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• This note axiomatically justifies a simple scoring rule for multiple-choice tests.
• This rule is novel and simple.
• It satisfies a few desirable properties that the standard scoring rule lacks.
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a b s t r a c t

This note axiomatically justifies a simple scoring rule for multiple-choice tests. The rule permits choosing
any number, k, of available options and grants 1/k-th of the maximum score if one of the chosen options
is correct, and zero otherwise. This rule satisfies a few desirable properties: simplicity of implementation,
non-negative scores, discouragement of random guessing, and rewards for partial answers. This is a novel
rule that has not been discussed or empirically tested in the literature.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Multiple-choice questions are routinely used in examinations.
They are simple to implement and score, and do not have apparent
disadvantages relative to essay questions (Akeroyd, 1982; Bennett
et al., 1991; Bridgeman, 1991; Walstad and Becker, 1994; Brown,
2001).

A multiple-choice question seeks a single correct answer from
a list of options. Multiple-choice questions are almost universally
evaluated by the number right scoring rule that grants the unit
score if a single correct option is chosen and zero otherwise.
This method suffers from recognized drawbacks: it encourages
guessing anddoes not permit expressing partial knowledge. Froma
test-maker’s point of view, this is undesirable, as it interferes with
inference of true knowledge of a test-taker from his response to
the test. A correct answer may equally signify knowledge and luck.
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From a test-taker’s point of view, this is also undesirable. A risk
averse test-takerwho is hesitating between a fewanswers is forced
to gamble to grab his chance and cannot opt for a lower, but more
certain score.

The problem of guessing is traditionally addressed by penal-
izing wrong answers with negative scores, called formula scoring
(e.g., Holzinger, 1924). This approach is implemented, for exam-
ple, in the SAT and GRE subject tests. Interestingly, formula scoring
does not really solve the problem: if a risk-neutral test-taker can
eliminate some options but hesitates among the remaining ones,
he strictly prefers to make a guess (Budescu and Bar-Hillel, 1993;
Bar-Hillel et al., 2005). Negative scores per se have also been crit-
icized for contributing to high omission rates and discrimination
against risk-averse and loss-averse test-takers (Ben-Simon et al.,
1997; Burton, 2005; Delgado, 2007; Budescu and Bo, 2014).1

Another well-known scoring method that discourages guess-
ing and elicit partial knowledge is subset selection scoring

1 For an alternative opinion see (Espinosa and Gardeazabal, 2010).
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(Dressel and Schmidt, 1953),2 which allows a test-taker to choose
a subset of options and grant score 1 for the correct option and
−

1
n−1 for each incorrect option in the chosen set. The literature

also studies complex scoring methods that elicit test-takers’ ordi-
nal ranking, confidence, or probability distribution over available
options (Bernardo, 1998; Alnabhan, 2002; Swartz, 2006; Ng and
Chan, 2009). Though such scoring rules are advantageous in theory,
the evidence suggests that theymight not be advantageous in prac-
tice (Budescu and Bar-Hillel, 1993; Bar-Hillel et al., 2005; Espinosa
and Gardeazabal, 2013; Budescu and Bo, 2014). The problem is
a distortion between the inference from responses and the true
knowledge caused by test-takers’ strategic considerations. With
complex scoring, test-takers’ responses depend not only on their
knowledge, but also on specifics of the scoring rule and personal
characteristics (risk attitude, loss aversion, etc.).

To sum up, there are a few desirable properties of multiple-
choice scoring:

(a) simplicity;
(b) non-negative scores;
(c) discouragement of guessing;
(d) rewards for partial answers.

This note axiomatically derives a scoring rule that satisfies the
above properties. The rule permits to select any number k out
of n available options and grants 1/k-th of the maximum score
if one of the chosen options is correct, and zero otherwise. This
rule is uniquely determined by a simple requirement. A risk-averse
test-taker who is indifferent between a few options should prefer
to choose all of them, rather than choosing either of them (and
‘‘prefer’’ replaced by ‘‘indifferent’’ for a risk-neutral test-taker).

To the best of our knowledge, this rule has not been discussed or
empirically tested in the literature. It is a variant of subset selection
scoring mentioned above, however, it assigns scores to selected
subsets differently, and therefore has different properties. Most
notably, subset selection scoring discourages guessing ‘‘too much’’
and penalizes wrong answers harsher than our rule (see more
details in Section 3). Thus, our scoring rule, at least hypothetically,
evokes less distortion of responses due to strategic considerations
of test-takers.

Frandsen and Schwartzbach (2006) propose a different axiom-
atization of multiple-choice scoring. The two defining axioms of
Frandsen and Schwartzbach (2006) are invariance under decompo-
sition (if a question is decomposable into two simpler questions,
then the score of the complex question is the sum of the scores
of the simpler ones) and zero sum (the expected score of random
guessing is zero). As a result, a choice of k out of n available options
gives score ln

 n
k


if it contains the correct answer and −

k
n−k ln

 n
k


otherwise. This scoring rule has a very nice interpretation from the
information-theoretical perspective. Yet it permits negative scores
and qualitatively compares to our rule in the same way as the sub-
set selection scoring (see more details in Section 3).

2. The scoring rule

A test-taker is permitted to choose any number of options out
of n ≥ 2 available; only one option is correct.

A scoring rule assigns a numerical value fz(k) to a choice of k
out of n options, where z ∈ {0, 1} indicates whether the chosen
set contains the correct answer (z = 1) or not (z = 0). The number
of options, n, is fixed and omitted from notation.

2 Equivalent variants are elimination scoring (Coombs et al., 1956; Bradbard and
Green, 1986) and liberal scoring (Bush, 2001; Bradbard et al., 2004; Jennings and
Bush, 2006).
We assume that scoring functions satisfy two primitive
properties. First, we normalize the scores to be in [0, 1] and assume
that the maximum is achieved by choosing the single correct
option, while theminimum is achieved by choosing n−1 incorrect
options:

f1(1) = 1 and f0(n − 1) = 0. (1)

Second, two equally uninformative responses, selecting all options
and omitting the question, should be scored equally:

f1(n) = f0(0). (2)

Denote by F the set of scoring functions that satisfy the above
properties.

We now describe the choice of a test-taker. Denote by N =

{1, . . . , n} the set of available options. Let p = (pa)a∈N be a
probability vector. The test-taker believes that each answer a is
correct with probability pa.

The test-taker has to chooses a subsetA ⊂ N (possibly,A = N or
A = ∅). The test-taker is risk-averse (or risk-neutral) and evaluates
a choice set A ⊂ N under a probability vector p according to the
expected utility:

U(A, p) = pAu(f1(|A|)) + (1 − pA)u(f0(|A|)),

where pA =


a∈A pa and u : [0, 1] → R is a utility function. We
assume that u is continuous and weakly concave, and normalize

u(0) = 0 and u(1) = 1. (3)

We say that the test-taker prefers A to B (strictly prefers, indifferent)
under probability vector p and use notation A%p(≻p, ∼p)B if

U(A, p) ≥ (>, =)U(B, p).

We now impose a requirement (axiom) on the test-taker’s
choice that formalizes the idea that test-takers should be discour-
aged from random guessing: ‘‘If you don’t know which answer to
choose, then choose both’’. A test-taker should prefer to choose all
options aboutwhich he is indifferent, rather than choosing any sin-
gle one.

Axiom 1. If for some probability vector p, some A ⊂ N , and some
a ∈ A,

a∼p b for all b ∈ A,

then

A%p a under risk-averse preferences,
A∼p a under risk-neutral preferences.

Essentially, when all options in A are equally likely to be correct,
Axiom 1 requires that choosing A yields the same expected score
as the lottery associated with choosing any single option a ∈ A.

The consequent A∼p a for a risk-neutral individual makes the
axiom tight—a risk-loving test-taker would actually prefer random
guessing to choosing set A.

Axiom 1 pin down a unique scoring rule in F .

Theorem 1. The unique scoring rule in F that satisfies Axiom 1 is
given by

f1(k) =
1
k

and f0(k) = 0

for every k ∈ {1, . . . , n}, and f0(0) =
1
n .
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This scoring rule is simple, even relative to subset selection and
elimination scoring, and admits only nonnegative scores by design.
It also discourages guessing, as whenever a test-taker is indifferent
between two disjoint sets A and B, he prefers to choose both of
them:

A, B ⊂ N are disjoint and A∼p B H⇒ A ∪ B%p A.

Finally, this scoring rule rewards partial answers: a test-taker who
can narrow down his choice to a subset A of options but unsure
about choosing within A gets a partial credit for choosing the
whole A.

3. Related scoring rules

To the best of our knowledge, the scoring rule in Theorem 1,
as well as its re-normalized version f̃ that gives zero score to
omission,3

f̃1(k) =
n − k

(n − 1)k
and f̃0(k) =

−
1

n − 1
, k ≥ 1,

0, k = 0,

has not been previously discussed nor empirically tested.
A closely related scoring rule is subset selection scoring. It grants

score 1 for the correct option and −
1

n−1 for each incorrect option
in the chosen set. For a choice of k out of n options it is:

g1(k) = 1 −
k − 1
n − 1

and g0(k) = −
k

n − 1
.

Frandsen and Schwartzbach (2006) use the axiomatic approach
to derive the logarithmic scoring rule as the only one that satisfies
the axioms of invariance under decomposition (if a question is
decomposable into two simpler questions, then the score of the
complex question is the sum of the scores of the simple ones) and
zero sum (the expected score of random guessing is zero):

h1(k) = ln
n
k


and h0(k) = −

k
n − k

ln
n
k


.

The above two rules reward correct answers more generously,
but also penalize incorrect answers more severely, as compared to
our rule. Particularly, for each number of chosen options k, scores
assigned by the subset selection scoring rule are k times as large as
scores assigned by our rule, gz(k) = kf̃z(k).

There are two important consequences of this difference. First,
scoring rules g and h discourage random guessing ‘‘too much’’,
and hence violate our Axiom 1. For example, consider a multiple-
choice questionwith the set of optionsN = {a1, a2, a3, a4, a5}, and
assume that a risk-neutral test-taker has beliefs p = ( 1

2 ,
1
2 , 0, 0, 0).

Axiom 1 demands that {a1} ∼p{a1, a2}. But under both g and h,
{a1} ≺p{a1, a2}.

Consider amore drastic example. Let p = ( 2
3 ,

1
3 , 0, 0, 0), that is,

the test-taker believes that option a1 is twice as likely to be correct
as option a2, and the rest of options are surely incorrect. One may
expect that a risk-neutral (or close to risk-neutral) test-takerwould
prefer the likely option a1 to the set {a1, a2}. This is indeed the case
under our scoring rule. However, {a1} ≺p{a1, a2} under both g and
h for every risk-averse or risk-neutral test-taker.

Second, as compared to our rule, scoring rules g and h generate
a higher variance of lotteries, and thus evoke more distortion
between the inference from responses and the true knowledge
caused by strategic considerations of risk-averse and loss-averse
test-takers (Budescu and Bar-Hillel, 1993; Budescu and Bo, 2014).

3 Set the maximum score to 1 and the omission score (A = ∅) to 0.
Finally, scoring rules g and h admit negative values. There
is some evidence suggesting that negative scoring is undesir-
able, particularly, due to discrimination against loss-averse test-
takers (e.g., Delgado, 2007 and Budescu and Bo, 2014). The
re-normalization of the score range to [0, 1] interval uncovers an-
other potential problem: these rules are too lenient on test-takers
who know nothing. For an uninformative answer or omission, the
normalized subset selection rule gives score 1/2 irrespective of n,
while the normalized logarithmic scoring rule yields the score, for
example, about 1

3 for n = 6 and about 1
4 for n = 18. In contrast, for

an uninformative answer or omission, our scoring rule yields score
1
n for every n.

Proof of Theorem 1. We prove that the scoring rule stated in
Theorem 1 is the only one that satisfies Axiom 1 for an individual
with risk-neutral preferences, u(x) = x. Then we show that this
scoring rule also satisfies Axiom 1 for any risk-averse individual.

The expected utility of a risk-neutral test-taker from choosing
set A is equal to the expected score:

U(A, p) = pAf1(|A|) + (1 − pA)f0(|A|).

For every a ∈ N we have U(a, p) = paf1(1) + (1− pa)f0(1), hence,
a∼p b if and only if pa = pb. Consider a probability distribution
p that is uniform on some subset A, pa = p̄ for all a ∈ A. Denote
k = |A|. Then Axiom 1 implies that for every k = 2, 3, . . . , n − 1
and every p̄ ∈ [0, 1

k ]

p̄f1(1) + (1 − p̄)f0(1) = kp̄f1(k) + (1 − kp̄)f0(k),

or equivalently,

p̄

f1(1) − f0(1) − k(f1(k) − f0(k))


+ f0(1) − f0(k) = 0.

Since the above has to hold for all p̄ ∈ [0, 1
k ], we have

f1(1) − f0(1) − k(f1(k) − f0(k)) = 0, k ∈ {2, . . . , n − 1} (4)

and

f0(1) − f0(k) = 0, k ∈ {2, . . . , n − 1}. (5)

Recall that f0(n − 1) = 0 by (1), hence (5) implies

f0(k) = 0, k ∈ {1, . . . , n − 1}.

Also recall that f1(1) = 1 by (1), hence (4) becomes 1 = kf1(k), and
consequently,

f1(k) =
1
k
, k ∈ {2, . . . , n − 1}.

Finally, (2) implies f0(0) = f1(n) =
1
n .

We now verify that Axiom 1 is satisfied for a risk-averse test-
taker. Let f be as defined above. Let A be a set such that the test-
taker is indifferent between any of its options: for every a, b ∈ A,

pau(f1(1)) + (1 − pa)u(f0(1)) = pbu(f1(1)) + (1 − pb)u(f0(1)).

Since f1(1) = 1 and f0(1) = 0 and we have u(0) = 0 and u(1) = 1
by (3), the above holds if and only if pa = pb. Thus, we have pa are
the same for all a ∈ A. Denote p̄ = pa. Axiom 1 implies that

p̄u(f1(1)) + (1 − p̄)u(f0(1)) ≤ |A|p̄u(f1(|A|))

+ (1 − |A|p̄)u(f0(|A|)).

Using f0(k) = 0 and f1(k) =
1
k for all k ≥ 1, and that u(0) = 0 and

u(1) = 1 by (3), we obtain

p̄ ≤ |A|p̄u


1
|A|


,

or u


1
|A|


≥

1
|A|

, which is true by (3) and concavity of u.
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