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Abstract

We consider a bargaining problem where one of the players, the intellectual property rights owner (IPRO) can allocate licenses
for the use of this property among the interested parties (agents). The agents negotiate with him the allocation of licenses and the
payments of the licensees to the IPRO. We state five axioms and characterize the bargaining solutions which satisfy these axioms.
In a solution every agent obtains a weighted average of his individually rational level and his marginal contribution to the set of all
players, where the weights are the same across all agents and all bargaining problems. The IPRO obtains the remaining surplus.
The symmetric solution is the nucleolus of a naturally related coalitional game.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Licensing is a common practice of disseminating an intellectual property among interested parties which allows
an intellectual property rights owner (thereafter, IPRO) to receive revenue in the form of monetary transfers from the
licensees. Since a license fee need not be uniform, i.e., the terms may be negotiated individually, a natural question
arises: Who should obtain the license and how to charge each licensee? The value of a license for each interested
party depends on who else obtains the license, thus the problem presents significant complexities.1

The paper deals with an owner of intellectual property rights (IPRO) and potential users of this property. A specific
context is an innovator of a new technology which is superior to that used by firms in an oligopolistic industry. The
IPRO can be either an incumbent firm or an independent research lab. He can sell licenses for the use of his new
technology to any subset of firms. Every allocation of licenses determines the payoffs of the IPRO and the firms in
the industry. We provide a normative (axiomatic) approach to the bargaining between the IPRO and the firms in the
industry about the allocation of licenses and monetary transfers of the firms in return.

* Corresponding author at: Kyiv School of Economics, 51 Dehtyarivska St., 03113 Kyiv, Ukraine.
E-mail address: andriy@vms.huji.ac.il (A. Zapechelnyuk).

1 For instance, a Vickrey auction need not be efficient because of presence of the externalities in bidders’ values.
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A bargaining solution is a mapping which associates with every bargaining problem a vector of net payoffs to all
players. Indirectly, a solution determines the allocation of licenses and their transfers to the IPRO. We study solutions
which satisfy certain requirements (axioms). Our first axiom asserts that a solution should be undominated. Namely,
for every subset of firms, there is no other outcome that makes the IPRO and every member of this subset strictly
better off. The second axiom requires that if two bargaining problems have the same sets of undominated outcomes,
then they must have the same solution. This axiom is similar in spirit to the well known axiom of independence of
irrelevant alternatives (Nash, 1950). It asserts that the dominated outcomes are “irrelevant” and thus should not affect
the solution.2 The third axiom states that a solution should not depend on the unit of measurement. The fourth axiom
requires that a solution should not depend on the names of the agents. The last axiom deals with bargaining problems
that are composed of two independent industries with two different sets of firms. The axiom requires that in this case
the net payoff of a firm should depend only on its industry.

We show that in every solution which satisfies the above five axioms the IPRO allocates licenses efficiently (that
is, the license allocation maximizes the total industry profit) and every firm’s net payoff is a weighted average of
its individually rational level, the amount that it can guarantee irrespective of a license allocation, and its marginal
contribution to the grand coalition. The IPRO obtains the remaining surplus. Furthermore, these weights are the same
across all firms and across all bargaining problems with any finite number of firms. The weights therefore serve as
a measure of the bargaining power of the IPRO. They are completely determined by the simple one-firm problem,
where the firm receives zero without the license and one with it, and the IPRO, who is an outside lab, can obtain by
himself only zero. This can be regarded as a symmetric problem: The IPRO and the firm can each achieve zero by
themselves and could obtain one together. If the solution of this specific problem is that the IPRO and the firm obtain
α and 1 − α, respectively, then the solution of every bargaining problem with any number of firms awards every firm
the average of its individually rational level and its marginal contribution to the grand coalition with the same weights
(α,1 − α). A special case, the symmetric solution with α = 1/2, coincides with the nucleolus (Schmeidler, 1969) of
a naturally related coalitional game.

Though we focus on patent licensing, this paper can be applied to more general bargaining problems, where one
“powerful” player (a monopolist or a bureaucrat) has the power to dictate any outcome in a given set of feasible
outcomes. One example is an n-player bargaining over a split of a cake where an additional player, an arbitrator,
has the exclusive power to dictate any allocation. Another example deals with an information holder who exclusively
owns a piece of information relevant to the players in a strategic conflict. He has many ways to transmit part of his
information (or all of it) to some (or all) players (see, e.g., Kamien et al., 1990). The information holder may bargain
with the players about the information to be transmitted to each agent and about their monetary transfers. Another
application concerns a group of lobbyists (with, potentially, conflicting interests) offering rewards to a policy maker
if their desired policy is implemented.

Our framework resembles that of Buch and Tauman (1992) who deal with similar bargaining problems. Their work,
however, is confined to the special case where the powerful player has no stake in the bargaining, and his only source
of income is the agents’ transfers. These problems do not apply, for instance, to patent licensing problems where the
patent holder is an incumbent firm. Our axiomatic approach is different from that of Buch and Tauman, and we argue
that our solution is more appealing.

Throughout the paper we assume that the set of outcomes is commonly known. Bernheim and Whinston (1986)
consider a similar framework with asymmetric information, where the powerful player (the auctioneer, in Bernheim
and Whinston, 1986) has no information about the agents’ preferences.3 The bargaining problem is resolved by an
auction. Every agent submits a contingent schedule which specifies the transfer of the agent to the auctioneer as a
function of the dictated outcome. The schedules are selected simultaneously and they are assumed to be commitments.
After observing these schedules, the auctioneer dictates an outcome and collects the corresponding transfers. The

2 A conceptual difference between our axiom and the standard IIA axiom is that in the latter the notion of “irrelevant outcome” depends on a
given solution (see the discussion in the text, Section 5).

3 Even though the agents themselves are fully informed. Bernheim and Whinston (1986) note that relaxation of this assumption leads to significant
complexities.
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Bernheim and Whinston (1986) paper focuses on truthful4 Nash equilibrium points. It can be shown that in every
(submodular) bargaining problem the unique truthful Nash equilibrium outcome coincides with our extreme solution,
where the bargaining power of the powerful player is minimal.

As for the application to patent licensing, a plethora of works approach this problem noncooperatively, employing
as pricing mechanisms upfront fees, royalties, auctions, and their combinations (see Kamien, 1992, for a comprehen-
sive survey of early literature; see also Sen and Tauman, 2007, and the references within). Tauman and Watanabe
(2007), perhaps, is the only exception which uses instead a normative approach, where the licensing process is con-
sidered as a bargaining problem between the IPRO and the firms, with semi-transferable utilities (only transfers from
the firms to the IPRO are allowed). Tauman and Watanabe consider the Shapley value as a bargaining solution and
show that asymptotically it coincides with the non-cooperative results.

2. Notations and definitions

Our model deals with an infinite set of potential agents and an intellectual property rights owner (IPRO). We denote
by Z = {1,2, . . .} the set of agents and by 0 the IPRO. A bargaining problem is a pair (N0,X), where N0 = N ∪ {0},
N is a finite subset of Z, and X is a nonempty compact subset of RN0

+ (finite or infinite) of all possible bargaining
outcomes. Every outcome x in X is a gross payoff vector for the players in N0. The IPRO (and only the IPRO) has
the ability to dictate any outcome in X. The agents in N bargain with the IPRO about the outcome to be dictated and,
as a result, transfer to the IPRO some parts of their gross payoffs. Thus, the bargaining is on both: the outcome in X

and the transfers of the agents. It is assumed that only agreements with the IPRO are enforceable. Agents may or may
not be allowed to transfer payoffs from one to another. If such transfers are allowed, then the projection of X on N is
a simplex.

Let (N0,X) be an (n + 1)-player bargaining problem, that is, |N0| = n + 1. For simplicity, we will always assume
that N0 = {0,1, . . . , n}. Denote by Xn+1 the class of all (n + 1)-player bargaining problems, and let X = ⋃∞

k=1 Xk .
For (N0,X) ∈X , suppose that an outcome x ∈ X, x = (x0, x1, . . . , xn), is dictated. Then every agent i ∈ N obtains

the gross payoff xi and pays zi , 0 � zi � xi , to the IPRO, thus receiving the net payoff yi = xi −zi . The IPRO receives
the net payoff y0 = x0 + ∑

i∈N zi . Let y = (y0, y1, . . . , yn).
It is important to note that the IPRO must select an outcome in X no matter whether he reaches an agreement with

the agents or not. If the IPRO has an option to do nothing, then the “inaction” outcome must be in X.
For any subset S ⊂ N let S0 = S ∪ {0}. An outcome x∗ ∈ X is said to be efficient for S0 ⊂ N0 if∑

i∈S0

x∗
i = max

x∈X

∑
i∈S0

xi .

It is called efficient if it is efficient for N0. For every S0 ⊂ N0 denote

ES0(X) = {
x ∈ X | x is efficient for S0}

and let E(X) = EN0(X).
For a bargaining problem (N0,X), the individually rational level di(X) of an agent i ∈ N is the gross payoff that

i can guarantee to obtain. Formally, the individually rational level of the IPRO is

d0(X) = max{x0: x ∈ X},
The individually rational level of every agent i is the gross payoff guaranteed to the agent irrespective of the dictated
outcome5

di(X) = min{xi : x ∈ X}, i ∈ N.

4 A truthful strategy of an agent in Bernheim and Whinston (1986) is a contingent plan which is characterized by a real number y. The transfer
to the monopolist is the difference between the gross payoff of the agent and y, as long as this difference is positive; otherwise, the transfer is zero.
A truthful Nash equilibrium is a Nash equilibrium where every agent plays a truthful strategy.

5 Alternative definitions of the individual rationality that do not change the results of the paper are discussed in Remark 2 (Section 6) below.
Please cite this article in press as: Y. Tauman, A. Zapechelnyuk, Bargaining with a property rights owner, Games Econ. Behav. (2008),
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Definition. Let (N0,X) ∈X . A net payoff vector y = (y0, y1, . . . , yn) is feasible for S0 ⊂ N0 at x ∈ X if

(i) yi � di(X) for every i ∈ S0,
(ii) yi � xi for every i ∈ S and yj = xj for every j ∈ N\S,

(iii)
∑

i∈S0 yi = ∑
i∈S0 xi .

A net payoff vector y is feasible for S0 if it is feasible for S0 at some x ∈ X. A net payoff vector y is feasible if it
is feasible for N0.

Condition (i) requires that every player in S0 obtains at least his individually rational level; (ii) requires that only
transfers from the agents in S to the IPRO are allowed (and agents not in S obtain their gross payoffs); condition (iii)
requires that the total payoff of S0 obtained from an outcome x is distributed entirely among the players in S0, i.e.,
nothing is transferred to an outside party or wasted.

Let (N0,X) ∈ X and x ∈ X. Denote by Y(x) the set of net payoff vectors which are feasible at x and let Y(X) be
the set of net payoff vectors which are feasible for X, i.e., Y(X) = ⋃

x∈XY(x).

3. Stability

Let (N0,X) be a bargaining problem in X . Let S ⊂ N , S0 = S ∪ {0}, and y, y′ ∈ Y(X). We say that y′ dominates
y via S0 if y′ is feasible for S0 and y′

i > yi for all i ∈ S0.

Definition. A payoff vector y ∈ Y(X) is stable if it is undominated, that is, if for every S0 ⊂ N0 there is no y′ ∈ Y(X)

which dominates y via S0.

In other words, a payoff vector y is stable if the IPRO cannot find a subset S of agents and a feasible payoff vector
y′ for S0 so that he and everyone in S are strictly better off.

Proposition 1. Let (N0,X) ∈ X . A payoff vector y ∈ Y(X) is stable if and only if for every S0 ⊂ N0

∑
i∈S0

yi � max
x∈X

∑
i∈S0

xi.

Proof. Let y ∈ Y(X) be non-stable, that is, there is S ⊂ N and y′ feasible for S0 such that yi < y′
i for all i ∈ S0.

Hence, there is x ∈ X such that∑
i∈S0

yi <
∑
i∈S0

y′
i =

∑
i∈S0

xi.

Conversely, let y ∈ Y(X) be stable. Suppose to the contrary that∑
i∈S0

yi <
∑
i∈S0

x̂i

for some S0 ⊂ N0 and some x̂ ∈ ES0(X). Let T = {j ∈ S0 | yj < x̂j }. Clearly, T �= ∅ and 0 /∈ T (if y0 < x̂0, then y is

dominated via {0} by y′ ∈ argmaxx∈X x0). Define w ∈ RN0

+ by

wj =
⎧⎨
⎩

yj + ε, j ∈ T ,

x̂j , j ∈ N\T ,

x̂0 + ∑
j∈T (x̂j − yj − ε), j = 0,

where ε > 0 is small enough, such that wj = yj + ε < x̂j for all j ∈ T and

y0 +
∑

(yj + ε) < x̂0 +
∑

x̂j . (1)
Please cite this article in press as: Y. Tauman, A. Zapechelnyuk, Bargaining with a property rights owner, Games Econ. Behav. (2008),
doi:10.1016/j.geb.2008.04.001
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Since dj (X) � yj < wj < x̂j for all j ∈ T and
∑

j∈T 0 wj = ∑
j∈T 0 x̂j , w is feasible for T 0 at x̂. But wj > yj for all

j ∈ T , and by (1)

w0 = x̂0 +
∑
j∈T

(x̂j − yj − ε) > y0.

Hence, y is dominated by w via T 0; a contradiction. �
Denote by ST(X) the set of stable net payoff vectors in a bargaining problem (N0,X).
A payoff vector y ∈ Y(X) is efficient if it is feasible at some efficient outcome in X, i.e., if there is x∗ ∈ E(X) such

that y ∈ Y(x∗).

Corollary 1. If y ∈ Y(X) is stable, then it is efficient.

4. Related games in coalitional form

A game (N0,V ) in coalitional form consists of the set N0 of players and a function V : 2N0 → R such that
V (∅) = 0. Every S ⊂ N0 is called a coalition and N0 is called the grand coalition.

Let (N0,X) be a bargaining problem in X . We associate with (N0,X) the game in coalitional form (N0,VX), for
which the worth of every coalition S is the highest total payoff that it can guarantee to its members,

VX(S) =
{

maxx∈X

∑
i∈S xi, S � 0,∑

i∈S di(X), S �� 0.
(2)

The core of (N0,VX) is denoted by CVX
and is defined to be the set of all y ∈ RN0

such that
∑

i∈S yi � VX(S)

for all S ⊂ N0 and
∑

i∈N0 yi = V (N0). The following proposition shows that for every bargaining problem (N0,X)

in X , the set of stable net payoff vectors ST(X) coincides with the core of (N0,VX).

Proposition 2. For every (N0,X) ∈ X , ST(X) = CVX
.

The proof appears in Appendix A.
With slight abuse of notations, we shall often refer to the set ST(X) as simply the core of bargaining problem

(N0,X).
For every i ∈ N and every S0 � i, denote by MCi (S

0,X) the marginal contribution of i to the coalition S0,

MCi

(
S0,X

) = VX

(
S0) − VX

(
S0\{i}).

A bargaining problem is called submodular if the marginal contribution of every agent to a coalition decreases with
the coalition size (with respect to inclusion). Formally:

Definition. A bargaining problem (N0,X) ∈X is submodular if for all i ∈ N and all S ⊃ T � i

MCi

(
S0,X

)
� MCi

(
T 0,X

)
. (3)

Denote by X SM the class of submodular bargaining problems. Submodularity is the standard diminishing returns
assumption. This class includes the problems with “cut-throat” competition, where the outcomes which benefit only
one of the agents (and yield zero to the rest) are efficient. It is, for instance, n-player bargaining over a split of a cake
where the (n+1)-st player, the IPRO, has the exclusive power to dictate allocation. Another example of a submodular
bargaining problem is an interaction of a patent holder of a new technology and the firms in an oligopolistic industry.
The patent holder can sell licenses to use his technology to any number of firms via up-front fees, royalties, or
combinations of the two. An additional licensee firm increases the total industry profit, but in a decreasing rate. The
larger is the number of licenses sold, the smaller is the marginal value of an additional license.

The following proposition asserts that every submodular bargaining problem has a nonempty core.

Proposition 3. For every (N0,X) ∈ X SM, ST(X) is nonempty.
Please cite this article in press as: Y. Tauman, A. Zapechelnyuk, Bargaining with a property rights owner, Games Econ. Behav. (2008),
doi:10.1016/j.geb.2008.04.001
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We make use of the following lemma.

Lemma 1. Let (N0,X) ∈X SM. Then y ∈ ST(X) if and only if

(i) di(X) � yi � MCi (N
0,X) for all i ∈ N ,

(ii) y0 = VX(N0) − ∑
i∈N yi .

Proof. Suppose that y ∈ ST(X). Then (i) and (ii) are immediate by Proposition 2. Conversely, suppose that y satisfies
(i) and (ii). By Proposition 2, to prove that y ∈ ST(X) it suffices to show that for every S ⊂ N

∑
i∈S0 yi � VX(S0).

By (i) and (ii),

y0 +
∑
i∈S

yi = VX

(
N0) −

∑
j∈N\S

yj � VX

(
N0) −

∑
j∈N\S

MCj

(
N0,X

)
,

and since X ∈X SM we have∑
j∈N\S

MCj

(
N0,X

)
� MCj1

(
N0,X

) + MCj2

(
N0\{j1},X

)
+ · · · + MCjn−s

(
N0\{j1, . . . , jn−s−1},X

)
= VX

(
N0) − VX

(
S0),

where {j1, j2, . . . , jn−s} = N\S. �
Proof of Proposition 3. Consider point y ∈ RN0

defined as follows:

yj =
{

dj (X), j ∈ N,

VX(N0) − ∑
i∈N di(X), j = 0.

By Lemma 1, y is in ST(X). �
5. An axiomatic approach

In this section we define a solution on X SM and present five axioms for a solution to satisfy.

Definition. A solution on X SM is a mapping, φ, which associates with every bargaining problem (N0,X) in X SM

a payoff vector φ(X) in Y(X).

We impose the following five axioms on φ. The first axiom requires that a solution of every problem is stable.

Axiom 1 (Stability). For every (N0,X) ∈ X SM , φ(X) ∈ ST(X).

This assumes that the IPRO will reject a payoff vector y if he can reach another settlement y′ with some subset of
agents S ⊂ N such that every member of S0 is strictly better off with y′ than with y. Note that by Corollary 1, if φ

satisfies Axiom 1, then φ(X) is an efficient payoff vector.
The second axiom asserts that only stable net payoff vectors are relevant for the solution. That is, any net payoff

vector which is not stable is not considered to be a credible settlement for the IPRO, thus it should not affect the
solution.

Axiom 2 (Stability Dependence (STD)). For every (N0,X) and (N0,X′) in X SM , if ST(X) = ST(X′), then φ(X) =
φ(X′).

This axiom resembles the principle of independence of irrelevant alternatives (IIA). Any non-stable net payoff
vector is “irrelevant,” since the IPRO who has the power to dictate any outcome will reject those that can be improved
Please cite this article in press as: Y. Tauman, A. Zapechelnyuk, Bargaining with a property rights owner, Games Econ. Behav. (2008),
doi:10.1016/j.geb.2008.04.001
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upon. Thus the solution should not depend on “irrelevant” net payoff vectors. Note, however, that this axiom is not
exactly analogous to Nash’s (1950) IIA. In the Nash bargaining problem, “irrelevance” of outcomes depends on both
the specific problem and the given solution. Every outcome which is not the solution outcome is irrelevant in the
sense that it could be deleted from the set of outcomes without affecting the solution.6 In contrast, in our context
an irrelevant outcome is determined only by the bargaining problem and not by the solution. Given a problem, the
irrelevant outcomes are exactly those which are not stable, hence deleting or adding a non-stable outcome does not
affect the solution.

Next, we require that a solution does not depend on the unit of measurement.

Axiom 3 (Scale Covariance). For every (N0,X) ∈ X SM , every b ∈ RN0
and every scalar c > 0, if (N0, cX + b) ∈

X SM , then

φ(cX + b) = cφ(X) + b.

The next axiom requires that a solution does not depend on the names of the agents. Let (N0,X) ∈ X SM and let
π be a permutation of N = {1, . . . , n}. For every x ∈ Rn, let πx ∈ Rn be such that (πx)i = xπ(i) for all i ∈ N and let
πX = {πx | x ∈ X}.

Axiom 4 (Anonymity). Suppose that (N0,X) ∈ X SM . For every permutation π of N , if (N0,πX) ∈ X SM , then

φi(X) = φπ(i)(πX), i ∈ N.

Finally, we require that in a solution the agents’ payoffs are not affected if an independent (payoff-orthogonal)
agent is added to the bargaining problem.

Axiom 5 (Separability). Let (N0,X) ∈ X SM , where N0 = {0,1, . . . , n}. Denote N ′ = N0 ∪ {n + 1} and X′ = X ×
[a, b], 0 � a � b. If (N ′,X′) ∈X SM , then φi(X

′) = φi(X) for all 1 � i � n.

It can be verified that Axioms 1–5 are independent.

6. The solution

We next characterize the solution on X SM which satisfies the above five axioms.

Theorem 1. A solution φ on X SM satisfies Axioms 1–5 if and only if there exists α, 0 � α � 1, such that for all
(N0,X) in X SM

φi(X) = φα
i (X) = αdi(X) + (1 − α)MCi (N

0,X) for all i ∈ N, (4)

φ0(X) = φα
0 (X) = max

x∈X

∑
i∈N0

xi −
∑
i∈N

φi(X). (5)

The proof appears in Appendix A.
The solution of every bargaining problem in X SM awards every agent in N a weighted average of her individually

rational level and her marginal contribution to the grand coalition. The IPRO extracts the remaining surplus. The
weights, (α,1 − α), are the same across all agents and across all bargaining problems in X SM . Thus, it is sufficient
to determine α for one bargaining problem. The same α then applies to all bargaining problems in X SM , with any
number of agents. The parameter α measures the bargaining power of the IPRO: The greater is α, the greater is the
payoff of the IPRO.

6 However, adding an outcome may affect the solution.
Please cite this article in press as: Y. Tauman, A. Zapechelnyuk, Bargaining with a property rights owner, Games Econ. Behav. (2008),
doi:10.1016/j.geb.2008.04.001
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Example. Consider the following one-agent bargaining problem X̂2 = {(0, x) ∈ R2+ | 0 � x � 1}. The IPRO and the
agent, each can guarantee 0 on his own, and together they can achieve 1. By Theorem 1,

φα
0

(
X̂2

) = α,

φα
1

(
X̂2

) = 1 − α.

The theorem asserts that the bargaining power of the IPRO is completely determined by this simple bargaining
problem. If the solution for this problem is α = 1, then the IPRO obtains the entire surplus of every bargaining
problem, leaving the agents only with their individually rational levels. On the other hand, if the solution of this
problem is α = 0, every agent in every bargaining problem (N0,X) in X SM obtains his marginal contribution to the
grand coalition, while the IPRO collects the smallest payoff in ST(X). In X̂2 the IPRO and the agent may be regarded
as symmetric players. Therefore, α = 1/2 could be regarded as a proper division of the surplus. In this case, by
Theorem 1, α = 1/2 for all problems in X SM . The proposition below shows that, for all X ∈X SM , φ1/2(X) is actually
the nucleolus of VX .

Let (N0,V ) be a game in coalitional form. Denote by IV the set of imputations of V ,

IV =
{

x ∈ RN0

∣∣∣∣∣
∑

i∈N0 xi = V (N0),

xi � V (i), all i ∈ N0

}
.

The nucleolus of V is defined as follows (Schmeidler, 1969). For every nonempty set S � N0 and every y ∈ IV

denote the excess of coalition S by

eV (S, y) = V (S) −
∑
j∈S

yj . (6)

Given y ∈ IV define the excess vector θ(y) ∈ R2N0 −2 whose components are the excesses eV (S, y), S �= N0 and S �= ∅,
arranged in a decreasing order. The nucleolus of the game is the set of payoff vectors NV ⊂ IV which lexicographically
minimizes θ(y) over IV . The nucleolus is a singleton and it is in the core of V if the core is nonempty (Schmeidler,
1969).

Proposition 4. The solution φ1/2 on X SM is the nucleolus of VX for every (N0,X) in X SM.

The proof appears in Appendix A.

Remark 1. Theorem 1 and the other results which apply to X SM also apply to a wider class X ∗ consisting of all
bargaining problems (N0,X) where the marginal contribution of every agent i ∈ N to a coalition S0 � i is the smallest
for the grand coalition. Formally, X ∗ is the set of all bargaining problems (N0,X) such that for all S ⊂ N and all
i ∈ S

MCi (N
0,X) � MCi (S

0,X).

An example of a bargaining problem which is in X ∗ but not necessarily submodular is one which involves a lim-
ited capacity technology. A small coalition of players can increase its output by adding a player (perhaps, with an
increasing rate due to economy of scale) more than a large coalition which has already reached the capacity limit.

Remark 2. A possible alternative definition of the individual rationality is as follows. Suppose that if an agent i

unilaterally leaves the bargaining table, the IPRO dictates an outcome x = (x0, x1, . . . , xn) which is efficient for
the players in N0\{i}, i.e., x ∈ EN0\{i}(X). In this case, agent i receives xi . Since EN0\{i}(X) can contain more
than one point, i can guarantee only the minimum level of the ith component in EN0\{i}(X). We therefore define
di(X) = min{xi : x ∈ EN0\{i}(X)}.

A more conservative definition takes into account the possibility that i may not be the only one to leave the
“bargaining table”. In this case, she can only justify a claim of her smallest payoff xi among all outcomes x ∈ X

which are efficient for S0, where S varies over all subsets of N\{i}, i.e., di(X) = min{xi : x ∈ ES0(X), S ⊂ N\{i}}.
Theorem 1 and the other results presented above hold with either of these two alternative definitions of the individ-

ual rationality.
Please cite this article in press as: Y. Tauman, A. Zapechelnyuk, Bargaining with a property rights owner, Games Econ. Behav. (2008),
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Remark 3. We would like to comment on the relationship between our result and that of Buch and Tauman (1992).
Let X 0 ⊂ X be the class of bargaining problems with three or more players, where the IPRO can achieve only zero by
himself. Formally, (N0,X) ∈X 0 if |N0| � 3 and x0 = 0 for all x ∈ X. Buch and Tauman (1992) provide an axiomatic
approach only to problems in X 0 and find a unique solution, φBT (BT for Buch and Tauman, 1992). The Buch and
Tauman (1992) axiomatic approach is different. It omits the stability and STD axioms and instead imposes the axiom
of independence of irrelevant alternatives. For every (N0,X) ∈ X 0, Buch and Tauman (1992) define the individually
rational level of every agent i ∈ N as

di(X) = min
{
xi : x ∈ EN0\{i}(X)

}
. (7)

The unique solution of Buch and Tauman (1992) is

φBT
i (X) = di(X) for all i ∈ N,

φBT
0 (X) = VX(N0) −

∑
i∈N

di(X).

Namely, each agent receives only his individually rational level, and the IPRO (the ruler, in Buch and Tauman, 1992)
obtains the surplus. Note that the solution φBT coincides with our solution7 φα for α = 1 on X SM ∩X 0.

7. Two examples

7.1. A monopoly industry with an entry barrier

Consider a monopoly industry with a technological entry barrier. Namely, there is a monopolist (player 1) and
n − 1 potential entrants (players 2,3, . . . , n), n � 3. Suppose that the monopolist possesses the exclusive right for
some production technology; the potential entrants have access to an inferior technology which does not enable them
to compete with the monopolist.

Let player 0, the IPRO, be an outside innovator who possesses a new technology which is as efficient as the
monopolist’s technology. The IPRO licenses his technology to a subset of firms of his choice. A licensee firm has the
same cost function as the monopolist.

Let N = {1,2, . . . , n}, let K ⊂ N\{1} be the set of licensee firms, and denote k = |K|. Let qi be the quantity
produced by firm i and let Q = ∑

i∈N qi . The cost function of every licensee i in K is the same as the cost function
of the incumbent monopolist and is given by C(qi) = cqi . The only producers are the firms in K ∪ {1}. The inverse
demand function for the product is linear, P(Q) = max{0, a − Q}, where a > c > 0.

We next describe the bargaining problem (N0,X) and compute its solution φα(X), 0 � α � 1. The set of players
is N0 = N ∪ {0}. The set of outcomes X ⊂ Rn+1 consists of (n + 1)-tuples of the form x(k) = (x0(k), . . . , xn(k)), for
any k, 0 � k � n − 1, where xi(k) is the Cournot profit of firm i, i ∈ K ∪ {1}, and xj (k) = 0 for every non-licensee j ,
j �= 1. It is straightforward to show that for every i ∈ K ∪ {1},

xi(k) =
(

a − c

k + 2

)2

.

Every firm in a coalition S0 containing the IPRO has access to the new technology and may become a licensee.
Suppose that S0 contains the incumbent monopolist, i.e., 1 ∈ S0. Then the maximum profit that S0 can obtain is the
monopoly profit, VX(S0) = (a − c)2/4, which is achieved for k = 0, namely, by giving no licenses.

Next, suppose that 1 /∈ S0. Then the maximum total payoff of S0 is given by

VX(S0) = max
1�k�|S|

k ·
(

a − c

k + 2

)2

.

If |S| � 2, this is maximized for k = 2, and thus

VX

(
S0) = (a − c)2/8.

7 Provided d(·) is given by (7) (see also Remark 2 above).
Please cite this article in press as: Y. Tauman, A. Zapechelnyuk, Bargaining with a property rights owner, Games Econ. Behav. (2008),
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We can now compute the marginal contribution MCi (N
0,X) of every player i ∈ N . For the incumbent monopolist,

we have

MC1
(
N0,X

) = VX

(
N0) − VX

(
N0\{1})

= (a − c)2/4 − (a − c)2/8 = (a − c)2/8.

For every other firm i = 2, . . . , n, we have MCi (N
0,X) = VX(N0) − VX(N0\{i}) = 0, since both N0 and N0\{i}

contain the incumbent monopolist.
The individually rational level di(X) of firm i ∈ N is the profit that i can guarantee no matter who has access to the

new technology. For every potential entrant i = 2, . . . , n, being a non-licensee and receiving zero profit is the worst
case, thus di(X) = 0. For the incumbent monopolist, the worst case is when all firms use the new technology, i.e.,

d1(X) =
(

a − c

n + 1

)2

.

Since for all 0 � α � 1, the solution φα is efficient, the IPRO dictates the outcome which maximizes the industry
profit. Thus the incumbent monopolist will remain the only producer, and the innovation is “shelved”. The net payoffs
are given by

φα
1 (X) = α

(
a − c

n + 1

)2

+ (1 − α)
(a − c)2

8
,

φα
i (X) = 0, i = 2, . . . , n, and

φα
0 (X) = VX

(
N0) −

n∑
i=1

φα
i (X)

= (1 + α)
(a − c)2

8
− α

(
a − c

n + 1

)2

.

Notice that when the bargaining power of the IPRO is minimal, α = 0, the IPRO obtains a half of the monopoly profit;
with the maximal bargaining power, α = 1, he obtains

φ1
0(X) = (a − c)2

4
− (a − c)2

(n + 1)2
,

which is at least 3/4 of the monopoly profit (for n = 3), approaching the entire monopoly profit as n → ∞. Thus, in
every solution φα , the incumbent monopolist pays to the IPRO at least 1/2 of his profit to ensure “shelving” of the
new technology.

7.2. An oligopoly industry with identical firms

Consider a Cournot oligopoly industry with n+ 1 identical firms, N0 = {0,1, . . . , n}, producing a single good with
a constant return to scale technology. Let c be the (fixed) marginal cost of production. The inverse demand function
for the product is linear, P(Q) = max{0, a − Q}, where a > c > 0. Player 0 is an incumbent innovator who, besides
producing with his superior technology, may also license it to any subset of firms. The new technology reduces
the marginal cost of every licensee from c to c − ε, ε > 0. The set of outcomes X ⊂ Rn+1 consists of the vectors
x(k), where xi(k) is the Cournot profit of firm i, i ∈ N0, and k is the number of licensees (including the incumbent
innovator), 1 � k � n + 1.

Let k∗ be the number of licensees maximizing the industry profit, and suppose that n � 2( a−c
ε

− 1). It can be
verified that8 k∗ = a−c

ε
(see, e.g., Kamien and Tauman, 2002). This is the minimal number of licensees that drives the

market price to c, the pre-innovation marginal cost. Hence, every non-licensee firm exits the market. Every producing
firm obtains a per-unit profit ε and produces ε units (the total demand is a − c, and (a − c)/k∗ = ε), thus receiving
the profit of ε2. The total industry profit is (a − c)ε.

8 For simplicity we assume that a−c
ε is an integer.
Please cite this article in press as: Y. Tauman, A. Zapechelnyuk, Bargaining with a property rights owner, Games Econ. Behav. (2008),
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Let us now compute the solution φa(X), 0 � α � 1. The marginal contribution of every firm, except for the innova-
tor, is zero. The reason is that for every i ∈ N , N0\{i} includes more than k∗ firms, and when k∗ of them have access
to the new technology, the firms in N0\{i} receive the total profit of (a − c)ε, while firm i is forced to exit. Hence, for
all i ∈ N , MCi (X) = 0 and, clearly, di(X) = 0. Therefore, for every α ∈ [0,1],

φα
i (X) = αdi(X) + (1 − α)MCi (X) = 0, i ∈ N,

φα
0 (X) = (a − c)ε.

It turns out that this result coincides with the non-cooperative result of Kamien and Tauman (2002), where the
innovator sells licenses by an auction. The innovator chooses a number k and auctions off k licenses. The k highest
bidders win and use the new technology. The innovator collects their bids. If n � 2( a−c

ε
− 1), it is optimal to auction

off a−c
ε

licenses, and the innovator again extracts (a − c)ε.
Our result is also consistent with Tauman and Watanabe (2007), who obtained the same equivalence result for the

Shapley value, this time in the limit when n increases indefinitely.

8. Conclusion

In this paper we provide solutions to bargaining problems involving an IPRO and a set of players. We impose five
axioms and characterize the solutions on the class of all submodular bargaining problems. Any solution assigns every
agent an average of her individually rational level and her marginal contribution to all other players. The weights
defining this average are the same across all agents and across all submodular problems. Thus, they can be used to
measure the bargaining power of the IPRO. The higher is the weight assigned to the individually rational level of an
agent, the higher is the bargaining power of the IPRO. When he has the full bargaining power, every agent obtains her
individually rational level only, and the IPRO, who dictates an efficient outcome, obtains the rest of the “cake.” If the
IPRO has the weakest bargaining power, every agent obtains her marginal contribution. If the IPRO and every agent
have equal bargaining power, the solution coincides with the nucleolus of a naturally related coalitional game.

A possible direction which we find interesting to explore is bargaining with several IPRO-like entities (bureaucrats).
The bureaucrats can dictate any outcome (for instance, by unanimity or by majority vote). Even the case of a single
agent and multiple bureaucrats seems to be nontrivial. Another interesting direction is to analyze bargaining problems
where the IPRO can dictate a subset of outcomes (not a specific outcome) which is an element of a given partition of
the set of all outcomes.
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Appendix A

Proof of Proposition 2. Let (N0,X) ∈ X and let (N0,VX) be the associated game in coalitional form. By construc-
tion of VX we obtain that y ∈ CVX

if and only if it satisfies

(i)
∑

i∈N0 yi = maxx∈X

∑
i∈N0 xi ,

(ii)
∑

i∈S0 yi � maxx∈X

∑
i∈S0 xi for all S0 ⊂ N0, and

(iii) yi � di(X) for all i ∈ N0.

We shall show that y ∈ ST(X) if and only if it satisfies (i)–(iii). Note that (i) is implied by (ii) for every y ∈ Y(X)

(see Corollary 1). If y ∈ ST(X), then (i) and (ii) are satisfied by Proposition 1 and (iii) is satisfied because y ∈ Y(X).
Please cite this article in press as: Y. Tauman, A. Zapechelnyuk, Bargaining with a property rights owner, Games Econ. Behav. (2008),
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Conversely, if y satisfies (i)–(iii) and y ∈ Y(X), then y ∈ ST(X) by Proposition 1. The only part which is left to prove
is that if y ∈ RN0

satisfies (i)–(iii), then y ∈ Y(X). Let x∗ ∈ E(X) and xN0\i ∈ EN0\i (X). By (i) and (ii), for all i ∈ N ,

yi =
∑
j∈N0

x∗
j −

∑
j∈N0\i

yj �
∑
j∈N0

x∗
j −

∑
j∈N0\i

x
N0\i
j

= x∗
i +

∑
j∈N0\i

x∗
j −

∑
j∈N0\i

x
N0\i
j � x∗

i .

By (iii), yi � di(X). Hence, y ∈ Y(x∗) ⊂ Y(X). �
Lemmata

We make use of the following two lemmata. The proofs are straightforward, and thus omitted. The number of
elements of S ⊂ N will be denoted by s.

Lemma 2. Let (N0,X) and (N0,X′) be in X . Suppose that for some b = (b0, b1, . . . , bn) ∈ RN0
and c ∈ R++,

X′ = cX + b. Then

VX′
(
S0) = cVX

(
S0) +

∑
j∈S0

bj , S0 ⊂ N0, and

di

(
X′) = cdi(X) + b, i ∈ N0.

Lemma 3. Let (N0,X) ∈X , where N0 = {0,1, . . . , n}. Let N ′ = N0 ∪{n+1} and X′ = X×[a, a′], where 0 � a � a′.
Then

VX′
(
S0) = VX

(
S0), S0 ⊂ N0, and

di(X
′) = di(X), i ∈ N.

Proof of Theorem 1.

Existence. By Lemma 1, φ satisfies Stability and STD axioms. To verify the Scale Covariance axiom, let (N0,X)

and (N0,X′) be in X SM such that for some b̂ ∈ RN0
and ĉ ∈ R++, X′ = ĉX + b̂. By Lemma 2, for all i ∈ N ,

di(X
′) = ĉdi(X) + b̂i , MCi (X

′) = ĉMCi (X) + b̂i , and VX′(N0) = ĉVX(N0) + ∑
j∈N0 b̂j . Therefore, for all i ∈ N ,

φi(X
′) = ĉφi(X) + b̂i , and

φ0(X
′) = ĉVX

(
N0) +

∑
j∈N0

b̂j −
∑
j∈N0

(
ĉφj (X) + b̂j

)

= ĉ

(
VX

(
N0) −

∑
j∈N0

φj (X)

)
+ b̂0 = ĉφ0(X) + b̂0.

The Anonymity axiom is trivially satisfied. Finally, we verify the separability axiom. Let (N0,X) ∈ X SM , where N0 =
{0,1, . . . , n}. Let N ′ = N0 ∪ {n + 1} and X′ = X × [a, a′], where 0 � a � a′. Clearly, (N ′,X′) ∈ X SM . By Lemma 3,
for all i ∈ N , di(X

′) = di(X), MCi (N
0,X′) = MCi (N

′,X), and VX′(N0) = VX(N0), implying that φ(X′) = φ(X).

Uniqueness (up to the parameter α). Let φ be a solution on X SM which satisfies Axioms 1–5. Let

X̂2 = {
(0, x) | 0 � x � 1

}
and let φ0(X̂2) = α. Since ST(X̂2) = {y ∈ R2+ | y0 + y1 = 1}, it must be that φ1(X̂2) = 1 − α. We shall show that
φ(X) is uniquely determined, given α, for all X ∈ X SM .
Please cite this article in press as: Y. Tauman, A. Zapechelnyuk, Bargaining with a property rights owner, Games Econ. Behav. (2008),
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Consider next the bargaining problem in X SM
2 defined by

X(d,b) = {d0} × [d1, b1],
where d = (d0, d1) ∈ R2+ and b1 � d1. Clearly, X(d,b) = d + (b1 − d1)X̂, and, by the Scale Covariance axiom,

φ(X(d,b)) = d + (b1 − d1)(α,1 − α),

and φ(X(d,b)) is uniquely determined. Next, consider the bargaining problem

(N0, X̄(d,b)) ∈X SM , where d = (d0, d1, . . . , dn) ∈ RN0

+ and b = (b1, . . . , bn) ∈ RN+ such that bi � di for all i ∈ N , and

X̄(d,b) = {d0} × [d1, b1] × · · · × [dn, bn].
By the Separability and Anonymity axioms, for every i ∈ N ,

φi(X̄(d,b)) = αdi + (1 − α)bi.

This, together with the fact that φ(X̄(d,b)) is efficient, uniquely determines φ(X̄(d,b)). Also observe that

ST
(
X̄(d,b)

) =
{

y ∈ RN0

+

∣∣∣∣∣ di � yi � bi for all i ∈ N,

y0 = d0 + ∑
i∈N(bi − yi)

}
.

Let (N0,X) be an arbitrary bargaining problem in X SM . Let d̂i = di(X) and b̂i = MCi (N
0,X), i ∈ N . Also, let

d̂0 = VX(N0) − ∑
i∈N b̂i . Then, by Lemma 1,

ST(X) =
{

y ∈ RN0

+

∣∣∣∣∣ d̂i � yi � b̂i for all i ∈ N,

y0 = d̂0 + ∑
i∈N(b̂i − yi)

}
= ST

(
X̄

(d̂,b̂)

)
.

Since ST(X) = ST(X̄
(d̂,b̂)

), by the STD axiom, φ(X) = φ(X̄
(d̂,b̂)

), and φ(X) is uniquely determined for every X ∈
X SM . This completes the proof. �
Proof of Proposition 4. Let (N0,X) ∈ X SM . Then for every S ⊂ N and every i ∈ N\S, VX(N0) − VX(N0\i) �
VX(N0\S) − VX(N0\(S ∪ i)), or∑

j∈S

VX

(
N0) − VX

(
N0\j)

� VX

(
N0) − VX

(
N0\S)

. (8)

For every y ∈ Y(X) and every S ⊂ N0 define

eX(y,S) = VX(S) −
∑
i∈S

yi .

First, note that for every S ⊂ N , VX(S) = ∑
i∈S di(X), hence, for all y ∈ Y(X),

eX(y,S) =
∑
i∈S

eX

(
y, {i}). (9)

Next, for every S ⊂ N and every y ∈ Y(X), by (8),

eX

(
y,N0\S) = VX

(
N0\S) −

∑
i∈N0\S

yi = VX

(
N0\S) − VX

(
N0) +

∑
i∈S

yi

�
∑
i∈S

(
VX

(
N0\i) − VX

(
N0) + yi

)

=
∑
i∈S

(
VX

(
N0\i) −

∑
j∈N0\i

yj

)
=

∑
i∈S

eX

(
y,N0\i). (10)

By (9) and (10), for all y ∈ Y(X) and all S ⊂ N ,
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∑
i∈S

eX

(
y, {i}) � eX(y,S),

∑
i∈S

eX

(
y,N0\i) � eX

(
y,N0\S)

.

Therefore, the nucleolus y∗ of VX is defined for every i ∈ N by

y∗
i = argminy∈ST(X)

[
max

{
eX

(
y, {i}), eX

(
y,N0\i)}].

Since eX(y, {i}) = di(X) − yi and eX(y,N0\i) = VX(N0\i) − VX(N0) + yi , y∗
i is the solution of

di(X) − yi = VX

(
N0\i) − VX

(
N0) + yi .

Thus,

y∗
i = VX(N0) − VX(N0\i) + di(X)

2
= MCi (N

0,X) + di(X)

2
, i ∈ N. �
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