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Abstract

The secretary problem is the canonical model of search under ambiguity, in

which secretaries are being interviewed in a random order. We assume that the

number of secretaries is unknown and that one cares for the value of the secretary.

We measure the value of information as a multiplier that describes how much

better off one could have been had one known the distribution of secretaries’

values. It is evaluated in the worst case, for all distributions and at all rounds

of search. Under perfect recall, knowledge of the applicant pool size and their

distribution can improve one’s payoff at most 4 times. Knowledge that the values

are i.i.d. does not improve one’s payoff.
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1 Introduction

In our daily lives we are constantly searching for something, be it a job or a spe-

cific good. Decisions whether to continue searching or not are typically made under

sparse information about yet undiscovered options, such as prices when searching for a

product, values of job offers when looking for a job, or quality of job applicants when

hiring.

In this paper we are interested in the value of information about undiscovered search

options. The classical secretary problem (Fox and Marnie 1960) is the canonical model

of search. A given number of secretaries are interviewed one by one in a random order.

Their values are a priori unknown and only learned during the interview. Secretaries

must be employed or rejected on the spot, and the decision is irrevocable. The objective

is to hire the best secretary. This problem has a simple and elegant solution, in which

the best secretary is selected with probability approximately equal to 1/e. We can

interpret its reciprocal, e, as the value of information about the market of secretaries,

since it tells us how many times greater a payoff one could have obtained had she

known in advance the values of all secretaries in the interview pool.

In this paper we consider a more general and more economically plausible formulation

of the secretary problem. We believe it makes more sense to be concerned with the value

of the secretary hired, not just whether she is the best in the applicant pool. We find

it implausible that one knows how many secretaries will respond to an advertisement.

We prefer to stay in line with the standard assumption in economics that payoffs are

discounted over time. We are also interested in varying the degree of recall, the ability

to choose secretaries that have been interviewed in the past, ranging from no recall to

free recall.

The notion of the value of information is extended to our setting as follows. A market is

described by a number of secretaries in the pool and a joint distribution of their values.

We evaluate the performance of a search rule in a given market after a given history as

the ratio of the first-best payoff to the rule’s expected payoff after that history. By the

first-best payoff we understand the maximal expected payoff one could have attained if

one knew the market. As different markets and different search histories will typically

lead to different ratios, we evaluate a rule according to the maximal ratio across all
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markets and all histories. With a slight abuse of terminology we refer to this ratio as

the competitive ratio. Our way to measure the value of information is by the smallest

competitive ratio that can be achieved by a rule. It measures how much better off, at

most, one could have been had one known the market, irrespective of the market one

faces and the round of search.

Note that in the literature (e.g., Babaioff et al., 2007) the competitive ratio is only

evaluated ex-ante, while we consider the maximum across all rounds of the search.1

We believe it is important to measure how much one can be better off by learning the

market not only at the outset, but also at later rounds, after more information about

the distribution has become available.

In the paper we wish to understand the value of information under different assump-

tions about the market. For instance, how valuable is it to know that the values are

i.i.d.? For hiring secretaries, the iid assumption does not make sense, as this would

mean either that there are infinitely many secretaries, or that the secretaries are drawn

with replacement from some pool. So, we also consider more general markets in which

values are correlated. As we assume that secretaries are drawn from the pool in a

random order, we are interested in exchangeable joint distributions, under which the

order of draws does not matter.

We derive the value of information for every discount factor less than one. For the case

of free recall the value of information is 4, independently of the discount factor. In

other words, by knowing the market one can increase the payoff of the searcher at most

4 times. For the case of partial or no recall, the value of information varies with the

discount factor. In particular, knowing the market is more valuable for more patient

decision makers.

We note that being better informed does not necessarily reduce the value of information.

We show that if the decision maker initially has no information, and then learns that

she faces an i.i.d. market (but does not learn the distribution), then the value of

information remains unchanged. So knowing that a market is i.i.d. is not helpful.

1The competitive ratio has been introduced as a measure of the loss of a given algorithm relative

to the optimal algorithm, smaller values meaning better performance (Sleator and Tarjan 1985). Is in

Babaioff et al. (2007), we use the same term to evaluate gains, instead of losses, with the reciprocal

ratio.
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The search rule that minimizes the competitive ratio, and thus used to derive the value

of information, is extremely simple. It prescribes to stop searching with a constant

probability, independently of the history of past observations. It sounds naive as it

ignores any information. However, the reason why it is optimal to ignore the past

is intricate. The optimal decision when to stop searching manages a careful tradeoff

between exploration and exploitation. Exploration means to gather new values by

not stopping. Exploitation means to take advantage of the given bag of accumulated

values by stopping and thus to avoid the cost of waiting that is due to discounting and

loss of past options. It turns out that this tradeoff is optimized by a mixed strategy, a

constant stopping probability. The larger the discount factor, the less costly is waiting,

and hence the lower the probability of stopping. A decrease in the probability of recall

leads naturally to a higher stopping probability as waiting becomes more costly.

The literature on the secretary problem is large and covers various extensions of the

classical problem (for review see Freeman 1983 and Ferguson 1989). Presman and Sonin

(1973) considered search for a best secretary with an unknown number of secretaries.

The question of partial recall was first addressed in Yang (1974). Payoff discounting was

introduced by Rasmussen and Pliska (1975). Mucci (1973) introduced general utility

function into the classical problem, which has been actively studied since then, albeit

under specific assumptions on the distribution of values. Babaioff et al. (2007) were the

closest to the approach is this paper, they made no assumptions on the distributions

of values, and derived an upper bound on the asymptotic competitive ratio for the

problem with a known n.

In a related paper Schlag and Zapechelnyuk (2016) consider the model with substan-

tially more structure, where values are i.i.d. with known support, and previously in-

terviewed secretaries can be freely recalled. The paper focuses on finding a practically

useful search rule whose performance is evaluated from the perspective of Bayesian

decision makers with various priors. Finally, Bergemann and Schlag (2011) consider

search among few options, minimizing the maximal difference between the first-best

payoff to the rule’s expected payoff.

4



2 Model

2.1 Preliminaries

There is a pool of n offers with random values. An individual draws offers one by one

in a random order. At each stage the individual decides whether to stop the search or

to draw another offer. When the search is stopped, the individual picks the highest-

valued available offer. Waiting is costly in two ways. First, values decay with time by

a discount factor. Second, previously drawn offers randomly disappear.

Offers are described by a set of n nonnegative random variables, Xn = {X1, ..., Xn},
whose joint c.d.f is denoted by F . We make the following assumptions.

(A1) Support of F is a compact subset of Rn
+.

(A2) F is exchangeable.2

Compactness of F guarantees that expected payoffs are finite.3 Exchangeability of F

formalizes the assumption the offers are drawn in random order.

The pair (n, F ) is referred to as the environment. Denote by E the class of environments

that satisfy the above assumptions,

E = {(n, F ) : n ∈ N, F satisfies (A1) and (A2)} .

Let x0 be the value of the outside option which is available to the individual in all peri-

ods. Denote by x1, x2, ..., xn the realized values of the offers in the order the individual

receives them. Past offers may not remain available all the time. With every period

passed, each offer randomly disappears with probability 1 − α ∈ [0, 1], independently

of others. Thus, in every period t the outside option x0 is always available, and offer

xk is available with probability αt−k for each k = 1, ..., t. Denote by Yt the set of offers

available at stage t.

2A joint distribution of {X1, ..., Xn} is exchangeable if for every permutation π of indices {1, ..., n},
the tuple (Xπ(1), ..., Xπ(n)) has the same joint distribution.

3At the expense of more cumbersome notations, it would suffice to assume finiteness of all condi-

tional expectations of {X1, ..., Xn}.
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The two extreme cases, α = 0 and α = 1, correspond to no recall and free recall

assumptions, respectively. No recall means that every offer is lost if not taken imme-

diately, so Yt = {x0, xt} for every t. Free recall means that past offers remain available

forever, so Yt = {x0, x1, ..., xt} for every t.

If the individual stops the search at stage t, she chooses the best available offer (in-

cluding the outside option) and obtains the payoff

δtyt, t = 0, 1, ..., n,

where δ ∈ (0, 1) is the discount factor and yt denotes the best available value,

yt = max{Yt}.

The search ends after the individual decides to stop, or after all n offers have been

received.

Discount factor δ, outside option value x0, and offer persistence probability α are

parameters. We assume

0 < x0 < δ < 1.

A positive outside option, x0 > 0, together with impatience of the individual, δ < 1,

implies that search is costly, as every new offer costs the individual at least the delayed

consumption of the value x0. Also, we assume x0 < δ, as otherwise it makes no sense

for anyone to search, the search problem then being trivial.

A search rule p prescribes for every stage t = 0, 1, 2, ..., every history of draws ht =

(x1, ..., xt), including the empty history at t = 0, and every set of available offers Yt

the probability p(ht, Yt) of stopping at that stage. We assume that the individual is

not aware of the environment E = (n, F ), in other words, she knows neither how many

offers she can receive, nor how their values are distributed. She only knows that E

belongs to the class of environments E .

Note that even though the individual does not know n, the search automatically stops

if all n offers are received. This is as if the individual discovers after n draws that there

are no more offers left, and hence stops the search.4

4The results do not change if the individual discovers n some periods in advance, since the results

are driven by large n.
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2.2 Performance criterion

For every environment E = (n, F ) ∈ E , every period t < n, and every history of draws

ht = (x1, ..., xt), and every set of available offers Yt ⊂ {x0, x1, ..., xt}, we denote by

Up
t (E, ht, Yt) the expected payoff from a given search rule p conditional on ht and Yt.

For every finite n it is defined by backward induction, Up
n(E, hn, Yn) = yn, and for

every t < n

Up
t (E, ht, Yt) = p(ht, Yt)yt + (1− p(ht, Yt))δEF̄

[
Up
t+1(E, ht+1, Yt+1)

∣∣ht, Yt],
where EF

[
· |ht, Yt

]
denotes the conditional expectation in the next stage under the

c.d.f. F̄ .

The first-best payoff under environment E, history ht, and set of available offers Yt is

Vt(E, ht, Yt) = sup
p
Up
t (E, ht, Yt).

The maximal performance ratio of the first-best payoff to p’s payoff across all environ-

ments in E and after all histories is called the competitive ratio of search rule p,

Rp = sup
t, ht, Yt

{
sup

E∈E(ht)

Vt(E, ht, Yt)

Up
t (E, ht, Yt)

}
,

where E(ht) denotes the set of environments whose distributions include the historical

realizations {x1, ..., xt} in their support:

E(ht) = {(n− t, F ) ∈ E : n > t, {x1, ..., xt} ⊂ supp(Ft)}.

where Ft is the marginal c.d.f. of the first t draws.

3 Value of Information

3.1 Main result

The value of information, denoted by R∗, is the smallest competitive ratio,

R∗ = inf
p
Rp.
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A search rule that minimizes the competitive ratio will be called optimal. An individual

who follows the optimal rule can guarantee that learning the true environment can

increase her payoff at most R∗ times, no matter what environment she faces and no

matter what round of search she is in.

Let us now state the main result. Consider the search rule p∗ that prescribes to stop

at each stage t = 0, 1, 2... with a constant probability, independent of both the history

of draws and the set of available offers,

p∗(ht, Yt) = 1−
1−

√
(1− δ)(1− αδ)

1− (1− δ)(1− αδ)
.

Theorem 1. Search rule p∗ is optimal. The value of information is

R∗ =

(
1 +

√
1− αδ
1− δ

)2

.

Before proving Theorem 1, we first discuss some properties of the result. The proof is

deferred to the next section.

Free recall. It is remarkable that for the case of free recall, α = 1, the value of

information is independent of the discount factor δ ∈ (0, 1),

R∗ = 4 if α = 1.

No recall. The value of information is monotonic in the persistence parameter α,

and under no recall, α = 0, reaches the lowest value

R∗ =

(
1 +

√
1

1− δ

)2

if α = 0.

Approximations. For a fixed α < 1 and δ close to 1 we can approximate the value

of information by

R∗ =
1− α
1− δ

+O
(

(1− δ)−
1
2

)
.
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On the other side of the domain, for δ(1− α) close to 0 we can approximate the value

of information by

R∗ = 4 +
2δ(1− α)

1− δ
+O

(
δ2(1− α)2

)
.

Interestingly, when the individual is extremely impatient, δ → 0, the value of infor-

mation approaches 4. But if the individual does not care about the future, then the

her payoff will be exactly as high as the first-best, since she stops immediately and

the information about search options is irrelevant for her. So there is a discontinuity

at δ = 0. This is because for every positive δ, however small, values of future search

options can be extremely high, so it is worth searching.

History independence. We would like to outline the intuition why the optimal

search rule should be constant, independent of the history of past offers and the set of

available offers.

For any history of draws and any set of available alternatives, it might be the case

that the next-stage offer has a deterministic extremely high value relative to the best

current offer. Under compete information one knows that and surely waits for the high

value. For that opportunity not to be completely missed out, an uniformed individual

should continue with a large enough probability. Since the value of the next-stage offer

can be arbitrarily high, the current history and the current best offer are irrelevant for

that decision.

On the other hand, the probability to continue should not be too high, because it might

be the case that all future offers are very bad. Under complete information, one would

stop immediately and get the best current offer. In the event that the uninformed

individual also stops and gets the best current offer, neither the value of that offer, nor

the preceding history matter, since we are concerned about the ratio, in which that

offer cancels out.

The optimal stopping probability balances the tradeoff outlined above and does not

depend on the history of draws or the set of available alternatives.
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3.2 Partial information about environments

Our concept of the value of information compares what one could achieve if she had

complete information relative to what one can achieve currently. Here we would like to

point out that when one knows more, the relative value of knowing the true environment

need not decrease.

I.i.d. environments. The value of information does not change if one knows that she

faces an i.i.d. environment. The i.i.d. class, denoted by Eiid, contains every environment

in E whose offers are independently and identically distributed. In fact, not only the

value of information, but also the rule that attains it remain unchanged under the

i.i.d. class of environments.

Proposition 1. Consider the class of i.i.d. environments. Search rule p∗ is optimal

and the value of information on that class is R∗.

The proof is in the Appendix.

A known number of offers, n. We show that when the number of offers n is large,

then it is better not knowing it.

Consider the two extreme examples, α = 1 and α = 0.

No recall, α = 0. When n is known, the optimal rule dictates to stop in each period

t with probability 1
n−t+1

and delivers the competitive ratio n at t = 0. This result is

a consequence of our requirement to evaluate the competitive ratio in every round of

search.

is straightforward by backward induction in t starting from t = n, and it holds for

every discount factor δ ∈ (0, 1).

Remarkably, when n can be large, with unknown n the individual can achieve a better

the competitive ratio than if n is known,(
1 +

√
1

1− δ

)2

< n for large n.
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Free recall, α = 1. When n is known, the optimal rule dictates to stop in each period

t with probability 1−δ
1+(n−t)(1−δ) and delivers the competitive ratio 1 + n(1− δ) at t = 0.

This result is straightforward by backward induction in t starting from t = n.

Similar to the case of no recall, when n can be large, in our model with unknown n

the individual can achieve a better the competitive ratio than if n is known,

4 < 1 + n(1− δ) for large n.

3.3 Ex-ante vs. time-consistent competitive ratio

Evaluation of the competitive ratio at all rounds of the search, after all histories, is a

novelty in this paper. This is important in the settings where one cannot or is unwilling

to commit at the outset and is free to make choices at every stage. In contrast, in the

literature on the secretary problems the individual only cares about her payoff ex-ante

and has full commitment power to carry out any strategy designed at the outset.

But ex-ante optimal strategies of secretary problems are generally very bad at later

stages. For example, the secretary problem with no recall has the ex-ante optimal

strategy that stipulates to reject first t∗ secretaries, and then continue until a secretary

better than those in the initial t∗ stages appears, where t∗ is some cutoff that depends

on the parameters. However, from the perspective of any period t > 0, this is very bad

strategy. For example, for t < t∗ it stipulates to continue, which is the worst possible

action in the environment where the value at t is best and all further values will be

very low.

The power of commitment at the ex-ante stage is substantial. Let us compare the

results for the secretary problem with commitment and and our problem without com-

mitment, assuming n is known.

Consider, for instance, no recall, α = 0. The ex-ante optimal rule dictates to skip

the first t∗(δ) ≈ 1
1−δ offers, and then accept the first offer in period t > t∗(δ) that

exceeds all previous offers, as follows from the solution of the corresponding secretary

problem with discounting and without recall (Rasmussen and Pliska 1975). The ex-ante

competitive ratio is approximately

δ−
1

1−δ = e+
e(1− δ)

2
+
(
(1− δ)2

)
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but after some histories the competitive ratio of that strategy is infinite.

In contrast, the optimal strategy in this paper delivers the same competitive ratio after

all histories (
1 +

√
1

1− δ

)2

= 1 +
1

1− δ
+

2√
1− δ

+O (1− δ)

It is smaller than the ex-ante competitive ratio, which is the cost of the requirement

of consistency across all search rounds.

n at t = 0, as we found earlier.

Similarly, for free recall, α = 1, the ex-ante optimal rule dictates to receive t∗∗(δ) ≈ 1
− ln δ

offers, and then accept the best one among the received. The ex-ante competitive ratio

is approximately

(e− 1)(− ln δ)

1− δ
= e− 1 +

(e− 1)(1− δ)
2

+O
(
(1− δ)2

)
The optimal strategy in this paper delivers the same competitive ratio after all histories

equal to 4, which is greater than the ex-ante competitive ratio.

Thus, under both extremes, α = 0 and α = 1, the ex-ante best competitive ratio

is smaller than our best competitive ratio, which is the cost of the requirement of

consistency across all search rounds.

4 Proof of Theorem 1

The proof is divided into four steps. First, we show that w.l.o.g. we can restrict

attention to rules that are independent of the history, ht. Second, we consider a subclass

of environments and show that on that subclass w.l.o.g. we can restrict attention to

rules that are constant (independent of t, ht, and Yt). Third, we find the optimal

constant rule for that subclass of environments, and thus derive a lower bound on

the value of information. Finally, we show that the optimal rule does not change

and the value of information remains the same if we consider the general the class of

environments.
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Step 1. History independence. Fix any history ht = (x1, ..., xt), and suppose that

there remain offers to draw, n > t. The set of environments E(ht) that the individual

faces from stage t + 1 on is obtained by elimination from E the environments whose

distributions do not support the historical values x1, ..., xt. (Note that the set of possible

numbers of remaining alternatives after period t is the same as at the start, since

{n− t : n ∈ N, n > t} = N.) Consequently, Closure(E(ht)) = E . The supremum of the

performance ratio is the same whether the domain is E(ht) or Closure(E(ht)) = E .

We thus have obtained that the set of environments is irreducible after any history

of observations, hence history ht is payoff irrelevant. We show now that the optimal

performance ratio at any stage is history independent (but it may depend on the set

of available offers).

Let p be an optimal decision rule. Consider two histories, hs = (x1, ..., xs) and ht =

(x̂1, ..., x̂t) with the same set of available offers, Ys = Yt = Ŷ . Suppose that Rp(hs, Ŷ ) >

Rp(ht, Ŷ ). Then we can construct an improvement over p at history hs by decision rule

p̂ identical to p in all subgames except the one following history hs. In that subgame we

define p̂ equal to p in the subgame following history ht. This contradicts the assumption

of optimality of p.

In what follows we restrict attention to history independent rules and drop the reference

to ht from all notations.

Step 2. Stationarity under restricted class of environments. Denote by E(x)

the class of environments whose values are at least y:

Ẽ(y) = {(n, F ) ∈ E : supp(F ) ⊂ [y,∞)n} .

For every period t and every best offer yt, we are now concerned with the maximal

performance ratio Vt(E,Yt)
Upt (E,Yt)

across all environments in Ẽ(yt). Maximization on a smaller

set makes the ratio smaller. The adjusted competitive ratio is defined as

R̃p = sup
t, Yt

{
sup

E∈Ẽ(yt)

Vt(E, Yt)

Up
t (E, Yt)

}
,

Notice that with this restriction on the class of environments, for every round t and

every best value t, the subproblem from that round on is identical to the original

13



problem in which all payoffs are scaled by the factor yt/x0. But scaling does not affect

the competitive ratio.

Hence, if a rule p̃ = (p̃0, p̃1, p̃2, ...) maximizes the competitive ratio, exactly the same

rule should maximize the competitive ratio in every subproblem, from every period t

on and for every Yt, (pt, pt+1, pt+2, ...) = (p̃0, p̃1, p̃2, ...). This implies that w.l.o.g. we

can restrict attention to the rules with a constant probability of stopping, q ∈ [0, 1],

independent of time and available offers.

Step 3. Optimization by constant search rules. We now restrict attention to

constant search rules and find the one that minimizes the competitive ratio evaluated

under even smaller set of environments.

Denote by En,y,z the environment with the pool of n deterministic values, a single z

and n− 1 instances of y, where y ≥ z. Let E∗(y) be the set of such environments with

a given y,

E∗(y) = {E ∈ Ẽ(y) : E = En,y,z for some n ∈ N and z ≥ y}.

Notice that E∗(y) ⊂ Ẽ(y).

Let q ∈ [0, 1] be a constant probability of stopping. Fix a period t, the best offer y = yt,

and an environment Ek,y,z, where k is the number of offers left.

The first-best rule of the one who knows Ek,y,z is either stop immediately and get y, or

wait for z. In the latter case, z may appear in each round t+ 1, ..., t+ k equally likely,

which gives expected payoff

1
k
(δ + δ2 + ...+ δk) =

δ(1− δk)
k(1− δ)

.

Thus,

V (Ek,y,z, y) = max

{
y,
δ(1− δk)
k(1− δ)

}
.

The expected payoff of constant rule q is given by

U q(Ek,y,z, y) = qy + (1− q)δ
(

1
k
U q(Ek−1,y,y, z) + k−1

k
U q(Ek−1,y,z, y)

)
.
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Value z appears with probability 1
n

in the next period. In this case the individual faces

the environment of n− 1 instances of y in the future. Her continuation payoff depends

on her ability to recall z:

U q(En−1,y,y, z) = qz
(
1 + (1− q)δα + (1− q)2δ2α2 + ...+ (1− q)k−1δk−1αk−1

)
+ c1(α, δ)y

=
qz

1− αδ(1− q)
(
1− αkδk(1− q)k

)
+ c1(α, δ)y,

where c1(α, δ) is a constant independent of the environment.

In the case of y ≥ δ(1−δk)
k(1−δ) , the ratio is

V (Ek,y,z, y)

U q(Ek,y,z, y)
≤ y

qy
=

1

q
.

In the case of y < δ(1−δk)
k(1−δ) , the ratio is

V (Ek,y,z, y)

U q(Ek,y,z, y)
=

δ(1−δk)
k(1−δ)

qy + (1− q)δ
(

1
k
U q(Ek−1,y,y, z) + k−1

k
U q(Ek−1,y,z, y)

) .
The above ratio is decreasing in z and k, so taking z →∞ and k →∞ we obtain

V (Ek,y,z, y)

U q(Ek,y,z, y)
≥

δ
1−δ

(1− q)δ q
(1−δ(1−q))(1−αδ(1−q))

=
(1− δ(1− q))(1− αδ(1− q))

(1− δ)(1− q)q
.

Maximizing the above expression w.r.t. q, we find the optimal q∗,

q∗ = 1−
1−

√
(1− δ)(1− αδ)

1− (1− δ)(1− αδ)

and the competitive ratio

R̄∗ =

(
1 +

√
1− αδ
1− δ

)2

.

Since we have been maximizing the ratio on a small subclass of environments, it is a

lower bound on the value of information on the general class,

R∗ ≥ R̄∗.
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Step 4. Competitive ratio on the general class of environments. We now

establish the upper bound on R∗. We restrict the individual to constant search rules

and argue that the environments described in Step 3 are essentially the worst-case

environments against constant rules.

Consider constant rule q∗. First, the ratio will always be weakly greater if one who

knows the environment is informed about realized values of offers in the pool.

Next, consider two events. In one event the individual accepts the same offer as she

would have if she knew the environment. Replacing any such offer by the top offer,

called z, will make the ratio weakly bigger. In the second event, the individual accepts

an offer that she would have rejected if she knew the environment. Replacing any such

offer by zero will make the ratio weakly bigger.

Finally, if the environment has k top offers with value z, replacing them by k− 1 zeros

and a single offer with value kz will increase the ratio, since the uninformed individual

has even smaller chance to get it that payoff.

We thus conclude that the worst-case environments have form En,0,z. Moreover, similar

to the previous step, the ratio is increasing in n and z. When z → infty, y/z → 0 for

any fixed y, and hence En,0,z is equivalent to En,y,z when z is large.

It follows that the competitive ratio of the constant rule q∗ is equal to the lower bound

R̄∗ found in Step 3. In other words, the lower bound is attained by constant rule q∗,

thus it is the value of information, R∗.

Appendix

Proof of Proposition 1 Proposition 1 is proved in the same way as Theorem 1,

except we consider the class of i.i.d. environments. Steps 1, 2, and 4 of the proof

of Theorem 1 are analogous. For Step 3, the calculation of the best constant rule is

repeated, where an environment with a single value z and k − 1 instances of value y

are replaced by i.i.d. the environment with i.i.d. between z and y, with probabilities

σ and 1− σ, respectively. Here we take z →∞ and σ → 0 and n large in such a way

that the one who knows the environment prefers to wait for z, but small σ and large

n means that the uninformed individual who stops with a fixed probability in every
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period is unlikely to reach z. Interestingly, the limit expression is the same as in Step

3 of the proof of Theorem 1, which leads to the same value of information.
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