outcome x maximizes

∏
i∈N

(
−‖x − bi‖2 +

∑
j∈N

pj‖bi − bj‖2
)

.

Differentiating the logarithm of the above expression w.r.t. each coordinate of x = (x1, . . . , xd)

yields the first order conditions
∑
i∈N

−2(xk − bik)

−‖x − bi‖2 + ∑
j∈N pj‖bi − bj‖2

= 0, k = 1, . . . ,d.

We need to find probabilities pj such the bargaining outcome x is equal to the first best outcome,
x = 0. Evaluating the above first order condition at x = 0 and dividing the numerator and the
denominator of each summand by ‖bi‖ yields

∑
i∈N

2bik/‖bi‖
(−‖bi‖2 + ∑

j∈N pj‖bi − bj‖2)/‖bi‖ = 0, k = 1, . . . ,d.

Since
∑

i∈N bik/‖bi‖ = 0 by assumption (C2), we need to find probabilities pj such that the
denominator is constant for all i, i.e., there exists a constant K such that

1

‖bi‖
(
−‖bi‖2 +

∑
j∈N

pj‖bi − bj‖2
)

= K for all i ∈ N.

For every j �= i we have

‖bi − bj‖2 = ‖bi‖2 + ‖bj‖2 − 2‖bi‖ · ‖bj‖ cosα = ‖bi‖2 + ‖bj‖2 + 2‖bi‖ · ‖bj‖
n − 1

,

since cosα = −1/(n − 1) by assumption (C2). Hence

K = −‖bi‖ +
∑
j �=i

pj

(
‖bi‖ + ‖bj‖2

‖bi‖ + 2‖bj‖
n − 1

)

= −
(

2 + 2

n − 1

)
‖bi‖pi +

∑
j∈N

pj

(‖bj‖2

‖bi‖ + 2‖bj‖
n − 1

)

= − 2n

n − 1
‖bi‖pi + 1

‖bi‖
∑

‖bj‖2pj +
∑ 2‖bj‖

n − 1
pj .
j∈N j∈N
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Denote K ′ = K − ∑
j∈N

2‖bj ‖
n−1 pj and L = ∑

j∈N ‖bj‖2pj . Then

2n

n − 1
‖bi‖2pi = −K ′‖bi‖ + L. (7)

Summing up (7) over i ∈ N yields

2n

n − 1
L = −K ′ ∑

i∈N

‖bi‖ + nL.

Solving for K ′ yields

K ′ =
(

n − 2n

n − 1

)
L

(∑
i∈N

‖bi‖
)−1

= n − 3

n − 1
L

(
1

n

∑
i∈N

‖bi‖
)−1

.

After substitution of K ′ into (7) and dividing both sides by ‖b2
i ‖L we obtain

2n

(n − 1)L
pi = − K ′

‖bi‖L + 1

‖bi‖2
= − 1

‖bi‖
n − 3

n − 1

(
1

n

∑
i∈N

‖bi‖
)−1

+ 1

‖bi‖2
.

It is now straightforward to verify the above is satisfied by setting pi = wi/
∑

j∈N wj with wi ’s
as defined in Proposition 3.

A.3. Proof of Proposition 4

Let the biases be opposing, w.l.o.g. b1 � 0 � b2, and assume that a first best continuous
deterministic rule exists. (For like biases a first best rule does not exist by Proposition 1.) Denote
that rule by μ and define

m∗
i (mj ) = arg max

mi∈Y

ui

(
μ(mi,mj ) + θ − bi

)
, and

m̂i ∈ arg max
mi∈Y

ui

(
μ

(
mi,m

∗
j (mi)

) + θ − bi

)
.

Suppose that if the experts disagree, they move sequentially, in random order. So, with order
{i, j}, in equilibrium expert i chooses m̂i and expert j responds by m∗

j (m̂i). Let us now show
that each expert i is always weakly better off to be a second-mover. Specifically, we will prove
that

b1 − θ � μ
(
m∗

1(m̂2), m̂2
)
� μ

(
m̂1,m

∗
2(m̂1)

)
� b2 − θ. (8)

Fix order {1,2} and let us show that

b1 − θ � μ
(
m̂1,m

∗
2(m̂1)

)
� b2 − θ. (9)

First, μ is first best by assumption, so μ(Y,Y ) = Y (see the argument in the proof of Proposi-
tion 1). Hence, there exists a pair (m̃1, m̃2) such that μ(m̃1, m̃2) = b2 − θ . That is, expert 1 (who
moves first) can achieve the payoff u1(b2 − b1) by proposing m̃1 (then the optimal response of
expert 2 is m∗(m̃1) = m̃2 leading to her most preferred outcome). As expert 1’s payoff ui(x −b1)

is strictly decreasing in x for x > b1, it follows that μ(m̂1,m
∗
2(m̂1)) � b2 − θ .

Second, since μ is continuous and its image on Y is closed by assumption, μ(m1, Y ) is a
closed (possibly, unbounded) interval. So μ(m1,m

∗
2(m1)) is either b2 − θ or the endpoint of

interval μ(m1, Y ) that is closest b2 − θ . Hence, again by continuity of μ, μ(Y,m∗(Y )) is a
2
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closed interval. If b1 − θ ∈ μ(Y,m∗
2(Y )), then expert 1 can achieve her most preferred point,

μ(m̂1,m
∗
2(m̂1)) = b1 − θ . Otherwise, as we have obtained b2 − θ ∈ μ(Y,m∗

2(Y )), it follows
that b1 − θ /∈ μ(Y,m∗

2(Y )) entails (−∞, b1 − θ ] ∩ μ(Y,m∗
2(Y )) = ∅. In either case, b1 − θ �

μ(m̂1,m
∗
2(m̂1)).

Thus we have shown (9). Then (8) follows immediately by the observation that u1(y +θ −b1)

is strictly decreasing and u2(y + θ − b2) is strictly increasing in y for b1 − θ � y � b2 − θ and
the fact that maxmin never exceeds minmax.

Now, equipped with (8), we consider two cases.
Case 1. For all θ ∈ Θ , the second mover obtains her most preferred outcome, i.e.,

μ(m1,m
∗
2(m1)) = b2 − θ and μ(m∗

1(m2),m2) = b1 − θ for all m1,m2. Then the disagreement
outcome is the equal-probability lottery between outcomes b1 and b2 that uniquely defines the
bargaining outcome that is, in general, different from the first best outcome.

Case 2. There exist an expert, e.g., expert 1, state θ and action m̂1 such that μ(m̂1,m
∗
2(m̂1)) <

b2 − θ . Then at state θ ′ = b1 −μ(m̂1,m
∗
2(m̂1)), expert 1 can achieve her most preferred outcome

when she is first mover, μ(m̂1,m
∗
2(m̂1)) = b1 − θ ′. But by (8),

b1 − θ ′ � μ
(
m∗

1(m̂2), m̂2
)
� μ

(
m̂1,m

∗
2(m̂1)

) = b1 − θ ′.

That is to say, at state θ ′ expert 1 achieves her most preferred outcome with certainty under
disagreement. Consequently, the only implementable outcome is x = b1, which is, in general,
different from the first best outcome.

Finally, suppose that the experts move simultaneously after a disagreement, so their actions
(m1,m2) must constitute a Nash equilibrium, m1 = m∗

1(m2) and m2 = m∗
2(m1).

Then in Case 2, the pair (m1,m2) = (m̂1,m
∗
2(m̂1)) is a Nash equilibrium at state θ ′ = b1 −

μ(m̂1,m
∗
2(m̂1)), since expert 1 attains his most preferred outcome and expert 2 plays a best reply.

So, at that state the only implementable outcome is x = b1.
In Case 1, Nash equilibrium in pure strategies does not exist, since for every mi , best re-

ply m∗
j (mi) leads to j ’s most preferred outcome, μ(mi,m

∗
j (mi)) = bj − θ . Nash equilibrium

in mixed strategies does not exist either, since the payoff functions of the experts are strictly
concave, so the best reply functions are single valued.
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