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1. Introduction

Suppose that you check stores one by one in search of the cheapest place to buy some

good. Your decision of when to stop searching depends on the distribution of prices

you expect to encounter in unvisited stores. The methodology of Bayesian decision

making proposes to turn this into an optimization problem, using as input your

prior belief about possible distributions, mathematically formulated as a distribution

over distributions. This is a complex and usually intractable intertemporal decision

problem. Special cases can be solvable, but solutions are fragile as they depend on

your beliefs about what you do not know (see Gastwirth, 1976).

We are interested in a robust approach to this problem that does not depend on

specific prior beliefs of a decision maker. Instead of focusing on optimality for some

prior, we look for epsilon-optimality for all priors. Furthermore, we are interested in

a dynamically consistent approach in which the performance matters at any point in

time and not only at the outset. In this paper, we formalize a performance criterion

that fulfills these desiderata. Decision rules that are optimal under this criterion are

called dynamically robust. We derive general properties of dynamically robust rules

and then show how close their performance is to the optimal ones under each prior.

The practical relevance of robust decision making is apparent. How can a shopper

know the distribution of prices offered in the next store? How does she form a prior

about such distributions? Even if a prior is formed, will the shopper be able to

overcome the complexity of Bayesian optimization? Will the decision rule still be

good if the prior puts little or no weight on the environment that is realized? How

will the shopper argue about the optimality of a particular decision rule in front

of her peers if they do not have the same prior as she does? These questions can

be addressed by a decision rule that performs relatively well for any prior. Such a

rule can be proposed as a compromise among Bayesian decision makers who have

different priors. It is a shortcut to avoid cumbersome calculations involved in finding

the Bayesian optimal rule. Finally, as a single rule that does not depend on individual

(unobservable) beliefs, it is a useful benchmark for empirical studies.

The setting we consider in this paper is as follows. Alternatives arrive according to

some i.i.d. process. An individual who does not know the underlying distribution

has to decide after each draw whether to stop or to continue. There is free recall:

when the individual stops she can choose the best alternative found so far. Values are
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discounted over time, thus, waiting for better alternatives is costly. In an extension

we also include an additive cost of waiting for better alternatives (see Appendix C.3).

As our first contribution, we develop a methodology for robust decision making that

applies not only to sequential search. In a nutshell, we replace optimality for a given

prior by epsilon-optimality under all priors and after all histories of past observations,

and look for a smallest such epsilon. Specifically, we measure the performance of a

given decision rule as follows. For each prior and each history, we compute the ratio

of the rule’s payoff to the maximal possible payoff. We then evaluate the rule by the

smallest of these ratios and call it the performance ratio of the rule. This performance

ratio describes what fraction of the maximal payoff can be guaranteed, regardless of

the prior under which the payoffs are computed and regardless of which alternatives

have realized over time. We are interested in a decision rule that achieves the largest

possible performance ratio. Such a rule will be called dynamically robust.

As our second contribution, we solve the described sequential search problem. This

is done first for binary environments, and then for more general environments. An

environment is binary if it is a lottery over two alternatives, low and high. The

values of these alternatives need not be known to the individual. We find that the

dynamically robust performance ratio against binary environments is at least 1/2. So,

the individual can always guarantee at least a half of the maximal payoff, even if the

value of the maximal payoff is not known. Moreover, if there is an upper bound on the

possible values of the high alternative, then the dynamically robust performance ratio

is strictly increasing in the individual’s outside option, attaining 2/3 and 3/4 when the

outside option is, respectively, 1/6 and 1/3 of that upper bound. Surprisingly, these

results extend to general environments, provided that possible values of alternatives

have an upper bound, and the outside option is not too small. The decision rule that

supports these findings prescribes to stop after any given history with a probability

that is increasing in the value of the best realized alternative. In general, we show

that the dynamically robust performance ratio is always at least 1/4, where this lower

bound is attained when alternatives are unbounded, or in the limit as the outside

option approaches zero.

Our analysis reveals that a dynamically robust rule has three notable properties.

First, any such rule prescribes randomization between stopping and continuing the

search. Intuitively, one should not stop with certainty when concerned that future

outcomes may be higher. Similarly, one should not continue with certainty when
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concerned that future outcomes may never be higher. This stands in contrast with

almost the entire search literature that studies deterministic cutoff rules.1

Second, a dynamically robust rule does not make any inference about the environment

from past observations. The reason is that, after any history of explored alternatives,

some degenerate environments can be ruled out. Yet, for every such environment,

there are arbitrarily close nondegenerate environments that cannot be ruled out.

Thus the closure of set of feasible posteriors about unexplored alternatives remains

unchanged.

Finally, the worst-case priors that determine the robust performance ratio are de-

generate, assigning probability one to a specific i.i.d. distribution. This means that

the payoff ratio of a decision rule can only be higher under nondegenerate priors. In

addition, the worst-case distributions have support on at most two different values of

alternatives. Loosely speaking, this is because the individual makes a binary choice in

each round, and hence, two values, high and low, provide enough freedom to construct

worst-case distributions.

Our dynamically robust rules can be replaced by simpler rules without substantially

changing the performance ratio. These simpler rules involve a stopping probability

that is linear in the best realized alternative (see Appendix C.2).

Alternative Approaches to Performance Measurement. Our paper deals with

decision making under multiple priors. A prominent candidate criterion is maximin

expected utility, as in Wald (1950) and Gilboa and Schmeidler (1989). There is a

conceptual reason why we do not follow this approach. In this paper, we maintain

the classic utility maximization preferences, moving only from optimality to epsilon

optimality. Our approach makes sense to one who is unable to solve the sequential de-

cision problem, unsure which specific prior to assign, or in need of justifying behavior

in front of others. In contrast, the maximin utility approach does not have any one

of these interpretations. Moreover, it takes a very different approach to multiplicity

of priors. Instead of trying to be good irrespective of the prior (as in the original

meaning of the term “robust” as discussed below) it aims to do best for the very

specific prior where payoffs are lowest.

1An exception is Janssen et al. (2017).
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On top of this, the maximin utility approach is too restrictive in the sequential search

problem. The rule selected by the maximin utility criterion prescribes to stop imme-

diately and not to search at all. So, this criterion does not present useful insights for

understanding how to search.

Another criterion that receives a lot of attention is minimax regret. The degree of

suboptimality (referred to as regret) is measured either in terms of differences (Savage,

1951) or, as popular in the computer science literature, in terms of ratios (Sleator

and Tarjan, 1985; see also the axiomatization of Terlizzese, 2008), which can also be

found in the robust contract literature (e.g., Chassang, 2013). We prefer ratios to

obtain a scale-free measure and, thus, to be able to compare the performance after

different histories, as well as across different specifications of the environment.

A common feature in the minimax regret literature is the evaluation of the payoffs

retrospectively, after all uncertainty is resolved, as in the search models of Berge-

mann and Schlag (2011b) and Parakhonyak and Sobolev (2015). Instead, we adopt a

forward-looking approach, similar to Hansen and Sargent (2001), Perakis and Roels

(2008), Jiang et al. (2011), and Kasberger and Schlag (2017). The individual judges

and compares decision rules by their discounted expected payoffs before the uncer-

tainty is resolved, as a standard Bayesian decision maker would.

An innovative aspect to our methodology is that, in the spirit of Bayesian decision

making, we evaluate the performance not only ex-ante, but also after each additional

piece of information has been gathered. We identify a bound on the relative per-

formance loss that the decision maker tolerates in exchange for having a rule that

does not depend on a specific prior. The corresponding decision rule is dynamically

consistent in the sense that this bound will not be exceeded, regardless of what altern-

atives are realized. We are not aware of any paper that either formulates or derives

dynamically consistent robust search behavior.2 In particular, ex-ante commitment

is required in the literature on the secretary problem (Fox and Marnie, 1960) that

studies sequential search within a nonrandom set of exchangeable alternatives (for

a review, see Ferguson, 1989).3 An analysis of ex-ante robust search in the setting

of this paper is difficult and remains unsolved. Bergemann and Schlag (2011b) and

2Schlag and Zapechelnyuk (2017) consider dynamic decision making without priors in a non-search
setting. A crucial difference from this paper is that they compare the performance of a decision rule
to those of a few given benchmark strategies, not to the optimal behavior for the underlying model.
3We investigate the secretary problem under our criterion of dynamic robustness in a separate paper
(Schlag and Zapechelnyuk, 2016).
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Parakhonyak and Sobolev (2015) study a special case with two periods, and Babaioff

et al. (2009) study asymptotic performance of approximately optimal algorithms in

a related problem with no recall, so these results are not comparable to our paper.

Other Related Literature. The term robustness goes back to Huber (1964, 1965),

defined as a procedure whose “performance is insensitive to small deviations of the

actual situation from the idealized theoretical model” (Huber, 1965). Prasad (2003)

and Bergemann and Schlag (2011a) formalize this notion for a policy choice, they

measure insensitivity under small deviations as performance being close to that of the

optimal policy. The same approach has been applied to large deviations, where the

performance is evaluated under a large class of distributions, as in statistical treatment

choice (Manski, 2004, Schlag, 2006, and Stoye, 2009), auctions (Kasberger and Schlag,

2017), and search in markets (Bergemann and Schlag, 2011b, and Parakhonyak and

Sobolev, 2015). The term robustness has been used in the same spirit – to achieve an

objective independently of modeling details – in robust mechanism design (Bergemann

and Morris, 2005), and in the field of control theory (Zhou et al., 1995).4

Dynamic consistency has been studied in other models of choice under ambiguity

by Epstein and Schneider (2003), Maccheroni et al. (2006), Klibanoff et al. (2009),

Riedel (2009), and Siniscalchi (2011). The challenge in this literature has been how

to appropriately update information over time. In many cases this can only be done

by artificially constraining possible environments and priors. We avoid the resulting

conceptual and technical obstacles by letting a Bayesian decision maker process the

information, which is dynamically consistent by definition.

2. Model

2.1. Setting. An individual chooses among alternatives that arrive sequentially. She

starts with an outside option x0 which is given and is strictly positive, so x0 > 0.

Alternatives x1, x2, ... are realizations of an infinite sequence of i.i.d. random variables.

Each xt ≥ 0 describes how much this alternative is worth to the individual. In each

round t = 0, 1, 2, ..., after having observed xt, the individual decides whether to stop

4The term robustness has also been used in other contexts. It appears in the maximin utility approach
(Wald, 1950, and Gilboa and Schmeidler, 1989) adapted to robust contract design (Chassang, 2013,
and Carroll, 2015), robust optimization (Ben-Tal et al., 2009), robust selling mechanisms (Carrasco
et al., 2018), and robust control in macroeconomics (Hansen and Sargent, 2001). It also appears
in Kajii and Morris (1997) where the concept of robustness is related to closeness in the strategy
space, rather than in the payoff space.
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the search, or to wait for another alternative. There is free recall: when the individual

decides to stop, she chooses from all the alternatives she has seen so far. The highest

alternative in a history ht = (x0, x1, ..., xt) is referred to as best-so-far alternative and

denoted by yt, so

yt = max{x0, x1, ..., xt}.
Payoffs are discounted over time with a discount factor δ ∈ (0, 1). From the per-

spective of round 0, the payoff of stopping after t rounds is δtyt. The discount factor

incorporates various multiplicative costs of search, such as the individual’s impatience

and a decay of values that are not accepted.5

We assume that alternatives are drawn from a given (Borel) set X ⊂ R+, with 0 ∈ X,

according to a probability distribution F .6 For instance, the set of alternatives X can

be R+, N, [0, x̄], or {0, x̄}. Let FX denote the set of all distributions over X that have

a finite mean.7 We refer to F as an environment and to F ⊂ FX as a set of feasible

environments.

We also allow for mixed environments. A mixed environment is a probability distribu-

tion with a finite support over the set of feasible environments F .8 The set of mixed

environments is denoted by ∆(F). Mixed environments capture applications where

each alternative xt depends on two components, an independent value ξt and a com-

mon value θ. For example, in a job search model, the value xt of a job offer may be

expressed as xt = θ + ξt, where θ is a market-wide or jobseeker-specific unobservable

variable, and ξt is an idiosyncratic unobservable value specific to employer t.

The decision making of the individual is formalized as follows. Clearly, if the indi-

vidual stops, she chooses the best-so-far alternative. So, the only relevant decision is

when to stop. This is given by a decision rule p that prescribes for each history of

alternatives ht = (x0, x1, ..., xt) the probability p(ht) of stopping after that history.

5The restriction to multiplicative search costs is for simplicity and clarity of exposition. Our meth-
odology extends to more general costs of search that include both additive and multiplicative com-
ponents, as we show in Appendix C.3.
6Inclusion of 0 in X is for notational convenience. Nothing changes if we replace 0 by some

¯
x as

long as the outside option satisfies x0 ≥
¯
x. Inclusion of 0 is natural in applications where search

may not provide a new alternative in each round, so the absence of a new alternative is modeled as
the zero-valued alternative.
7Distribution F must have a finite mean to ensure that the optimal payoff under F is well defined.
8We restrict attention to mixed environments with finite support to avoid technical complications
of dealing with priors over infinite sets. In fact, we show later that the analysis reduces to dealing
with pure environments only, so the restriction to finite support plays no role in the results.
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2.2. Bayesian Decision Making. A Bayesian approach to this search problem is as

follows. A Bayesian decision maker starts with some prior over (mixed) environments.

In each round, she updates this prior according to Bayes’ rule and makes a choice

that maximizes her expected payoff under the current posterior. Given a prior µ, we

call such a decision rule optimal under µ.

Note that each prior, formally defined as a probability distribution with a finite

support over the set mixed environments ∆(F), is a compound lottery over the set

of environments F . Beca use compound lotteries are equivalent to simple lotteries,

any prior over mixed environments, µ ∈ ∆(∆(F)), is an element of ∆(F) itself. In

what follows, we will refer to elements of ∆(F) synonymously as priors and mixed

environments.

A prior is called degenerate if it assigns unit mass on a single environment F ∈ F .

By convention, we associate each environment F with the correspondent degenerate

prior, so F ∈ ∆(F).

An environment F ∈ F and a prior µ ∈ ∆(F) are called consistent with a history

of alternatives ht = (x0, x1, ..., xt) if the sequence of alternatives x1, ..., xt occurs with

a positive probability under F and µ, respectively. Denote by F(ht) the sets of

environments that are consistent with ht. With a slight abuse of notation, denote by

∆(F(ht)) the sets of priors that are consistent with ht.

2.3. Performance Criterion. We consider an individual who does not know which

environment she faces. Rather than being concerned with the optimality under a

particular prior, the individual wishes to find a decision rule that is approximately

optimal under all priors and at all stages of the decision making. We formalize this

performance criterion as follows.

Consider a set of alternatives X, a set of feasible environments F ⊂ FX , a history

of alternatives ht = (x0, x1, ..., xt), and a prior µ ∈ ∆(F(ht)), so µ is consistent with

history ht. Let Up(µ, ht) denote the expected payoff of a decision rule p under µ,

conditional on history ht, so

Up(µ, ht) = p(ht)yt + (1− p(ht))δ
∫
F

∫
X

Up(µ, ht ⊕ xt+1)dF (xt+1)dµ(F ), (1)

where ht ⊕ xt+1 = (x0, ..., xt, xt+1).
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Let V (µ, ht) denote the optimal payoff under µ conditional on ht,

V (µ, ht) = supp Up(µ, ht).

This is the highest possible expected payoff, in other words, the payoff of a Bayesian

decision maker, under prior µ given history ht.

The payoff ratio Up(µ, ht)/V (µ, ht) describes the fraction of the optimal payoff that

a given rule p attains under prior µ given history ht. Note that V (µ, ht) ≥ x0 > 0.

The performance ratio Rp(x0,F) of a decision rule p is defined as the lowest payoff

ratio over all histories of alternatives and all priors consistent with those histories,

Rp(x0,F) = inf
h∈H(x0)

inf
µ∈∆(F(h))

Up(µ, h)

V (µ, h)
,

where H(x0) denotes the set of histories with outside option x0. So, the performance

ratio captures the fraction of the optimal payoff that a rule guarantees in each round.

The highest possible performance ratio is called dynamically robust and is given by

R∗(x0,F) = suppRp(x0,F).

Note that R∗(x0,F) depends only on the information available from the start: the

outside option x0, the set of feasible environments F , and, implicitly, the discount

factor δ.

A decision rule p∗ is called dynamically robust if it attains the dynamically robust

performance ratio, so Rp∗(x0,F) = R∗(x0,F).

2.4. Motivation. Our performance criterion can be motivated by the concept of

epsilon-optimality. In this paper we replace the objective of optimality against a given

environment or prior by the objective of epsilon-optimality against all environments

and priors. Such a rule is robust in the sense that its performance remains close to the

optimum irrespective of which particular environment in ∆(F) the individual faces.

An important aspect of economic models of search is their dynamic nature. Decisions

are made in each round, and past search costs are sunk, hence irrelevant for today’s

choices. This dynamic nature is an integral part of our approach. We are interested

in dynamic consistency of a rule, in the sense that its epsilon-optimality should hold

not only ex-ante, but also in all subsequent rounds. This is why we use the term

dynamically robust.
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The dynamic robustness criterion does not require a decision maker to be too specific

about the environment. It is appropriate for a decision maker who is willing to sacrifice

payoffs in favor of more general applicability and performance stability. Imagine an

individual (e.g., a CEO of a company) who must convince a group of observers (e.g., a

board of directors), each with a different prior, that her decision rule is good. Assume

that these observers can monitor the performance of this decision rule over time, so

they must remain convinced at all stages of the decision making. If the individual’s

rule is dynamically robust, then no observer will ever be able to accuse the individual

of underperforming by more than a specified threshold. Moreover, being dynamically

robust means that the threshold is the smallest among all rules with this property.

Finally, our performance criterion can be used to quantify the value of information

about the environment. The dynamically robust performance ratio bounds the ratio

of payoffs of two individuals: an ignorant one (who knows nothing about the envir-

onment) and an informed one (who knows everything about the environment). Thus,

it defines the maximal payoff loss due to being uninformed about the environment.

2.5. First Insights. Before unveiling our results, we present three simple, but im-

portant insights.

2.5.1. Irrelevance of Priors. The greatest obstacle in Bayesian optimization is that

the problem of finding an optimal rule is generally intractable and only solvable for

extremely simple priors. Our approach does not have this drawback, as we do not

need to consider general priors. Below we show that it is enough to restrict attention

to pure environments.

Note that optimal rules under pure environments are simple to find, as these are

cutoff rules that require to search until a certain cutoff is exceeded. Specifically, by

Weitzman (1979), the optimal rule under any given environment F prescribes to stop

whenever the best-so-far alternative y exceeds a reservation value cF given by

cF = δ

(∫ cF

0

cFdF (x) +

∫ ∞
cF

xdF (x)

)
. (2)

The optimal payoff, given a best-so-far alternative y and an environment F , is

V (F, y) = max
{
y, cF

}
. (3)



ROBUST SEQUENTIAL SEARCH 11

The proposition below shows that the performance ratio of a rule can be determined

by looking only at the pure environments. Recall that F(h) and ∆(F(h)) denote the

set of environments and priors, respectively, that are consistent with a history h.

Proposition 1. For each decision rule p and each history h,

inf
µ∈∆(F(h))

Up(µ, h)

V (µ, h)
= inf

F∈F(h)

Up(F, h)

V (F, h)
.

Note that the ratio Up(µ, h)/V (µ, h) is nonlinear in µ, so the result does not imme-

diately follow from the fact that each prior µ is a linear combination of points in F .

The proof is in Appendix A.1.

2.5.2. Irrelevance of Histories. How should the individual condition her decisions on

past observations? For instance, what does the individual learn after having observed

a history (x0, x1, ..., xn)? All environments are still possible, except for the degenerate

ones that assign zero probability to the values of x1, ..., xn. When the set of feasible

environments is convex, exclusion of these degenerate environments does not change

the infimum of the payoff ratios. Intuitively, this is because our performance measure

involves evaluating the payoff ratio for each environment under which a given history

occurs with a positive probability. How likely this history occurs does not influence

the payoff ratio. If the history contains observations that cannot be generated by some

environment F , other environments arbitrarily close to F can generate this history

with a positive, albeit arbitrarily small probability, and F is a limit of a sequence of

such environments.

Proposition 2. Let F be convex. For each decision rule p and each history h,

inf
F∈F(h)

Up(F, h)

V (F, h)
= inf

F∈F

Up(F, h)

V (F, h)
.

Proposition 2 states that, when evaluating the infimum of the payoff ratio, one should

take into account the set of all environments, regardless of whether or not they are

consistent with the observed history. The proof is in Appendix A.2.

2.5.3. Necessity to Randomize. We now show that dynamically robust rules neces-

sarily involve randomization. Stopping with certainty in any round is bad, because

one might miss out a high realization in the next round. Yet, continuing forever with

certainty is bad too, because this destroys the value of the outside option. We show
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that no deterministic rule can guarantee a better performance ratio than the rule that

stops in round zero.

Specifically, if one stops and obtains x0, the maximum possible foregone payoff is

supF∈F V (F, x0). Thus, a performance ratio of x0/(supF∈F V (F, x0)) is trivially ob-

tained by stopping in round zero, that is, by not searching at all.

A decision rule p is called deterministic if p(h) ∈ {0, 1} for each history h. Let F0

denote the Dirac environment that almost surely generates an alternative that has

value 0. The next proposition shows that deterministic decision rules cannot perform

better than not searching at all, as long as the environment F0 is feasible.

Proposition 3. Let p be a deterministic decision rule. Suppose that F0 ∈ F . Then

Rp(x0,F) ≤ x0

supF∈F V (F, x0)
.

In particular, if the set of alternatives X is unbounded and all distributions are

feasible, so F = FX , then Rp(x0,F) = 0. The proof is in Appendix A.3.

Remark 1. Proposition 3 sheds light on the performance of decision rules used by

Bayesian decision makers. By definition, any such rule is optimal for some prior. It

stops the search if the best-so-far alternative is better than the expected continuation

payoff under this prior, and continues otherwise. So, it is generically deterministic.9,10

Thus, by Proposition 3, for some priors, this rule is never better than not searching

at all.

3. Binary Environments

Consider the simple case in which feasible environments can have at most one value

above the outside option. We call such environments binary. This case is relevant

for applications where the individual knows what she is looking for, she just does not

know whether she will find it and, if so, how valuable it will be.

An environment is called binary, denoted by F(z,σ), if it is a lottery over two values,

0 and z, with probabilities 1 − σ and σ, respectively. The assumption that the low

9Indifference between stopping and continuing under a given prior is nongeneric, in the sense that
it does not hold under an open set of priors in the neighborhood of that prior.
10This genericity follows from our assumption that the distribution of alternatives is exogenous. In
Janssen et al. (2017) the distribution is endogenous, and the equilibrium Bayesian search rule is
nondeterministic.
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alternative has value 0 is for convenience: the results do not change, as long as at most

one alternative above the outside option realizes with positive probability. Even if the

individual does not know the value of this alternative at the outset, she immediately

knows it after it has realized, and stops the search. In particular, the assumption of

free recall plays no role for these environments.

Given a set X of feasible alternatives, we denote by BX the set of all binary environ-

ments over X, so

BX = {F(z,σ) : z ∈ X, σ ∈ [0, 1]}.
A special case of only two feasible alternatives, X = {0, z}, captures the situation

where the individual knows the value of the high alternative. In this case, the only

unknown parameter is how likely the high alternative emerges in each next round.

When facing a set BX of binary environments, any decision rule is fully described by

a sequence of probabilities

q = (q0, q1, q2, ...),

where qt is the probability to stop in round t conditional on only alternative 0 realized

in rounds 1, ..., t.

A decision rule q̄ is stationary if its stopping probability is constant, so q0 = q1 = q2 =

.... We will show that a particular stationary rule is dynamically robust in binary

environments.

We now present our result for binary environments.

Theorem 1. The stationary decision rule with the stopping probability
¯
q∗ = 1−δ

2−δ

(a) attains the performance ratio 1/2;

(b) is dynamically robust if supX =∞.

Theorem 1 shows that one can always guarantee at least 1/2 of the optimal payoff

against binary environments. Moreover, this bound is tight if the set of feasible

alternatives is unbounded.

We now sketch the argument why this bound is attained. The probability of stopping

¯
q∗ = 1−δ

2−δ balances the payoff ratio between environments where it is optimal to stop

and where it is optimal to keep searching until the high alternative realizes. Let us

fix an outside option x0. To simplify notation, we write v∗(z,σ) for the optimal payoff
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in a binary environment F(z,σ), and u∗(z,σ) for the individual’s payoff from the rule that

stops with constant probability
¯
q∗ in that environment. Observe that

u∗(z,σ) =
¯
q∗x0 + (1−

¯
q∗)δ(σmax{z, x0}+ (1− σ)u∗(z,σ)).

Substituting
¯
q∗ = 1−δ

2−δ and solving for u∗(z,σ) yields

u∗(z,σ) =
(1− δ)x0 + δσmax{z, x0}

2(1− δ) + δσ
.

First, consider an environment where it is optimal to stop immediately, so v∗(z,σ) = x0.

The payoff ratio is

u∗(z,σ)

v∗(z,σ)

=
(1− δ)x0 + δσmax{z, x0}

2(1− δ) + δσ
· 1

x0

≥ (1− δ)x0 + δσx0

(2(1− δ) + δσ)x0

≥ 1

2
, (4)

where the first inequality by max{z, x0} ≥ x0, and the second inequality is because

the ratio is increasing in σ ∈ [0, 1].

Second, consider an environment where z > x0 and, moreover, it is optimal to search

until z realizes, so the optimal payoff is

v∗(z,σ) = δ(σz + (1− σ)v∗(z,σ)).

Solving for v∗(z,σ) yields v∗(z,σ) = δσz/(1− δ + δσ). The payoff ratio is

u∗(z,σ)

v∗(z,σ)

=
(1− δ)x0 + δσz

2(1− δ) + δσ
· 1− δ + δσ

δσz
≥ δσz

2(1− δ) + δσ
· 1− δ + δσ

δσz
≥ 1

2
, (5)

where the first inequality is by (1 − δ)x0 ≥ 0 and the second inequality is because

the ratio is increasing σ ∈ [0, 1]. Finally, notice that inequality (4) holds as equality

when σ = 0 and would be violated for any stopping probability smaller than
¯
q∗; and

inequality (5) holds as equality when σz →∞ and would be violated for any stopping

probability greater than
¯
q∗. So, the performance ratio cannot be improved upon when

supX =∞. The formal proof is in Section 3.1.

We achieve a better performance when environments are bounded. For each x ∈ [0, 1]

define

q∗(x) =
2(1− δ)

4− 2δ + x−
√
x (x+ 8)

and ρ (x) =
1

2
+

1

8

(
x+

√
x (x+ 8)

)
. (6)

Theorem 1′. Let x̄ = supX < ∞ and let 0 < x0 ≤ x̄. The stationary decision rule

with the stopping probability q∗(x0/x̄)

(a) attains the performance ratio ρ(x0/x̄) > 1/2;
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(b) is dynamically robust if x0/x̄ ≤ δ2/(2− δ).

Remark 2. If x0/x̄ > δ2/(2− δ), then the rule q∗(x0/x̄) it is not dynamically robust

(so, a higher performance ratio can be attained). Yet q∗(x0/x̄) attains the performance

ratio ρ(x0/x̄) which is already very good in this case:

ρ(x0/x̄) > ρ

(
δ2

2− δ

)
=

1

2− δ > δ for all x0/x̄ >
δ2

2− δ .

The dynamically robust rule and its performance ratio for all x0/x̄ ∈ (0, 1] are derived

in Section 3.1 below (see (14) and (15)).

Theorem 1′ shows that one can guarantee more than 1/2 if the set of alternatives

is bounded. How much more one can guarantee depends on how large the outside

option x0 is relative to the highest feasible alternative x̄. In fact, if x0 is extremely

small, then the performance ratio is close to 1/2. Yet one can guarantee at least 2/3

and 3/4 of the optimal payoff if x0/x̄ exceeds, respectively, 1/6 and 1/3. Table 1

illustrates the performance ratio ρ(x0/x̄) for a few values of x0/x̄.

x0/x̄ 1/89 1/20 1/10 1/6 1/5 1/4 1/3 1/2
ρ(x0/x̄) 0.538 0.552 0.625 0.666 0.685 0.71 0.75 0.82

Table 1. Some values of the performance ratio of rule q∗

1

0
x0/x̄1

1
2

δ = 0.5

1
4

3
4

1
2

3
4

1
4

δ = 0.7

δ = 0.9

δ = 0.99

Figure 1. Stopping probability q∗(x0/x̄) with values of the discount factor
δ = 0.5, 0.7, 0.9, and 0.99.
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Notice that the stopping probability q∗(x0/x̄) of the stationary rule is increasing in

x0/x̄. Figure 1 illustrates this stopping probability for some values of the discount

factor.

Curiously, the performance ratios identified in Theorems 1 and 1′ are independent of

the discount factor δ. Intuitively, this is because both the individual’s payoff from

the rule given by (6) and the optimal payoff V are evaluated using the same discount

factor. So, when following a dynamically robust rule, a more patient individual simply

waits longer in expectation.

3.1. Proof of Theorems 1 and 1′. Part (a) in each of the theorems can be proven

by a simple verification that the specified stationary decision rule yields at least the

claimed performance ratio. The proof of part (b) is more involved as it requires to

show that there is no other rule that attains a higher performance ratio.

Specifically, there are two main stepping stones to the proof of Theorems 1 and 1′.

The first stepping stone was provided in Proposition 1, where we showed that the

performance ratio can be determined by looking only at the pure environments, so

we do not need to worry about mixed environments and priors.

The second stepping stone, which we now establish, is that we can restrict attention

to stationary decision rules without loss of generality. This simplifies the problem

tremendously, as any stationary rule is described by a single parameter: the constant

stopping probability. So, it becomes a single-variable optimization problem.

Clearly, the individual should stop the search after observing any alternative other

than zero, as she then knows that such an alternative is the best possible. However,

as long as only zero-valued alternatives have realized, this history is irrelevant for

the evaluation of the performance ratio, as shown by Proposition 2. That is, the

individual faces the exact same problem again and again, as long as she draws zero-

valued alternatives. Given this unchanging problem, there are neither fundamental

nor strategic reasons to condition decisions on the history. We now show that this

intuition is correct, so we can search for a dynamically robust rule among stationary

rules.

Proposition 4. For each decision rule q there exists a stationary decision rule q̄ such

that Rq̄(x0,BX) ≥ Rq(x0,BX).

The proof is in Appendix A.4.
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We are now ready to prove Theorem 1′. Theorem 1 will follow by taking the limit of

x̄→∞ for a fixed x0, so that x0/x̄→ 0.

Let X be a set of feasible alternatives with x̄ = supX < ∞, and let x0 ∈ (0, x̄]

be an outside option. By Proposition 1, we restrict attention to the set of pure

environments, BX . By Proposition 4, we consider stationary decision rules. Any such

rule is identified with its constant probability of stopping, q ∈ [0, 1].

For each binary environment F(z,σ) ∈ BX , let Uq(F(z,σ), x0) be the individual’s expected

payoff from a stationary rule q:

Uq(F(z,σ), x0) = qx0 + (1− q)δ((1− σ)Uq(F(z,σ), x0) + σz). (7)

By (2), the reservation value cF(z,σ)
satisfies cF(z,σ)

= δ(σz + (1 − σ)cF(z,σ)
). By (3),

the optimal payoff is given by V (F(z,σ), x0) = max
{
x0, cF(z,σ)

}
. We thus obtain

cF(z,σ)
=

δσz

1− δ(1− σ)
and V (F(z,σ), y) = max

{
y,

δσz

1− δ(1− σ)

}
. (8)

The performance ratio of rule q is

Rq(x0,BX) = inf
F∈BX

Uq(F(z,σ), x0)

V (F(z,σ), x0)
= inf

F∈BX
min

{
Uq(F(z,σ), x0)

x0

,
Uq(F(z,σ), x0)

cF(z,σ)

}
.

= min

{
inf
F∈BX

Uq(F(z,σ), x0)

x0

, inf
F∈BX

Uq(F(z,σ), x0)

cF(z,σ)

}
. (9)

In words, the individual worries about two scenarios: cF(z,σ)
< x0, in which case it

is optimal to stop immediately, and cF(z,σ)
≥ x0, in which case a high value of z is

sufficiently likely, and it is optimal to wait for it. The optimal stopping probability q

should be large in the first scenario and small in the second scenario, thus it should

balance this tradeoff. To find the optimal q, we evaluate the worst-case ratios for

each of the two scenarios.

Consider the first expression under the minimum in (9). Solving (7) for Uq(F(z,σ), x0)

yields

Uq(F(z,σ), x0) =
qx0 + (1− q)δσmax{z, x0}

1− δ(1− σ)(1− q) . (10)

We thus have

inf
F(z,σ)∈BX

Uq(F(z,σ), x0)

x0

= inf
z∈X,σ∈[0,1]

qx0 + (1− q)δσmax{z, x0}
(1− δ(1− σ)(1− q))x0

=
q

1− δ(1− q) , (11)
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where the last equality is because max{z, x0} ≥ x0 and the ratio is increasing in σ,

and thus achieves the minimum at σ = 0. So, the worst-case environments in the

first scenario are those environments F(z,σ) in which σ = 0, so the high alternative z

never occurs.

Next, consider the second expression under the minimum in (9). By (8) and (10),

inf
F(z,σ)∈BX

Uq(F(z,σ), x0)

cF(z,σ)

= inf
z∈X,σ∈[0,1]

qx0 + (1− q)δσz
1− δ(1− σ)(1− q) ·

1− δ(1− σ)

δσz

= inf
σ∈[0,1]

(
inf
z∈X

q x0

z
+ (1− q)δσ

(1− δ(1− σ)(1− q)) δσ
1−δ(1−σ)

)

= inf
σ∈[0,1]

q x0

x̄
+ (1− q)δσ

(1− δ(1− σ)(1− q)) δσ
1−δ(1−σ)

, (12)

where the last equality is by infz∈X x0/z = x0/x̄. So, worst-case environments in

the second scenario are those environments F(z,σ) in which z = x̄, so z is the highest

possible alternative.

Thus, from (11) and (12), we need to solve

max
q∈[0,1]

min
σ∈[0,1]

(
min

{
q

1− δ(1− q) ,
q x0

x̄
+ (1− q)δσ

(1− δ(1− σ)(1− q)) δσ
1−δ(1−σ)

})
. (13)

Denote x̂ = x0/x̄. It is straightforward to verify that the unique solution (q̄, σ̄) of the

maximin problem (13) is

q̄ =


2(1−δ)

4−2δ+x̂−
√
x̂(x̂+8)

, if 0 < x̂ ≤ δ2

2−δ ,√
(1−δ)((2δ−x̂)2−δx̂2)−(1−δ)(2δ−x̂)

2δ(δ−x̂)
, if δ2

2−δ < x̂ < δ,

1, if δ ≤ x̂ ≤ 1,

(14)

σ̄ =


(1−δ)(3x̂+

√
x̂(x̂+8))

2δ(1−x̂)
, if 0 < x̂ ≤ δ2

2−δ ,

1, if δ2

2−δ < x̂ ≤ 1.

We thus derived a dynamically robust decision rule q̄. Substituting q̄ into (9) yields

the dynamically robust performance ratio

R∗(x0,BX) =


1
2

+ 1
8

(
x̂+

√
x̂ (x̂+ 8)

)
, if 0 < x̂ ≤ δ2

2−δ ,

2δ−(1−δ)x̂−
√

(1−δ)((2δ−x̂)2−δx̂2)

2δ2 , if δ2

2−δ < x̂ < δ,

1, if δ ≤ x̂ ≤ 1.

(15)
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Finally, observe that decision rule q∗(x̂) given by (6) coincides with the dynamically

robust rule q̄ for x̂ = x0

x̄
≤ δ2

2−δ . For all 0 < x̂ ≤ 1 it yields the performance ratio

Rq∗(x0,BX) =
q∗(x̂)

1− δ(1− q∗(x̂))
=

1

2
+

1

8

(
x̂+

√
x̂ (x̂+ 8)

)
= ρ(x̂) >

1

2
.

This completes the proof of Theorem 1′.

4. General Environments

Consider now more general environments that potentially generate multiple alternat-

ives above the outside option. To keep the exposition simple, we fix a set of altern-

atives X and allow for all distributions over X that have finite support. So F = FX .

In contrast to binary environments, here the first alternative above the outside option

need not be the best, so sometimes the individual may wish to search for even better

alternatives. This makes decision making more complex. We deal with this complex-

ity by building on and extending our insights obtained for the binary setting. Once

again, we can restrict attention to simple decision rules, which here means that they

are stationary and have some monotonicity properties. We can also restrict attention

to binary environments, as only these determine the worst-case payoff ratio.

4.1. Simplicity of Decision Rules. By Proposition 2, histories are irrelevant for

the evaluation of the performance ratio. The only payoff-relevant variable is the best-

so-far alternative. Intuitively, the individual has no reason to condition decisions on

anything other than the best-so-far alternative. This suggests that we can restrict

attention to stationary decision rules, in which the probability of stopping in each

round depends only on the best-so-far alternative.

Formally, a decision rule p is stationary if the stopping probability is the same for

any pair histories h′ and h′′ with same best-so-far alternative, so

max{x : x ∈ h′} = max{x : x ∈ h′′} =⇒ p(h′) = p(h′′) for all h′, h′′ ∈ H(x0).

With stationary decision rules, we simplify notation by replacing each history ht with

the best-so-far alternative y = max{x0, x1, ..., xt}. So, a stationary rule p : R+ → [0, 1]

prescribes for each best-so-far alternative y to stop with probability p(y). For each

environment F and each best-so-far alternative y, the optimal payoff is given by

V (F, y) = max
q∈[0,1]

(
qy + (1− q)δ

∫ ∞
0

V (F,max{y, x})dF (x)

)
,



20 SCHLAG AND ZAPECHELNYUK

and the payoff of rule p is given by

Up(F, y) = p(y)y + (1− p(y))δ

∫ ∞
0

Up(F,max{y, x})dF (x).

We introduce two intuitive properties of a stationary decision rule.

A stationary decision rule p is monotone if p(y) is weakly increasing. It is natural

that the individual is more likely to accept a greater best-so-far alternative.

A stationary decision rule p has the monotone ratio property if

rp(y) := inf
F∈BX

Up(F, y)

V (F, y)
is weakly increasing. (16)

This is a “free-disposal” property. Suppose that the best-so-far alternative has in-

creased from y to y′, but the payoff ratio has decreased. Then the individual could

be better off by destroying some part of the value of the best-so-far alternative and

decreasing it back to y.

Decision rules in general environments can be very complex. The next proposition

shows we can restrict attention to much simpler decision rules, namely, those that are

stationary, monotone, and have the monotone ratio property.

Proposition 5. For each decision rule p, there exists a stationary monotone decision

rule p̃ with the monotone ratio property such that Rp̃(x0,FX) ≥ Rp(x0,FX).

The proof is in Appendix B.1.

4.2. Simplicity of Worst-Case Environments. Proposition 5 shows that there

exist simple dynamically robust rules. We now show that their simple nature causes

worst-case environments to be very simple, too. Specifically, these environments are

binary.

Proposition 6. Let decision rule p be stationary, monotone, and satisfy the mono-

tone ratio property. Then

Rp(x0,FX) = inf
y≥x0

inf
F∈BX

Up(F, y)

V (F, y)
.

The proof is in Appendix B.2.

To gain the intuition for Proposition 6, recall that the individual cares about two

contingencies: stopping when she should have waited for a higher realization of the
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value, and continuing when there are no better alternatives in the future. The worst-

case distributions for these contingencies need not be complex, they are binary valued.

We hasten to point out that Proposition 6 does not imply that the individual should

act as if she faces binary environments, as otherwise she would stop after seeing

any alternative above the outside option. Instead, Proposition 6 implies that, when

evaluating the payoff ratio after any history of realized alternatives, we only need to

do so for all binary environments. The value of Proposition 6 is that it drastically

simplifies the calculation of the performance ratio.

Note that binary environments are not consistent with histories that contain more

than two values. However, by Proposition 2, we should not be worried about this

inconsistency, as any binary distribution that is inconsistent with a history can be

obtained as a limit of a sequence of distributions that are consistent with that history.

4.3. Dynamically Robust Performance. We are now ready to present our find-

ings for general environments.

Theorem 2. The stationary decision rule p̄ given for each y by

p̄(y) =
1− δ
2− δ

(a) attains the performance ratio Rp̄(x0,FX) ≥ 1/4;

(b) is dynamically robust if supX =∞.

The proof is in Appendix B.3.

Part (a) shows that the dynamically robust performance ratio R∗(x0,FX) is at least

1/4 against general environments. Part (b) shows that this bound is tight as it is

attained when the set of feasible alternatives is unbounded.

We now sketch the argument why this bound is attained. For any best-so-far altern-

ative y, the relevant worst-case environments are those where there is an alternative z

that is very large relative to y. The stopping probability 1−δ
2−δ balances the payoff ratio

between environments where z is sufficiently unlikely (so it is optimal to stop) and

environments where z is likely enough and is worth waiting for. Consider decision

rules with a constant stopping probability, q, in each round, in particular, before and

after z realizes. A greater q means a shorter delay of obtaining z after it has realized,
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but also a greater probability of stopping before the first realization of z. In the limit,

as y/z tends to 0, the payoff ratio takes the form

q

1− δ(1− q)

(
1− q

1− δ(1− q)

)
. (17)

The first factor in (17),

q

1− δ(1− q) = q + δ(1− q)q + δ2(1− q)2q + ...

is a reciprocal of the expected delay of obtaining z after its realization. The second

factor in (17) is the probability of not stopping before z realizes for the first time.

Setting q
1−δ(1−q) equal to 1/2 maximizes (17), leading to the solution q = 1−δ

2−δ and the

guaranteed payoff ratio 1/4.

Analogously to the binary setting, we achieve a better performance when feasible

alternatives are bounded. For this result, recall the definition of q∗ and ρ given by

(6) in Section 3.

Theorem 2′. Let x̄ = supX <∞. Then there exists a constant L ∈ (0, 1) such that

the dynamically robust performance ratio satisfies

R∗(x0,FX) ≥ ρ(x0/x̄) > 1/2 if x0/x̄ ≥ L.

Moreover, if x0/x̄ ≥ 1/6, then the decision rule p∗ given by p∗(y) = q∗(y/x̄)

(a) attains the performance ratio ρ(x0/x̄) > 1/2;

(b) is dynamically robust if 11 1/6 ≤ x0/x̄ ≤ δ2/(2− δ).

The proof is in Appendix B.4.

Theorem 2′ shows that, if the outside option is not too small relative to the highest

possible alternative, in the sense that x0/x̄ ≥ L, then the dynamically robust per-

formance ratio for the general environments is the same as that for the binary environ-

ments. That is, the expansion from the binary to general set of environments confers

no reduction in the dynamically robust performance. Remarkably, the constant L is

very small. We numerically find an upper bound for L:

L ≤ 1/89,

11If x0/x̄ is not in [1/6, δ2/(2− δ)], then the rule p∗ it is not dynamically robust. The dynamically
robust rule and its performance ratio for each x0/x̄ ∈ [L, 1] are derived in the proof of Theorem 2′

(Appendix B.4).
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which is independent of the discount factor δ. Thus, as x0/x̄ increases from 0 to

a mere 1/89, the dynamically robust performance ratio climbs from 1/4 to above

1/2. In particular, one can guarantee at least 2/3 and 3/4 of the optimum if the

outside option exceeds, respectively, 1/6 and 1/3 of the highest possible alternative.

In Figure 2, the dynamically robust performance ratio R∗(x0,FX) is shown as a solid

line for x0/x̄ ≥ L, and we hypothesize that it looks as depicted by the dotted line for

x0/x̄ < L.

1
89

1
4

2
3

3
4

0
x0/x̄1

6
1
3

1
2

ρ(x0/x̄)

Rp∗(x0,FX)

Figure 2. Dashed line shows the performance ratio of rule p∗. Solid line
shows the dynamically robust performance ratio ρ(x0/x̄) for x0/x̄ ≥ L when
δ is sufficiently large, so x0/x̄ ≤ δ2/(2− δ). Dotted line shows the hypothet-
ical value of the dynamically robust performance ratio when x0/x̄ < L.

In addition, Theorem 2′ shows that the dynamically robust rule identified for binary

environments is also dynamically robust in general environments when x0/x̄ ≥ 1/6.

This can be seen visually in Figure 2 by the fact that the dynamically robust per-

formance ratio (solid line) coincides with the performance ratio of the rule p∗ (dashed

line) when x0/x̄ ≥ 1/6.

For x0/x̄ ∈ [L, 1/6), the rule p∗ is no longer dynamically robust. In Figure 2, the

dashed line showing Rp∗(x0,FX) is below the solid line showing ρ(x0). Nevertheless,

the performance ratio of ρ(x0) can still be attained. In our proof of Theorem 2′ we

present a rule that is dynamically robust in this case.

Two elements of Theorem 2′ prompt curiosity.
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First, why is the dynamically robust performance ratio the same as under binary

environments for such a large interval of outside options? It turns out that when

x0/x̄ ≥ L, the environments that determine the worst-case ratio are lotteries over

the extreme alternatives, 0 and x̄. Other alternatives do not play any role in this

parameter region, but they do when x0/x̄ < L. This stands in contrast to the setting

of binary environments where the worst case environments only put weights on the

extreme alternatives.

Second, why is Theorem 2′ silent about dynamic robustness when 0 < x0/x̄ < L?

This is because a closed form expression for the dynamically robust performance

ratio is not available for this region. Yet, for each parameter value in this region, the

dynamically robust performance ratio, together with an associated decision rule, can

be derived using a recursive procedure that we describe in Appendix C.1.

5. Conclusion

It is difficult to search when the distribution of alternatives is not known. In fact, as

outlined in the literature review in the introduction, the literature has not produced

satisfactory insights into how to search in this setting. In this paper we identify that

this difficulty is due to the desire to achieve the very highest payoff for the given

beliefs. Namely, we find that it is easier to search if one reduces the target and

replaces “very highest” by “relatively high”. The ease refers to the ability to derive

an optimal solution for a very general setting, the simplicity of our algorithm, and

the minimality of assumptions one needs to impose on the environment.

The methodology developed in this paper is general, applicable to a spectrum of

dynamic decision making problems, and should spark future research. Its strength is

that it allows for dynamically consistent decision making with multiple priors. It is as

if our decision maker is surrounded by other individuals, each of whom has her own

prior. At any point in time, each of these individuals wants to complain that our rule

is not appropriate given their prior. According to our concept, a dynamically robust

rule may not be optimal given their prior, but their complaints cannot be large. Our

analysis reveals bounds on the size of any such complaint.

Our results about the bounds on the size of possible complaints do not change if

the searcher has more information about the environment, for example, if she can

restrict the set of priors, or if the number of alternatives is finite and known. What



ROBUST SEQUENTIAL SEARCH 25

does change is the tightness of these bounds. Of course, when more information is

available, better decision rules can be found.

The main insights (randomization is essential, dynamically robust rules are station-

ary, worst-case priors are simple) extend to search without recall and to search with

exchangeable distributions.

New avenues for research on dynamical robustness are opened, such as extending

this agenda to matching and to other search environments that involve strategic

interaction. The economic insights of models that include agents searching under

known distributions can now be reevaluated using agents that employ dynamically

robust search.

Appendix A. Binary Environments

A.1. Proof of Proposition 1. Fix a history h and a prior µ that is consistent with

that history, so µ ∈ ∆(F(h)). Let

rp(F ) =
Up(F, h)

V (F, h)
and η(F ) =

V (F, h)µ(F |h)

V (µ, h)
.

Note that the posterior µ(·|h) must assign zero probability to the set of all environ-

ments that are inconsistent with h, thus

Up(µ, h) =
∑

F∈F(h)

Up(F, h)µ(F |h).

Using the above notations we obtain

Up(µ, h)

V (µ, h)
=

∑
F∈F(h) Up(F, h)µ(F |h)

V (µ, h)
=

∑
F∈F(h) rp(F )V (F, h)µ(F |h)

V (µ, h)

=
∑

F∈F(h)

rp(F )η(F ) ≥ inf
F∈F(h)

rp(F ) = inf
F∈F(h)

Up(F, h)

V (F, h)
,

where the inequality follows from rp(F ) ≥ 0, η(F ) ≥ 0, and∑
F∈F

η(F ) =

∑
F∈F V (F, h)µ(F |h)

V (µ, h)
=

∑
F∈F supp Up(F, h)µ(F |h)

V (µ, h)

≥ supp
∑

F∈F Up(F, h)µ(F |h)

V (µ, h)
=

supp Up(µ, h)

V (µ, h)
=
V (µ, h)

V (µ, h)
= 1.



26 SCHLAG AND ZAPECHELNYUK

Since the above holds for all µ ∈ ∆(F(h)), we have

inf
µ∈∆(F(h))

Up(µ, h)

V (µ, h)
≥ inf

F∈F(h)

Up(F, h)

V (F, h)
.

The proof of the reverse of the above inequality is trivial, since F(h) is a subset of

∆(F(h)).

A.2. Proof of Proposition 2. Fix an outside option x0 > 0 and a history h ∈ H(x0).

Recall that F(h) ⊂ F denotes the set of environments that are consistent with a

history h, and note that F(h) 6= ∅. Consider two environments, F ∈ F(h) and

G ∈ F . Let (Gk)
∞
k=1 be a sequence of environments given by

Gk = 1
k
F +

(
1− 1

k

)
G, k ∈ N,

so limk→∞Gk = G. By convexity of F , Gk ∈ F for all k ∈ N. Consistency of

F ∈ F(h) with history h = (x0, x1, ..., xt) means that supp(F ) contains {x1, ..., xt}.
So, {x1, ..., xt} ⊂ supp(F ) ⊂ supp(Gk), and thus Gk ∈ F(ht) for all k ∈ N. Since

the above is true for all G ∈ F , it follows that Closure(F(h)) = F , which proves the

proposition.

A.3. Proof of Proposition 3. Let p be deterministic. Suppose that there exists

k ∈ {0, 1, 2, ...} such that p stops searching after k zero-valued alternatives. Form-

ally, p(x0 ⊕ 0k) = 1, where 0k denotes the sequence of k zeros and ‘⊕’ denotes the

vector concatenation operator. For any F ∈ F , the individual’s payoff in round k is

Up(F, x0 ⊕ 0k) = x0, and the optimal payoff in round k satisfies

V (F, x0 ⊕ 0k) ≤ supF ′∈F V (F ′, x0),

because, by (3), V (F, x0) = V (F, x0 ⊕ 0k). Consequently,

Rp(x0,F) ≤ inf
F∈F

Up(F, x0 ⊕ 0k)

V (F, x0 ⊕ 0k)
=

x0

supF∈F V (F, x0)
.

Now, consider the complementary case where p never stops searching as long as only

zeros occurred in the past. So, p(x0 ⊕ 0k) = 0 for all k ∈ {0, 1, 2, ...}. Consider an

environment F0 in which all alternatives are equal to zero with certainty. In round 0,

the optimal payoff under F0 is V (F0, x0) = x0. Since p continues after each history

with only zeros, it never stops under F0, and hence its payoff is Up(F0, x0) = 0.
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Consequently,

Rp(x0,F) ≤ Up(F0, x0)

V (F0, x0)
=

0

x0

= 0.

A.4. Proof of Proposition 4. In what follows, we denote by q̄∞ a constant se-

quence, so q̄∞ = (q̄, q̄, ...) for q̄ ∈ [0, 1].

We show that each sequence of probabilities q′ = (q′0, q
′
1, ...) can be replaced by a

constant sequence q̄∞ that has a weakly higher performance ratio in binary environ-

ments. Note that we only need to compare the individual’s payoffs Uq′ and Uq̄∞ , as

the optimal payoff V does not depend on the decision rule.

For consistency with notations in Appendix B, we use notation y = x0. In the

paper, y denotes the current best-so-far alternative, and in binary environments this

is always the outside option x0. Also, note that in binary environments we only have

to consider histories in which only zeros occur, and hence replace ht by the round

number t.

The expected payoff of a rule q in each round t = 0, 1, 2, ... is given by

Uq(F(z,σ), t) = qty + (1− qt)δ(σz + (1− σ)Uq(F(z,σ), t+ 1)). (18)

For each (z, σ), denote the worst expected payoff among all rounds by

¯
Uq(F(z,σ)) = inf

t=0,1,...
Uq(F(z,σ), t).

Let q′ be an arbitrary sequence of probabilities. This q′ will be called a benchmark

and will be fixed for the rest of the proof. We say that a sequence q is better than q′

for (z, σ) if its worst expected payoff under environment F(z,σ) is at least as good as

that of the benchmark q′, so

¯
Uq(F(z,σ)) ≥

¯
Uq′(F(z,σ)).

Let q̄∞ = (q̄, q̄, ...) be the constant sequence where q̄ is a solution of the equation

Uq′(F(z,0), 0) = q̄y + (1− q̄)δUq′(F(z,0), 0), (19)

so

q̄ =
(1− δ)Uq′(F(z,0), 0)

y − δUq′(F(z,0), 0)
.

By (18), Uq′(F(z,0), 0) ∈ [0, y] when σ = 0, so q̄ ∈ [0, 1]. We will show that q̄∞ is better

than q′ for all z ≥ y and all σ ∈ [0, 1].
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By (18), observe that for any sequence q and any t,

Uq(F(z,σ), t)− y = (1− qt)(δσz + δ(1− σ)Uq(F(z,σ), t+ 1)− y)

= (1− qt)(δσz − (1− δ(1− σ))y + δ(1− σ)(Uq(F(z,σ), t+ 1)− y)).

Iterating the above for t+ 1, t+ 2, ..., we obtain

Uq(F(z,σ), t)− y = (δσz − (1− δ(1− σ))y)
∞∑
k=0

(
δk(1− σ)k

t+k∏
s=t

(1− qs)
)
. (20)

First, assume that δσz − (1− δ(1− σ))y = 0. Then Uq(F(z,σ), t)− y = 0 for every q

and every t. In particular,
¯
Uq̄∞(F(z,σ)) =

¯
Uq′(F(z,σ)) = y. So, q̄∞ is better than q′.

Next, assume that δσz − (1− δ(1− σ))y 6= 0. Define

ψσt (q) =
Uq(F(z,σ), t)− y

δσz − (1− δ(1− σ))y
. (21)

By (20),

ψσt (q) = (1− qt)
(
1 + δ(1− σ)ψσt+1(q)

)
=
∞∑
k=0

(
δk(1− σ)k

t+k∏
s=t

(1− qs)
)
. (22)

Note that for any constant sequence q∞ = (q, q, ...),

ψσ(q∞) =
∞∑
k=0

δk(1− σ)k(1− q)k+1 =
1− q

1− δ(1− σ)(1− q) , (23)

where we omit the subscript t for notational simplicity. When δσz−(1−δ(1−σ))y > 0,

the constant sequence q̄∞ is better than q′ if

ψσ(q̄∞) ≥ inf
t
ψσt (q′).

When δσz − (1− δ(1− σ))y < 0, the constant sequence q̄∞ is better than q′ if

−ψσ(q̄∞) ≥ inf
t

(−ψσt (q′)).

Therefore, to prove that q̄∞ is better than q′ for all z ≥ y and all σ ∈ [0, 1], it remains

to show that, for all σ ∈ [0, 1],

inf
t
ψσt (q′) ≤ ψσ(q̄∞) ≤ sup

t
ψσt (q′). (24)
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Fix σ ∈ [0, 1]. To prove the above inequalities, we first find the interval of values

ψ0
0(q) achievable by choosing a sequence q subject to the constraint

inf
t
ψσt (q′) ≤ ψσs (q) ≤ sup

t
ψσt (q′) for all s = 0, 1, 2, .... (25)

To do this, we solve

min
q
ψ0

0(q) subject to (25), and (26)

max
q
ψ0

0(q) subject to (25). (27)

Lemma 1. There exist a solution qσmin of (26) and a solution qσmax of (27) that are

constant sequences.

We postpone the proof of this lemma to the end of this section and first complete the

proof of Proposition 4.

By (21) and the definition of q̄∞ (see (19)), ψ0(q̄∞) = ψ0
0(q′) (recall that we omit the

subscript t for constant sequences). Because q′ satisfies constraint (25) by definition,

we have

ψ0(qσmin) ≤ ψ0(q̄∞) = ψ0
0(q′) ≤ ψ0(qσmax).

By Lemma 1, qσmin and qσmax are constant sequences. By (23), for any constant sequence

q̃∞ = (q̃, q̃, ...), ψ0(q̃∞) is strictly increasing in q̃. Thus, we have

qσmin ≤ q̄∞ ≤ qσmax. (28)

Again by (23), for any constant sequence q̃∞ and any σ, ψσ(q̃∞) is strictly increasing

in q̃. Since qσmin and qσmax satisfy the constraint (25), we have

inf
t
ψσt (q′) ≤ ψσ(qσmin) ≤ ψσ(q̄∞) ≤ ψσ(qσmax) ≤ sup

t
ψσt (q′).

So, (24) holds. This completes the proof.

Proof of Lemma 1. We prove that a solution of the maximization problem (27) is a

constant sequence. The proof of this statement for the minimization problem (26) is

analogous.

Fix σ ∈ [0, 1]. We use the notation

¯
ψσ(q′) = inf

t
ψσt (q′) and ψ̄σ(q′) = sup

t
ψσt (q′).
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Let q̃ be the solution of the equation

ψ̄σ(q′) = (1− q̃)(1 + δ(1− σ)ψ̄σ(q′)). (29)

We now show that the constant sequence q̃∞ = (q̃, q̃, ...) is a solution of the maximiz-

ation problem (27). To prove this, we solve a finite-horizon problem described below.

We assume that the individual makes decisions in rounds t = 0, 1, ..., T , after which

the individual’s behavior is fixed by qt = q̃ for all t > T . Because the maximal value

of ψ0
0(q) in the problem (27) can differ from that in the problem with horizon T by

at most δT , we find the solution to the infinite-horizon problem (27) as the limit of

the solutions to the finite-horizon problem as T →∞.

For each T = 1, 2, ... consider the following problem:

max
q
ψ0

0(q) subject to

¯
ψσ(q′) ≤ ψσt (q) ≤ ψ̄σ(q′) for all t,

qt = q̃ for all t = T + 1, T + 2, ....

(30)

We now show that q̃∞ is a solution of (30). We proceed by induction, starting from

round k = T , and then continue to rounds k = T − 1, T − 2, ..., 1, 0.

Let k ∈ {0, 1, ..., T} and suppose qt = q̃ for each t > k. Observe that, by (23), for all

t > k,

ψ0
t (q) =

1− q̃
1− δ(1− q̃) and ψσt (q) =

1− q̃
1− δ(1− σ)(1− q̃) = ψ̄σ(q′), (31)

where the last equality is by the definition of q̃ in (29). Next, q must satisfy the

constraint in (30), so ψσk (q) ≤ ψ̄σ(q′). Using (22) and (31), we obtain that

ψσk (q) = (1− qk)(1 + δ(1− σ)ψσk+1(q)) = (1− qk)(1 + δ(1− σ)ψ̄σ(q′)) ≤ ψ̄σ(q′) (32)

implies by (29)

qk ≥ q̃. (33)

Let us first deal with the case of k ≥ 1. We show that if qk > q̃, then ψ0
0(q) can be

increased by reducing qk. Specifically, we keep qt fixed for all t different from k − 1

and k, and vary qk−1 and qk such that ψσk−1(q) remains constant, that is,

dψσk−1(q) = −(1 + δ(1− σ)ψσk (q))dqk−1 + (1− qk−1)δ(1− σ)
∂ψσk (q)

∂qk
dqk = 0.
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By (31) and (32) we have

ψσk (q) = (1− qk)(1 + δ(1− σ)ψσk+1(q)) = (1− qk)(1 + δ(1− σ)ψ̄σ(q′))

= (1− qk)
(

1 + δ(1− σ)
1− q̃

1− δ(1− σ)(1− q̃)

)
=

1− qk
1− δ(1− σ)(1− q̃)

and
∂ψσk (q)

∂qk
= − 1

1− δ(1− σ)(1− q̃) .

Thus,
dqk−1

dqk
= − δ(1− σ)(1− qk−1)

1− δ(1− σ)(qk − q̃)
.

Inserting σ = 0 into (22) and (31), by the induction assumption that qk+1 = q̃σ,

ψ0
k(q) = (1− qk)(1 + δψ0

k+1(q)) = (1− qk)
(

1 +
δ(1− q̃)

1− δ(1− q̃)

)
=

1− qk
1− δ(1− q̃) ,

and

ψ0
k−1(q) = (1− qk−1)(1 + δψ0

k(q)) = (1− qk−1)
1− δ(qk − q̃)
1− δ(1− q̃) .

Thus, by (22) with σ = 0,

∂ψ0
0(q)

∂qk
= δk

(
k−1∏
s=0

(1− qs)
)
∂ψ0

k(q)

∂qk
= −δk

(
k−1∏
s=0

(1− qs)
)

1

1− δ(1− q̃)

and

∂ψ0
0(q)

∂qk−1

= δk−1

(
k−2∏
s=0

(1− qs)
)
∂ψ0

k−1(q)

∂qk−1

= −δk−1

(
k−2∏
s=0

(1− qs)
)

1− δ(qk − q̃)
1− δ(1− q̃)

= −δk
(
k−1∏
s=0

(1− qs)
)

1− δ(qk − q̃)
(1− δ(1− q̃))δ(1− qk−1)

.
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Therefore, if qk−1 < 1, then

dψ0
0(q)

dqk
=
∂ψ0

0(q)

∂qk
+
∂ψ0

0(q)

∂qk−1

dqk−1

dqk

= −δk
(
k−1∏
s=0

(1− qs)
)(

1

1− δ(1− q̃) +
1− δ(qk − q̃)

(1− δ(1− q̃))δ(1− qk−1)

dqk−1

dqk

)

= − δk

1− δ(1− q̃)

(
k−1∏
s=0

(1− qs)
)(

1− (1− δ(qk − q̃))(1− σ)

1− δ(1− σ)(qk − q̃)

)

= − δk

1− δ(1− q̃)

(
k−1∏
s=0

(1− qs)
)

σ

1− δ(1− σ)(qk − q̃)
≤ 0.

Alternatively, if qk−1 = 1, then ψ0
0(q) is independent of qk, so dψ0

0(q)/dqk = 0. Thus,

if qk > q̃, then decreasing qk increases ψ0
0(q) without violating the constraint in (30),

as long as qk ≥ q̃.

Next, we deal with the case of k = 0. By (22) and (31) we have

dψ0
0(q)

dq0

= −1− δψ0
1(q) < 0.

So, again, if q0 > q̃, then decreasing q0 increases ψ0
0(q) without violating the constraint

in (30), as long as q0 ≥ q̃.

We thus proved that if q is a solution of (30) with qk > q̃ and qt = q̃ for all t > k,

then there exists a solution with qt = q̃ for all t ≥ k. As this is true for each k =

T, T−1, ..., 1, 0 by induction, we obtain that q̃∞ is a solution of (30), so qσmax = q̃∞. �

Appendix B. General Environments

B.1. Proof of Proposition 5. We begin the proof with a lemma that will be useful

here and in further proofs in Appendix B.
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Lemma 2. Let p be stationary. For each y ≥ x0 and each F(z,σ) ∈ BX ,

Up(F(z,σ), y) =
p(y)y

1− δ(1− p(y))
if z ≤ y, (34)

Up(F(z,σ), y) =
p(y)y + (1− p(y))δσ p(z)z

1−δ(1−p(z))

1− δ(1− p(y))(1− σ)
if z > y, (35)

Up(F(z,σ), y)

V (F(z,σ), y)
=

p(y)y + (1− p(y))δσ p(z)z
1−δ(1−p(z))

(1− δ(1− p(y))(1− σ)) δσz
1−δ(1−σ)

if cF(z,σ)
≥ y. (36)

Moreover, if p(y) is monotone, then

Up(F(z,σ), y)

V (F(z,σ), y)
≥ Up(F(z,0), y)

V (F(z,0), y)
=

p(y)

1− δ(1− p(y))
if cF(z,σ)

≤ y. (37)

Proof. If z ≤ y, then the best-so-far alternative never changes under F(z,σ). The payoff

is Up(F(z,σ), y) = p(y)y+(1−p(y))δUp(F(z,σ), y). Solving this equation for Up(F(z,σ), y)

yields (34). Alternatively, if z > y, then the payoff is

Up(F(z,σ), y) = p(y)y + (1− p(y))δ(σUp(F(z,σ), z) + (1− σ)Up(F(z,σ), y)). (38)

Inserting y = z into (34) yields Up(F(z,σ), z) = p(z)z
1−δ(1−p(z)) . Inserting this into (38) and

solving for Up(F(z,σ), y) yields (35). To prove (36), suppose that cF(z,σ)
= δσz

1−δ(1−σ)
≥ y.

Note that z ≥ y/δ > y, since σ ∈ [0, 1]. So, Up(F(z,σ), y) is given by (35) and

V (F(z,σ), y) = δσz
1−δ(1−σ)

by (8), and (36) follows immediately.

Finally, to prove (37), suppose that cF(z,σ)
≤ y. Observe that V (F(z,σ), y) = y by (8).

If z ≤ y, then by (34) the payoff ratio is

Up(F(z,σ), y)

V (F(z,σ), y)
=

p(y)

1− δ(1− p(y))
.

Instead, if z > y, then, using (35) and p(z) ≥ p(y) by the monotonicity of p, we have

Up(F(z,σ), y)

V (F(z,σ), y)
=
p(y)y + (1− p(y))δσ p(z)z

1−δ(1−p(z))

(1− δ(1− p(y))(1− σ))y

≥
p(y)y + (1− p(y))δσ p(y)y

1−δ(1−p(y))

(1− δ(1− p(y))(1− σ))y
=

p(y)

1− δ(1− p(y))
.

�
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We now prove Proposition 5. Fix X ⊂ R. Let R̂p(x0) denote the smallest payoff ratio

when facing an environment in BX , so

R̂p(x0) = inf
h∈H(x0)

inf
F∈BX

Up(F, h)

V (F, h)
.

Note that R̂p(x0) is not that same value as the performance ratio Rp(x0,BX) cal-

culated for rule p in the binary setting. This is because in the binary setting the

individual’s choice is trivial whenever she observes an alternative above the outside

option.

To prove Proposition 5, we show that for each rule p there exists a rule q that is

stationary, monotone, and has the monotone ratio property, such that

Rp(x0,FX) ≤ R̂p(x0) ≤ R̂q(x0) = Rq(x0,FX).

The first inequality trivially follows from BX ⊂ FX and the definitions of Rp and R̂p.

Proposition 6 proves the equality, R̂q(x0) = Rq(x0,FX). We hasten to point out that

the proof of Proposition 6 does not depend on Proposition 5. It remains to prove that

R̂p(x0) ≤ R̂q(x0).

We divide the proof into three parts. In each part, we consider a decision rule p that

satisfies the restrictions imposed in the previous parts, and construct a different rule

whose performance ratio over the set of binary environments is weakly better than

that of p.

Part 1. Stationarity. Let p be a decision rule. We now construct a stationary rule q

whose performance ratio against environments in BX is at least as high as that of p.

Let H̄(y) denote the set of histories whose best-so-far alternative is y. Let W (y) be

the maximal payoff of rule p among all these histories, against all binary environments

in which no alternatives better than y will ever emerge, so

W (y) = sup
h∈H̄(y)

(
sup

F(z,σ)∈BX :z≤y
Up(F(z,σ), h)

)
. (39)

Define a stationary rule q as follows. For each y ≥ x0, let q(y) be the solution of

W (y) = q(y)y + (1− q(y))δW (y).
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Note there exists a unique solution q(y) ∈ [0, 1], because y ≥ x0 > 0 and, by (8),

0 ≤ Up(F(z,σ), h) ≤ V (F(z,σ), h) = y if z ≤ y and h ∈ H̄(y), (40)

so, in particular, 0 ≤ W (y) ≤ y. We now prove that the change from p to q does not

decrease the performance ratio, so R̂p(x0) ≤ R̂q(x0).

Fix y′ ≥ x0 and F(z,σ) ∈ BX . Denote by q|y′p a decision rule in which the stopping

probability is q(y) whenever the best-so-far alternative is y 6= y′, and it is given by

the original rule p(h) whenever the best-so-far alternative is y′, that is, h ∈ H̄(y′).

We now prove that

inf
h′∈H̄(y′)

Up(F(z,σ), h
′) ≤ inf

h∈H̄(y′)
Uq|y′p(F(z,σ), h) ≤ Uq(F(z,σ), y

′). (41)

To prove the first inequality in (41), we fix an arbitrary h′ ∈ H̄(y′) and show that

Uq|y′p(F(z,σ), h
′) ≥ Up(F(z,σ), h

′). We have

Uq|y′p(F(z,σ), h
′) = p(h′)y′+(1−p(h′))δ((1−σ)Uq|y′p(F(z,σ), h

′⊕0)+σUq|y′p(F(z,σ), h
′⊕z)),

where ‘⊕’ denotes the vector concatenation operator, so h′ ⊕ 0 is the vector h′ with

0 appended at the end. If z ≤ y′, then Uq|y′p(F(z,σ), h
′) is independent of q (because

the best-so-far alternative remains y′), so

Uq|y′p(F(z,σ), h
′) = Up(F(z,σ), h

′).

Otherwise, if z > y′, then, by the definitions of W (z) and q, for each k = 0, 1, ...,

Uq|y′p(F(z,σ), h
′ ⊕ 0k ⊕ z) = Uq(F(z,σ), z) = W (z) ≥ Up(F(z,σ), h

′ ⊕ 0k ⊕ z), (42)

where 0k is the vector of k zeros. So,

Uq|y′p(F(z,σ), h
′) =

∞∑
k=0

[(
p(h′ ⊕ 0k)y′ + (1− p(h′ ⊕ 0k))δσW (z)

)
×δk(1− σ)k

k−1∏
s=0

(1− p(h′ ⊕ 0s))

]

≥
∞∑
k=0

[(
p(h′ ⊕ 0k)y′ + (1− p(h′ ⊕ 0k))δσUp(F(z,σ), h

′ ⊕ 0k ⊕ z)
)

×δk(1− σ)k
k−1∏
s=0

(1− p(h′ ⊕ 0s))

]
= Up(F(z,σ), h

′).
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Summing up the above, we obtain Uq|y′p(F(z,σ), h
′) ≥ Up(F(z,σ), h

′) for each h′ ∈ H̄(y′),

thus proving the first inequality in (41).

Let us prove the second inequality in (41). If z ≤ y′, then Uq(F(z,σ), y
′) = W (y′) ≥

infh∈H̄(y′) Uq|y′p(F(z,σ), h) by the definitions of W (y′) and q(y′).

Alternatively, let z > y′. So, for each k = 0, 1, 2, ..., as long as z has not been realized,

the only possible history is h′ ⊕ 0k. Define

q′k = p(h′ ⊕ 0k), k = 0, 1, 2, ....

This is the problem with binary environments analyzed in Section 3, where x0 = y′

and X = {0,W (z)}, so the value of the high alternative is W (z). By Proposition

4, we can replace the sequence of probabilities (q′0, q
′
1, ...) by a constant sequence

q̄∞ = (q̄, q̄, ...). Moreover, q̄ = q(y′) by (19) and the definitions of W (y′) and q(y′).

We thus proved the second inequality in (41).

By (8), V (F(z,σ), h
′) depends on h′ only through the best-so-far alternative y′, so

V (F(z,σ), h
′) = V (F(z,σ), y

′). It follows from (41) that

inf
h′∈H̄(y′)

Up(F(z,σ), h
′)

V (F(z,σ), h′)
=

inf
h′∈H̄(y′)

Up(F(z,σ), h
′)

V (F(z,σ), y′)
≤

inf
h′∈H̄(y′)

Uq|y′p(F(z,σ), h
′)

V (F(z,σ), y′)
≤ Uq(F(z,σ), y

′)

V (F(z,σ), y′)
.

The above holds for each y′ ≥ x0 and each F(z,σ) ∈ BX , thus proving R̂p(x0) ≤ R̂q(x0).

Part 2. Monotonicity. Consider a stationary rule p. Suppose that p is nonmonotone,

so there exist y′, y′′ such that x0 ≤ y′ < y′′ and p(y′) > p(y′′). Define q by

q(y) = sup
y′∈[x0,y]

p(y′), y ≥ x0. (43)

Note that, for all y ≥ x0,

q(y) ≥ p(y) and
q(y)

1− δ(1− q(y))
≥ p(y)

1− δ(1− p(y))
. (44)

We now show that this change from p to q does not decrease the performance ratio.

Consider any y ≥ x0. For each F(z,σ) such that cF(z,σ)
≤ y,

Uq(F(z,σ), y)

V (F(z,σ), y)
≥ q(y)

1− δ(1− q(y))
≥ p(y)

1− δ(1− p(y))
=
Up(F(z,0), y)

V (F(z,0), y)
≥ rp(y),

The first inequality is by (37), where we use the monotonicity of q (by construction).

The second inequality is by (44). The equality is by (34) and V (F(z,0), y) = y. The

last inequality is by the definition of rp(y) in (16).
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Next, for each F(z,σ) such that cF(z,σ)
> y, by (36),

Uq(F(z,σ), y)

V (F(z,σ), y)
=

q(y)y + (1− q(y))δσ q(z)z
1−δ(1−q(z))

(1− δ(1− q(y))(1− σ)) δσz
1−δ(1−σ)

.

By the definition of q(y), there exists y′ ∈ [x0, y] such that q(y) = p(y′). Therefore,

Uq(F(z,σ), y)

V (F(z,σ), y)
≥

p(y′)y′ + (1− p(y′))δσ p(z)z
1−δ(1−p(z))

(1− δ(1− p(y′))(1− σ)) δσz
1−δ(1−σ)

=
Up(F(z,σ), y

′)

V (F(z,σ), y′)
≥ rp(y

′).

We thus obtain that, for each y ≥ x0, rq(y) ≥ rp(y
′) for some y′ ∈ [x0, y]. It follows

that R̂q(x0) = infy≥x0 rq(y) ≥ R̂p(x0) = infy≥x0 rp(y). We conclude that, without loss

of generality, we can restrict attention to monotone rules.

Part 3. Monotone Ratio Property. Consider a monotone stationary rule p. Suppose

that rp(y) defined by (16) is nonmonotone.

First, we show that if x̄ = supX <∞, then, without loss of generality, we can assume

rp(y) = 1 for all y ≥ δx̄, and

rp(y) ≥ y

δx̄
for all y ∈ [x0, δx̄].

(45)

The first line is trivial, as when y ≥ δx̄, one can trivially get the ratio of 1 by

stopping and getting the best-so-far alternative y. To show the second line, suppose

that rp(y
′) < y′

δx̄
for some y′. Then define q(y) = 1 for all y ≥ y′ and q(y) = p(y) for

all y < y′. For each y ≥ y′,

rq(y) =
y

δx̄
≥ y′

δx̄
> rp(y

′).

For each y ∈ [x0, y
′), using (36), the definition of rp(y), and q(z)

1−δ(1−q(z)) ≥
p(z)

1−δ(1−p(z)) , we

obtain rq(y) ≥ rp(y). It follows that R̂q(x0) = infy≥x0 rq(y) ≥ R̂p(x0) = infy≥x0 rp(y).

As rp(y) is nonmonotone, there exists y′ and y′′ such that δy′′ ≤ y′ < y′′ and

rp(y
′) > rp(y

′′) = infy≥y′ rp(y). We now construct a monotone stationary rule q(y)

that differs from p(y) only on the interval [y′, y′′) and has the following properties:

rq(y) is constant on [y′, y′′), continuous at y′′, and satisfies R̂q(x0) ≥ R̂p(x0). Let

D(y, g) = min

 g

1− δ(1− g)
, inf
z>y′′,
σ∈[0,1]

gy + (1− g)δσ p(z)z
1−δ(1−p(z))

(1− δ(1− g)(1− σ)) δσz
1−δ(1−σ)

 .
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Note that D(y, p(y)) = rp(y) for each y ∈ [y′, y′′). This is by (36) and (37), and the

fact that cF(z,σ)
> y implies z > y/δ ≥ y′′. Since it is assumed that rp(y) > rp(y

′′) for

each y ∈ [y′, y′′), we have

D(y, p(y)) > D(y′′, p(y′′)) for each y ∈ [y′, y′′).

Next, we have

d

dg

(
gy + (1− g)δσ p(z)z

1−δ(1−p(z))

(1− δ(1− g)(1− σ)) δσz
1−δ(1−σ)

)
=

y(1− δ(1− σ))− δσ p(z)z
1−δ(1−p(z))(

(1− δ(1− g)(1− σ)) δσz
1−δ(1−σ)

)2 ,

which has a sign that does not depend on g. So
gy+(1−g)δσ p(z)z

1−δ(1−p(z))

(1−δ(1−g)(1−σ)) δσz
1−δ(1−σ)

is monotone in

g for each z, σ and y. Thus, D(y, g) is a lower envelope of monotone functions, so it

is quasiconcave in g for each y. Moreover,

D(y, 1) =
y

δx̄
< D(y′′, p(y′′)) = rp(y

′′) for each y ∈ [y′, y′′),

because, by (45), rp(y
′′) ≥ y

δx̄
. To sum up,

D(y, 1) < D(y′′, p(y′′)) < D(y, p(y)) for each y ∈ [y′, y′′).

Since D(y, g) is continuous and quasiconcave in g, for each y ∈ [y′, y′′) there exists

g∗(y) ≥ p(y) such that D(y, g∗(y)) = D(y′′, p(y′′)). Moreover, since D(y, g) is in-

creasing in y for all g, by the monotone comparative statics theorem (Milgrom and

Shannon 1994, Theorem 4′), g∗(y) is increasing.

Define a stationary rule q as follows. For each y ∈ [y′, y′′), let q(y) = g∗(y), and for

each y 6∈ [y′, y′′), let q(y) = p(y). We thus obtain

q(y) ≥ p(y) and
q(y)

1− δ(1− q(y))
≥ p(y)

1− δ(1− p(y))
for each y ≥ x0, (46)

and

rq(y) = rp(y
′′) for each y ∈ [y′, y′′]. (47)

Therefore, rq(y) is monotone on [y′, y′′]. Moreover, for each y < y′, by (36) and (46),

rq(y) ≥ rp(y). For each y ∈ [y′, y′′], by (47), rq(y) = rp(y
′′). For each y > y′′, by q(y) =

p(y), rq(y) = rp(y). We thus obtain that, for each y ≥ x0, rq(y) ≥ min{rp(y), rp(y
′′)}.

It follows that R̂q(x0) = infy≥x0 rq(y) ≥ R̂p(x0) = infy≥x0 rp(y).

We thus conclude that, without loss of generality, we can restrict attention to rules p

such that rp(y) is weakly increasing in y. This completes the proof.
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B.2. Proof of Proposition 6. Let p be stationary, monotone, and satisfy the mono-

tone ratio property. We now prove that

Rp(x0,FX) ≥ R̂p(x0) = inf
y≥x0

inf
F∈BX

Up(F, y)

V (F, y)
.

Let x̄ = supX. Note that x̄ = ∞ if X is unbounded. Fix a best-so-far alternative

y such that y ≥ x0. Consider an arbitrary environment G ∈ FX , and denote its

reservation value by c, so, by (2),∫ c

0

cdG(x) +

∫ x̄

c

xdG(x) =
c

δ
. (48)

We now find a binary environment F(z,σ) such that

Up(F(z,σ), y)

V (F(z,σ), y)
≤ Up(G, y)

V (G, y)
.

Let us denote by F(w,z,σ) the lottery between w and z with probabilities 1 − σ and

σ, respectively. The construction of F(z,σ) consists of two parts. In Part 1, we find

F(w,z,σ) such that Up(F(w,z,σ), y) ≤ Up(G, y) and V (F(w,z,σ), y) ≥ V (G, y). In Part 2,

we show that w = 0 is without loss of generality.

Part 1. Consider a stationary rule p. Fix a best-so-far alternative y such that y ≥ x0.

Consider an arbitrary environment G ∈ FX , and denote its reservation value by c,

so, by (2), ∫ c

0

cdG(x) +

∫ x̄

c

xdG(x) =
c

δ
. (49)

We now find an environment F(w,z,σ) such that

Up(F(w,z,σ), y)

V (F(w,z,σ), y)
≤ Up(G, y)

V (G, y)
.

To find such F(w,z,σ), we first consider a one-shot deviation to some environment F

under the constraint V (F, y) ≥ V (G, y). The “one-shot deviation” means that the

individual will face F in the next round, and G in all subsequent rounds. We will

show that there exists F = F(w,z,σ) such that the individual’s expected payoff against

the sequence of environments (F(w,z,σ), G,G, ...) is weakly lower than against the ori-

ginal i.i.d. sequence (G,G,G, ...). We then show that this expected payoff is even

lower if we replace (F(w,z,σ), G,G, ...) by (F(w,z,σ), F(w,z,σ), F(w,z,σ), ...), thus proving

Up(F(w,z,σ), y) ≤ Up(G, y).
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c c/δ z
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c c/δ z
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u(x)

(a) (b) (c)

Figure 3. Illustration of three cases that arise when solving (53).

Recall that

Up(G, y) = p(y)y + (1− p(y))δ

∫ x̄

0

Up(G,max{y, x})dG(x). (50)

Let us find a distribution F that minimizes the individual’s expected payoff against

all one-shot deviation sequences (F,G,G, ...), subject to the constraint that the re-

servation value of F is at least c (which implies V (F, y) ≥ V (G, y)):

inf
F∈FX

p(y)y + (1− p(y))δ

∫ x̄

0

Up(G,max{y, x})dF (x) (51)

s.t.

∫ c

0

cdF (x) +

∫ x̄

c

xdF (x) ≥ c

δ
. (52)

Observe that the constraint (52) does not impose any restrictions on how a mass F (c)

is assigned to the interval [0, c]. Thus, any positive mass F (c) should be assigned to

a point x′ that minimizes Up(F,max{y, x′}) on [0, c] ∩ X. So, we can simplify the

problem (51)–(52) by using the notation

u(x) =

infx′∈[0,c]∩X Up(G,max{y, x′}), x = c,

Up(G,max{y, x}), x > c, x ∈ X,

where u(x) is linearly extended to (c, x̄)\X, so u(x) is defined on [c, x̄]. The problem

(51)–(52) reduces to

inf
F∈FX

∫ x̄

c

u(x)dF (x) s.t.

∫ x̄

c

xdF (x) ≥ c

δ
. (53)
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This problem is solved by the convexification method as in Kamenica and Gentzkow

(2011), by minimizing the convex closure of u (i.e., the supremum among all continu-

ous and convex functions that do not exceed u) on the set [c, x̄], and thus yielding a

solution with a support on at most two points, w and z. Figure 3 illustrates how such

a solution is found for three different shapes of u(x). The solid curve is u(x), which

can be discontinuous at c, and the dashed line is the convex closure of u(x) where it

is different from u(x). In Figure 3(a) the minimum of u(x) is attained at z ≥ c/δ,

so the solution puts the unit mass on the single point z. In Figs. 3(b) and 3(c) the

minimum of u(x) is below c/δ, so the solution minimizes the convex closure of u(x)

at x = c/δ. In Figure 3(b) it is obtained by a convex combination of two points, w

and z, and in Figure 3(c) it is obtained by a convex combination of c and z as shown

on the picture. Note that in the last case, to solve the problem (51)–(52), one must

replace c with a point w ≤ c where the value u(c) = infx′∈[0,c] Up(G,max{y, x′}) is

achieved.

Let us formalize the above. For every ε > 0 there exists (w, z, σ) such that∫ ∞
c

u(x)dF (x) ≥
∫ ∞
c

u(x)dF(w,z,σ)(x)− ε

= (1− σ)u(max{w, c}) + σu(z)− ε, (54)

and F(w,z,σ) satisfies the constraint in (53), so

(1− σ) max{w, c}+ σz ≥ c/δ. (55)

Therefore, Up(G, y)+ε is weakly greater than the individual’s expected payoff against

the sequence of environments (F(w,z,σ), G,G, ...), where F(w,z,σ) satisfies (54) and (55).

We now show that the individual’s expected payoff is even lower if we replace (F(w,z,σ),

G,G, ...) by (F(w,z,σ), F(w,z,σ), F(w,z,σ), ...).

Case 1. Suppose that u(x) attains its infimum at or above c/δ, that is, infx∈[c,c/δ) u(x) ≥
infx∈[c/δ,x̄] u(x), as shown in Figure 3(a). Then the constraint in (53) is not binding.

So, for every ε > 0 we can find zε ≥ c/δ such that F(0,zε,1) that assigns the unit mass

on zε satisfies (54).

By (50), (54), and the definition of u(x) we have

u(zε) ≥ p(zε)zε + (1− p(zε))δ(u(zε)− ε).
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Solving the inequality for u(zε)− ε, we have u(zε)− ε ≥ p(zε)zε−ε
1−δ(1−p(zε)) . Therefore,

Up(G, y) ≥ u(y) ≥ p(y)y + (1− p(y))δ(u(zε)− ε) ≥ p(y)y + (1− p(y))δ
p(zε)zε − ε

1− δ(1− p(zε))

= Up(F(0,zε,1), y)− (1− p(y))δ
ε

1− δ(1− p(z))
≥ Up(F(0,zε,1), y)− δε

1− δ .

Also, observe that, by (3) and zε ≥ c/δ,

V (G, y) = max{y, c} ≤ max{y, δzε} = V (F(0,zε,1), y).

Thus, for every ε > 0 we find zε such that

Up(G, y)

V (G, y)
≥
Up(F(0,zε,1), y)− δε

1−δ

V (F(0,zε,1), y)
. (56)

In particular, F(0,zε,1) satisfies (54) and (55) if one replaces ε by δε/(1− δ).

Case 2. Suppose that u(x) does not attain its infimum on [c/δ,∞), that is,

inf
x∈[c,c/δ)

u(x) < inf
x∈[c/δ,x̄]

u(x), (57)

as shown in Figs. 3(b) and 3(c). Then the constraint in (53) is binding. So, for every

ε > 0 there exists (wε, zε, σε) with wε ≤ c/δ ≤ zε such that F(wε,zε,σε) satisfies (54),

and satisfies (55) with equality.

As the solution lies on the convex closure of u(x), the straight line through points

(wε, u(wε)− ε) and (zε, u(zε)− ε) is weakly below the graph of u. Moreover, by (57),

the slope of this straight line is nonnegative, so u(wε) ≤ u(zε). Thus, we obtain

u(wε)− ε ≤ u(x) for all x ≥ wε,

u(zε)− ε ≤ u(x) for all x ≥ zε.
(58)

As in Case 1, it follows that

u(zε)− ε ≥
p(zε)zε − ε

1− δ(1− p(zε))
≥ Up(F(wε,zε,σε), zε)−

ε

1− δ .

Also,

u(wε) ≥ p(wε)wε + (1− p(wε))δ((1− σε)(u(wε)− ε) + σε(u(zε)− ε))

≥ p(wε)wε + (1− p(wε))δ((1− σε)
(
u(wε)− ε) + σε

p(zε)zε − ε
1− δ(1− p(zε))

)
.
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Solving for u(wε)− ε, we obtain

u(wε)−ε ≥
p(wε)wε − ε+ (1− p(wε))δσε p(zε)zε−ε

1−δ(1−p(zε))

1− δ(1− σε)(1− p(wε)
≥ Up(F(wε,zε,σε),max{y, wε})−

ε

(1− δ)2
.

We thus obtain

Up(G, y) ≥ u(y) = p(y)y + (1− p(y))δ

∫ ∞
0

u(x)dG(x)

≥ p(y)y + (1− p(y))δ ((1− σε)(u(wε)− ε) + σε(u(zε)− ε))

≥ p(y)y + (1− p(y))δ
(
(1− σε)Up(F(wε,zε,σε),max{y, wε}) + σεUp(F(wε,zε,σε), zε)

)
− δε

(1− δ)2

= Up(F(wε,zε,σε), y)− δε

(1− δ)2
.

By (3) and the fact that the constraint in (53) is binding, observe that

V (G, y) = max{y, c} = V (F(wε,zε,σε), y).

Thus, for every ε > 0 there exists an environment F(wε,zε,σε) such that

Up(G, y)

V (F, y)
≥
Up(G(wε,zε,σε), y)− δε

(1−δ)2

V (F(wε,zε,σε), y)
. (59)

In particular, F(wε,zε,σε) satisfies (54) and (55) if one replaces ε by δε/(1− δ)2.

Taking ε → 0 in (56) and (59), we conclude that, for each best-so-far alternative

y ≥ x0 and each environment G ∈ FX ,

Up(G, y)

V (G, y)
≥ inf

(w,z,σ)

Up(F(w,z,σ), y)

V (F(w,z,σ), y)
s.t. w ≤ c/δ ≤ z, σ ∈ [0, 1], and w, z ∈ X.

It follows that

Rp(x0) ≥ inf
y≥x0

inf
(w,z,σ)

Up(F(w,z,σ), y)

V (F(w,z,σ), y)
s.t. w ≤ c/δ ≤ z, σ ∈ [0, 1], and w, z ∈ X.

Thus we have shown that we can restrict attention to environments F(w,z,σ).

Part 2. We now show that we can further restrict the set of environments to binary

environments F(z,σ) = F(0,z,σ), so w = 0. In other words, for each y, no environment

F(w,z,σ) with 0 < w < z and σ < 1 can generate a payoff ratio Up(F(w,z,σ), y)/V (F(w,z,σ), y)

smaller than rp(y) given by (16).
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By contradiction, suppose that there exists y and an environment F(w,z,σ) with 0 <

w < z and σ < 1 that gives a strictly smaller ratio than rp(y), so

Up(F(w,z,σ), y)

V (F(w,z,σ), y)
< rp(y). (60)

Let cF(w,z,σ)
denote the reservation value of F(w,z,σ) as defined by (2).

Because the rule p only depends on the best-so-far alternative, we only need to con-

sider w > y, as otherwise F(w,z,σ) yields the same payoff as F(0,z,σ). We have

Up(F(w,z,σ), y) = p(y)y + (1− p(y))δ(σUp(F(w,z,σ), z) + (1− σ)Up(F(w,z,σ), w)) (61)

and

Up(F(w,z,σ), z) = Up(F(0,z,1), z). (62)

Case 1. Assume Up(F(w,z,σ), w) ≥ Up(F(w,z,σ), z) (see Figure 3(a)). By (61) and (62),

Up(F(w,z,σ), y) ≥ p(y)y + (1− p(y))Up(F(w,z,σ), z) = Up(F(0,z,1), y).

Together with V (F(w,z,σ), y) ≤ V (F(0,z,1), y), it follows that
Up(F(w,z,σ),y)

V (F(w,z,σ),y)
≥ Up(F(0,z,1),y)

V (F(0,z,1),y)
≥

rp(y), which is a contradiction.

Case 2. Assume Up(F(w,z,σ), w) < Up(F(w,z,σ), z) and w > cF(w,z,σ)
(see Figure 3(b)).

Then the optimal rule stops in the next round with certainty and, by (3), yields the

payoff of

V (F(w,z,σ), y) = δ((1− σ)w + σz) = (1− σ)V (F(0,w,1), y) + σV (F(0,z,1), y).

Also, by (61) and (62), and using Up(F(w,z,σ), z) > Up(F(w,z,σ), w), we obtain

Up(F(w,z,σ), w) = p(y)y + (1− p(y))δ((1− σ)Up(F(w,z,σ), w) + σUp(F(w,z,σ), z))

≥ p(y)y + (1− p(y))δUp(F(w,z,σ), w) = Up(F(0,w,1), y),

and thus

Up(F(w,z,σ), y) = p(y)y + (1− p(y))δ((1− σ)Up(F(w,z,σ), w) + σUp(F(w,z,σ), z))

≥ (1− σ)Up(F(0,w,1), y) + σUp(F(0,z,1), y).
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So,

Up(F(w,z,σ), y)

V (F(w,z,σ), y)
≥ (1− σ)Up(F(0,w,1), y) + σUp(F(0,z,1), y)

(1− σ)V (F(0,z,1), y) + σV (F(0,w,1), y)

≥ min

{
Up(F(0,w,1), y)

Vp(F(0,w,1), y)
,
Up(F(0,z,1), y)

Vp(F(0,z,1), y)

}
≥ rp(y),

which is a contradiction.

Case 3. Let Up(F(w,z,σ), z) > Up(F(w,z,σ), w) and w ≤ cF(w,z,σ)
(see Figure 3(c)). Then

the optimal rule waits for the realization of z and, by (3), satisfies

V (F(w,z,σ), y) = V (F(0,z,σ), y). (63)

Rearranging (34) we obtain

p(y)y + (1− p(y))δσUp(F(0,z,σ), z) = (1− δ(1− p(y))(1− σ))Up(F(0,z,σ), y). (64)

Thus,

Up(F(w,z,σ), w) =
Up(F(w,z,σ), w)

V (F(w,z,σ), w)
V (F(w,z,σ), w) =

Up(F(0,z,σ), w)

V (F(0,z,σ), w)
V (F(w,z,σ), w)

≥ rp(w)V (F(w,z,σ), w) ≥ rp(y)V (F(w,z,σ), w) ≥ rp(y)V (F(w,z,σ), y)

>
Up(F(w,z,σ), y)

V (F(w,z,σ), y)
V (F(w,z,σ), y) = Up(F(w,z,σ), y), (65)

where the first inequality is by the definition of rp(w), the second inequality is by the

assumption that rp(y) is nondecreasing, the third inequality follows from (3), and the

fourth inequality is by (60). Then, using (61), (62), (64), and (65), we obtain

Up(F(w,z,σ), y) > (1−δ(1−σ)(1−p(y)))Up(F(0,z,σ), y)+δ(1−σ)(1−p(y))Up(F(w,z,σ), y).

Since 1− δ(1− σ)(1− p(y)) > 0, it follows that

Up(F(w,z,σ), y) > Up(F(0,z,σ), y).

Since V (F(w,z,σ), y) = V (F(0,z,σ), y) by (63), we obtain

Up(F(w,z,σ), y)

V (F(w,z,σ), y)
>
Up(F(0,z,σ), y)

V (F(0,z,σ), y)
≥ rp(y),

which is a contradiction. This completes the proof.
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B.3. Proof of Theorem 2. Part (a). We need to show that the decision rule p̄

given by the constant stopping probability

p̄(y) = π̄ =
1− δ
2− δ for all ht

always yields a performance ratio of at least 1/4.

Note that p̄ is stationary and monotone. It also has the monotone ratio property,

as can be easily verified by substitution of p(y) = p(z) = π̄ into (36) and (37). By

Proposition 6, we can restrict attention to binary environments in BX .

First, suppose that cF(z,σ)
≤ y. Using p(y) = π̄ = (1− δ)/(2− δ), we have by (37)

Up̄(F(z,σ), y)

V (F(z,σ), y)
≥ π̄

1− δ(1− π̄)
=

1

2
>

1

4
. (66)

Next, suppose that cF(z,σ)
> y. By (36), using p(y) = p(z) = π̄, we obtain

Up̄(F(z,σ), y)

V (F(z,σ), y)
=

π̄y + (1− π̄)δσ π̄z
1−δ(1−π̄)

(1− δ(1− σ)(1− π̄)) δσz
1−δ(1−σ)

>
(1− π̄) π̄

1−δ(1−π̄)

(1− δ(1− σ)(1− π̄)) 1
1−δ(1−σ)

≥ π̄

1− δ(1− π̄)

(
1− π̄

1− δ(1− π̄)

)
=

1

4
, (67)

where the first inequality is by y > 0, the second equality is by the minimum w.r.t. σ ∈
[0, 1] attained at σ = 0, and the last equality is by π̄ = (1− δ)/(2− δ).

Note that, the expression

π̄

1− δ(1− π̄)
= π̄ + δ(1− π̄)π̄ + δ2(1− π̄)2π̄ + ...

is the reciprocal of the expected delay of obtaining z after its realization, and the

expression 1− π̄
1−δ(1−π̄)

is the probability of not stopping before z realizes for the first

time. Setting π̄
1−δ(1−π̄)

equal to 1/2 maximizes the product, leading to a payoff ratio

of 1/4.

Part (b). Let supX = ∞. As shown above, the rule p̄ yields Rp̄(x0,FX) = 1/4.

We now show that no other rule can achieve more than 1/4, thus proving that p̄ is

dynamically robust.

By Proposition 5, we can restrict attention to decision rules that are stationary,

monotone, and have the monotone ratio property. Consider any such rule p(y).
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As supX =∞, there exists an increasing sequence (yn)n∈N of elements in X such that

y1 ≥ x0 and limn→∞ yn = ∞. Let (zk)k∈N be an increasing subsequence of (yn)n∈N

and let (σk)k∈N be a decreasing sequence of probabilities that satisfy the following.

For all k ∈ N,

zk ≥ yk, lim
k→∞

σk = 0, and lim
k→∞

yk
σkzk

= 0, (68)

and, in addition,

ck :=
δσkzk

1− δ(1− σk)
> yk. (69)

Such sequences always exist, as zk can be chosen to increase fast enough relative to

yk. E.g., if X = R, choose σk = 1/k, wk = k, and zk = k3.

For each k ∈ N, consider the binary environment F(zk,σk). Let yk denote the best-so-

far alternative. By (8), ck is the reservation value for the environment F(zk,σk). By

(69), ck > yk, so the optimal rule waits for zk to realize. Therefore, by (36),

Rp(x0,FX) ≤ Up(F(zk,σk), yk)

V (F(zk,σk), yk)
=

(
p(yk)

yk
δσkzk

+ (1− p(yk)) p(zk)
1−δ(1−p(zk))

)
(1− δ(1− σk))

1− δ(1− σk)(1− p(yk))
.

As p(y) is nondecreasing, and yk and zk diverge, both p(yk) and p(zk) converge to the

same probability denoted by q̄:

q̄ = lim
k→∞

p(yk) = lim
k→∞

p(zk).

Using the above and (68), we obtain

Rp(x0,FX) ≤ lim
k→∞

Up(F(zk,σk), wk)

V (F(zk,σk), wk)
=

(1− q̄) q̄
1−δ(1−q̄)(1− δ)

1− δ(1− q̄) =
(1− δ)(1− q̄)q̄
(1− δ(1− q̄))2

≤ 1

4
,

where the last inequality is easily verified for δ ∈ (0, 1) and q̄ ∈ [0, 1].

B.4. Proof of Theorem 2′. Let supX < ∞. By rescaling the values, without loss

of generality assume that

supX = 1.

The proof consists of two steps. In Step 1, we assume that the set of feasible envir-

onments is F{0,1} and find a dynamically robust rule for each x0 > 0. This rule will

be different from the rule q∗ that we found in Section 3. In Step 2, we expand the set

of feasible environments to FX , where X ⊂ [0, 1] and {0, 1} ⊂ X. We show that the

previously derived rule attains the same performance ratio if and only if the outside
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option x0 exceeds some constant L > 0. We numerically find an upper bound for this

constant, which is 1/89.12

Step 1. Fix x0 ∈ (0, 1], and denote

r∗(x0) = R∗(x0,B{0,1}),

where R∗(x0,B{0,1}) is the dynamically robust ratio for binary environments B{0,1}
given by (15). Note that r∗(x0) > 1/2 for all x0 > 0. For binary environments B{0,1}
and rule q, recall that the payoff ratio rq(y) is given by

rq(y) = inf
F∈B{0,1}

Uq(y, F )

V (y, F )
, y ∈ [x0, δr

∗(x0)).

For each best-so-far alternative y ∈ [x0, 1], we find the greatest probability of stopping,

px0(y), under the constraint that the payoff ratio is equal to r∗(x0):

px0(y) = max{q ∈ [0, 1] : rq(y) ≥ r∗(x0)}. (70)

Following steps (11) and (12) in the proof of Theorem 1′, for each y ∈ [x0, 1] we have

rq(y) = min

{
q

1− δ(1− q) , min
σ∈[0,1]

qy + (1− q)δσ
(1− δ(1− σ)(1− q)) δσ

1−δ(1−σ)

}
. (71)

Clearly, px0(y) = 1 for each y ∈ [δr∗(x0), 1]. Let y ∈ [x0, δr
∗(x0)). Consider the two

expressions under minimum in (71). The first expression is strictly increasing in q, so

it cannot be binding. The derivative of the second expression w.r.t. q has a constant

sign for all q:

d

dq

(
qy + (1− q)δσ

1− δ(1− q)(1− σ)

)
=

1− δ(1− σ)

(1− δ(1− q)(1− σ))2

(
y − δσ

1− δ(1− σ)

)
. (72)

If (72) is nonnegative, then the solution of (70) is px0(y) = 1. If (72) is negative,

then, if a solution of (70) exists, it must satisfy the equation

min
σ∈[0,1]

qy + (1− q)δσ
(1− δ(1− q)(1− σ)) δσ

1−δ(1−σ)

= r∗(x0). (73)

12Specifically, we fix δ and numerically (using Maple software) find the smallest value of x0 ∈ (0, 1]
such that the payoff ratio over all environments in F[0,1] is minimized by an environment that
randomizes between 0 and 1. Let us call this value Lδ. Thus, as long as x0 ≥ Lδ, the restriction
to F{0,1} is w.l.o.g. It turns out that the numerically calculated value Lδ is constant in δ and is
approximately equal to (bounded from above by) 1/89.
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It is straightforward to verify that the unique solution (q̃, σ̃) of (73) is given by

q̃ =


(1−δ)(1−r∗)(y+

√
yr∗)(r∗+

√
yr∗)

(1−δ)(1−r∗)2yr∗+(δ(r∗)2+((1−δ+y)y+(1−δ−(3−δ)y)r∗)
√
yr∗
, if y ∈ (0, δ(r∗)2),

δ(1−r∗)
δ−y , if y ∈ [δ(r∗)2, δr∗),

σ̃ =


(1−δ)(y+

√
yr)

δ(r−y)
, if y ∈ (0, δ(r∗)2),

1, if y ∈ [δ(r∗)2, δr∗),

where we write r∗ for r∗(x0) for notational convenience. It is also straightforward to

verify that q̃
1−δ(1−q̃) ≥ r∗(x0), so q̃ is a solution of (70).

So, for each y ∈ [x0, δr
∗(x0)), we have px0(y) = q̃ and, by construction, rpx0

(y) =

r∗(x0). We thus obtain Rpx0
(x0,B{0,1}) = r∗(x0) = R∗(x0,B{0,1}).

Step 2. Now consider all environments in FX , where X ⊂ [0, 1] and {0, 1} ⊂ X. As

B{0,1} ⊂ FX , we have

Rpx0
(x0,FX) ≤ R∗(x0,FX) ≤ r∗(x0) = R∗(x0,B{0,1}).

We now identify the lower bound L on x0 such that R∗(x0,FX) = r∗(x0) for all

x0 ∈ [L, 1], and thus the rule px0 derived in Step 1 is dynamically robust on F[0,1].

Define

L = inf{x0 ∈ (0, 1] : Rpx0
(x0,FX) = r∗(x0)}.

Observe that Rpx0
(x0,FX) = r∗(x0) = 1 for all x0 ∈ [δ, 1]. However, limx0→0 r

∗(x0) =

ρ(0) = 1/2 and limx0→0Rpx0
(x0,FX) ≤ 1/4.13 Therefore, L ∈ (0, δ]. We numerically

find that the value of L is at most 1/89, with the equality when X = [0, 1]. This

numeric bound does not depend on the discount factor δ.

It remains to show statements (a) and (b) of Theorem 2′. By Theorem 1′, the rule p∗

satisfies Rp∗(x0,B{0,1}) = ρ(x0) = R∗(x0,B{0,1}) for all x ≤ δ2/(2−δ). As B{0,1} ⊂ FX ,

we have for all x ≤ δ2/(2− δ)

Rp∗(x0,FX) ≤ R∗(x0,FX) ≤ ρ(x0).

We now find the lower bound L′ on x0 such that Rq∗(x0,FX) ≥ ρ(x0) for all x0 ∈
[L′, 1], and thus the rule q∗ is dynamically robust on FX for x0 ∈ [L′, δ2/(2 − δ)].

Define

L′ = inf{x0 ∈ (0, 1] : Rp∗(x0,FX) ≥ ρ(x0)}.
13Rescaling the values by x̄ = 1/x0, we have limx0→0R

∗(x0,FX) ≤ limx̄→∞R∗(1,F[0,x̄]) ≤ 1/4 by
Theorem 2(b).
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For X = [0, 1], we verify that L′ = 1/6, by checking that, for x0 < 1/6,

inf
z∈[0,1],σ∈[0,1]

Up∗(x0, F(z,σ))

V (x0, F(z,σ))
< ρ(x0).

In words, for x0 < 1/6, the worst-case ratio is attained by a lottery over 0 and z with

z < 1, which is why rule p∗ no longer attains the dynamically robust ratio ρ(x0).

Appendix C. Variations and Extensions

C.1. A Dynamically Robust Rule for Bounded Environments. In the follow-

ing we present a recursive procedure for constructing a dynamically robust rule for

any value of x0. For simplicity, we consider the case where the set of alternatives X

is an interval. The proof is easily adapted to a more general case.

By rescaling the values, without loss of generality assume that X = [0, 1]. We fix a

target performance ratio r and find a rule, together with a threshold x0(r), such that

this rule attains a performance ratio at least r when the outside option x0 is at least

x0(r). We also show that there is no rule that has a performance ratio better than

r for x0 = x0(r), and use this to argue that r is the dynamically robust performance

ratio when x0 = x0(r).

Let us introduce the following notation. Let q be a stationary and monotone decision

rule such that rq(y) is nondecreasing. By (16), (36), (37), and the fact that y ≤ cF(z,σ)

implies y ≤ δz, the payoff ratio of a rule that stops with probability s ∈ [0, 1] when

the best-so-far alternative is y, and stops with probability q(z) for all z > y/δ is given

by

r̃q(y, s) = min

 s

1− δ(1− s) , inf
σ∈[0,1],
z∈(y/δ,1]

sy + (1− s)δσ q(z)z
1−δ(1−q(z))

(1− δ(1− s)(1− σ)) δσz
1−δ(1−σ)

 . (74)

Note that r̃q(y, q(y)) = rq(y) by the definition of rq.

Fix a target performance ratio r ∈ (1
4
, 1]. The following procedure will derive a

decision rule p and a lower bound x0(r) such that p attains the ratio rp(y) ≥ r for all

y ∈ [x0(r), 1]. This decision rule p will be compared to a different hypothetical rule

q that guarantees a strictly better ratio at x0(r), and hence at all higher best-so-far

alternatives. So we suppose that

rq(y) > r for all y ∈ [x0(r), 1] ∩X. (75)
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We will then show that no such q exists, thus proving dynamic robustness of p.

We now construct p by induction. During this construction, we will verify some

properties of the hypothetical rule q.

First, for each y ∈ [δ, 1] define

Sr(y) =

{
s ∈ [0, 1] :

s

1− δ(1− s) ≥ r

}
and

p(y) = max{s ∈ [0, 1] : s ∈ Sr(y)} = 1. (76)

By (74) and (75), the hypothetical rule q satisfies

rq(y) =
q(y)

1− δ(1− q(y))
> r for each y ∈ [δ, 1],

so q(y) ∈ Sr(y).

We proceed by induction. For each k = 1, 2, ..., we derive p(y) for y ∈ [δk+1, δk), using

our solution p(z) for all z ≥ δk from the earlier induction steps. We also verify that

q(y) ∈ Sr(y) for each y ∈ [δk+1, δk) using the induction assumption

q(z) ∈ Sr(z) for all z ∈ [δk, 1]. (77)

For each y ∈ [δk+1, δk), define

Sr(y) = {s ∈ [0, 1] : r̃p(y, s) ≥ r}

and

p(y) = max{s ∈ [0, 1] : s ∈ Sr(y)} if Sr(y) 6= ∅. (78)

Notice that Sr(y) depends on p only through the values of p(z) defined in the previous

iterations of the procedure.

Now we check the properties of the hypothetical rule q. By (76) and (78) and the

induction assumption (77), we have q(z) ≤ p(z) for all z ≥ y/δ. By (74), r̃q(y, s) is

increasing in q(z) for all z ≥ y/δ. Consequently,

r̃q(y, s) ≤ r̃p(y, s) for all s ∈ [0, 1]. (79)

As r̃q(y, q(y)) = rq(y) > r by (75), we obtain

q(y) ∈ Sr(y). (80)
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Now let us return to the construction of p. If Sr(y) is nonempty for all y ∈ [δk+1, δk),

then we proceed to the next step of the induction, k + 1. Otherwise, we terminate

the procedure. Upon termination, we define Sr(y) = ∅ for all y ∈ (0, δk+1) and

x0(r) = min{y : Sr(y) 6= ∅}.

We thus obtain p(y) that satisfies rp(y) ≥ r for all y ∈ [x0(r), 1].

Note that the procedure terminates in a finite number of steps for each r > 1/4. The

proof of Theorem 2(b) actually shows that for each ε > 0 there exists x̄ > 0 such that

Rp(1,FX) ≥ 1/4 + ε whenever supX ≤ x̄. By rescaling the values by 1/(supX), we

obtain that Rp(x0,FX) ≥ 1/4 + ε whenever x0 ≥ (supX)/x̄.

Furthermore, since r̃p(y, s) is continuous in y and s, Sr defined by the above procedure

is continuous in r.14 Therefore, x0(r) is continuous.

We now show that every stopping probability in Sr(x0(r)) gives the same payoff ratio,

r, that is,

r̃p(x0(r), s) = r for all s ∈ Sr(x0(r)). (81)

If there were s ∈ Sr(x0(r)) such that r̃p(x0(r), s) > r, then, by continuity of r̃p(y, s)

in y, there would exist ε > 0 such that r̃p(x0(r)− ε, s) ≥ r, which is a contradiction

to the definition of x0(r).

By continuity of x0(r) and (81), we obtain that x0(r) is a one-to-one mapping. That

is, for each x0 > 0 there exists r, and a decision rule p defined by (76) and (78) for

this value of r, such that rp(y) ≥ r for all y ∈ [x0, 1] with equality for y = x0, and

thus

Rp(x0,FX) = inf
y≥x0

rp(y) = r.

We now show that p defined by (76) and (78) for a given r is dynamically robust.

Recall the hypothetical rule q that satisfies (75). By (80), q(y) ∈ Sr(y) for all y ∈
[x0(r), 1]. Inserting s = q(x0(r)) into (81) we obtain r̃p(x0(r), q(x0(r)) = r. By (79),

rq(x0(r)) = r̃q(x0(r), q(x0(r)) ≤ r̃p(x0(r), q(x0(r)) = r.

This is a contradiction to (75), thus proving dynamic robustness of p.

C.2. Linear Decision Rules. Analogously to Appendix C.1, consider X = [0, 1].

In this section we investigate how much we lose in terms of the performance ratio

14Specifically, the graph {(y, Sr(y))}y>0 is continuous in r in the topology of uniform convergence.
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if we consider simple rules where the stopping probability is linear in the best-so-far

alternative (wherever this probability is below 1). We find that these rules approx-

imate the dynamically robust performance ratio identified in Theorem 2′ well, with

the performance loss around 5%, provided the discount factor is not too close to one.

Consider a truncated linear rule pα given by

pα (y) = min
{

1−δ
2−δ + αy, 1

}
,

where α > 0 is a parameter to be determined. Note that the intercept 1−δ
2−δ is taken

from decision rule p̄ in Theorem 2.

The intercept ensures good performance when the best so far alternative y is very

small. The slope α is used to ensure good performance for higher values of y.

By Proposition 6 it is sufficient to investigate performance when facing binary en-

virornments. For each value of α and x0, we derive the performance ratio Rpα(x0,FX)

for the linear rule and evaluate the performance loss given by

εα = sup
x0∈(1/89,1)

(
R∗(x0,X )−Rpα(x0,X )

)
,

where R∗ is the dynamically robust performance ratio (we consider x0 ≥ 1/89 to

apply Theorem 2′). We search for the value α∗ that minimizes the performance loss,

ε∗ = εα∗ = infα≥0 εα.

That is, we look for linear rules that are closest to being dynamically robust. Closeness

refers here to the smallest maximal loss in performance ratio, ε∗, as compared to the

dynamically robust rule.

Table 2 presents, for various values of discount factor δ, how much one loses in terms

of the performance ratio when limiting attention to linear rules. It also presents the

corresponding slopes of the linear rules.

δ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99 0.999
α∗ 4.68 2.48 1.75 1.38 1.19 1.05 0.93 0.81 0.6 0.39 0.1 0.01
ε∗ 4.9% 4.7% 4.6% 4.5% 4.8% 5% 4.8% 4.4% 5.5% 6.6% 8.1% 8.3%

Table 2. Numerically computed coefficients α∗ of the linear rules that are
closest to being dynamically robust, with the corresponding bounds ε∗.
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One may not be satisfied by the performance of the linear rules when δ is large. For

large δ, there is a different simple rule that performs almost as well as the dynamically

robust rule. Let

p̂β(y) = min

{√
β (1− δ) y

1− y , 1

}
for 1/89 ≤ y < δ and p̂β (y) = 1 for y ≥ δ, where β > 0 is a parameter. Again, we are

searching for the parameter β∗ that makes p̄β closest to being dynamically robust.

We list the values of β∗ and the corresponding bounds on the performance loss in

Table 3.

δ 0.9 0.95 0.99 0.999
β∗ 1.35 0.8 0.22 0.024
ε∗ 2.8% 1.6% 2.5% 3%

Table 3. Numerically computed coefficients β∗ of rules p̂β that are closest
to being dynamically robust, with the corresponding bounds ε∗.

C.3. Additive-Multiplicative Search Costs. Let us now extend the model by

introducing an additive cost of search. Suppose that the individual incurs a cost of

κ ≥ 0 in each round of search. That is, in each round t, the individual has a choice

between consuming the best-so-far alternative yt, or to proceed to the next round,

where a fixed cost of κ is incurred, and all future payoffs are discounted by δ. Thus,

if the individual stops the search in round t ≥ 1, her payoff from the perspective of

round 0 is

−(δ + ...+ δt−1 + δt)κ+ δtyt.

We assume that the cost parameters satisfy κ ≥ 0, 0 < δ ≤ 1, and κ+(1−δ) > 0. The

last assumption demands that the search is costly. We allow for either zero additive

cost, κ = 0, or zero multiplicative cost, 1− δ = 0, but not both.

First, we point out that Propositions 1 and 2, as well as Propositions 5 and 6, continue

to hold in this setting. The proofs of these propositions are easily adjusted to take

into account the additive cost of search.

As before, Propositions 5 and 6 allow us to restrict attention to monotone decision

rules that depend on the best-so-far alternative only, and to narrow down the set of

priors to the set of binary environments BX . Let p be a monotone rule. Let V (F, y)

be the optimal payoff and Up(F, y) be the payoff of rule p in environment F under
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best-so-far alternative y. Then for F ∈ BX we obtain

V (F, y) = max
q∈[0,1]

(
qy + (1− q)δ

(
−κ+

∫ 1

0

V (F,max{y, x})dF (x)

))
and

Up(F, y) = p(y)y + (1− p(y))δ

(
−κ+

∫ 1

0

Up(F,max{y, x})dF (x)

)
.

The performance ratio of rule p is defined for each outside option x0 > 0 as

Rp(x0,FX) = inf
y≥x0

inf
F∈BX

Up(F, y)

V (F, y)
.

We now find the dynamically robust performance ratio when the outside option is at

least twice the present value of all future discounted costs, so x0 ≥ 2δκ
1−δ .

Theorem 3. Let x0 ≥ 2δκ
1−δ . The stationary decision rule p̄ given by

p̄(y) =
1− δ
2− δ for all y ≥ x0

(a) attains the performance ratio at least 1/4;

(b) is dynamically robust if supX =∞.

Proof. Let x0 ≥ 2δκ
1−δ be an outside option. We show that the decision rule p̄(y) that

stops with the constant probability

q := p̄(y) for all y ≥ x0

attains the performance ratio of 1/4.

Fix a best-so-far alternative y ≥ x0. Consider an environment F(z,σ) ∈ BX such that

z ≤ y, so V (F(z,σ), y) = y, and

Up̄(F(z,σ), y) = qy + (1− q)δ(Up(F(z,σ), y)− κ) =
qy − (1− q)δκ
1− δ(1− q) =

1

2

(
y − δκ

(1− δ)

)
.

By y ≥ x0 ≥ 2δκ
1−δ , the payoff ratio satisfies

Up̄(F(z,σ), y)

V (F(z,σ), y)
=

1

2

(
1− δκ

(1− δ)y

)
≥ 1

4
.

Second, consider an environment F(z,σ) such that z > y, so

V (F(z,σ), y) = max

{
y,

δ(σz − κ)

1− δ(1− σ)

}
.
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The individual’s payoff is

Up̄(F(z,σ), y) = qy + (1− q)δ
(
(1− σ)Up̄(F(z,σ), y) + σUp̄(F(z,σ), z)− κ

)
.

Substituting q = 1−δ
2−δ and Up̄(F(z,σ), z) = 1

2

(
z − δκ

(1−δ)

)
, solving for Up̄(F(z,σ), y), and

simplifying the expression yields

Up̄(F(z,σ), y) =
qy + (1− q)δ

(
σ
2

(
z − δκ

(1−δ)

)
− κ
)

1− δ(1− q)(1− σ)
=

1

2

(
y − δκ

(1− δ)

)
+

δσ(z − y)

4(1− δ) + 2δσ
.

If V (F(z,σ), y) = y, then, by y ≥ x0 ≥ 2δκ
1−δ ,

Up̄(F(z,σ), y)

V (F(z,σ), y)
=

1

2y

(
y − δκ

(1− δ) +
δσ(z − y)

2(1− δ) + δσ

)
≥ 1

2y

(
y − δκ

(1− δ)

)
≥ 1

4
. (82)

If V (F(z,σ), y) = δ(σz−κ)
1−δ(1−σ)

, then, by y ≥ x0 ≥ 2δκ
1−δ ,

Up̄(F(z,σ), y)

V (F(z,σ), y)
=

1

2

(
y − δκ

(1− δ) +
δσ(z − y)

2(1− δ) + δσ

)
1− δ(1− σ)

δ(σz − κ)

≥ 1

2

(
y

2
+

δσ(z − y)

2(1− δ) + δσ

)
1− δ(1− σ)

δ(σz − κ)
. (83)

Assume that σ ≥ 2(1 − δ)/δ. Then the right-hand side in (83) is increasing in z,

so reducing z until δ(σz−κ)
1−δ(1−σ)

= y yields infz
Up̄(F(z,σ),y)

V (F(z,σ),y)
≥ 1/4 by (82). Alternatively,

assume that σ < 2(1− δ)/δ. Then the right-hand side in (83) is decreasing in z, so,

taking z →∞, we obtain

Up̄(F(z,σ), y)

V (F(z,σ), y)
≥ inf

σ<
2(1−δ)
δ

lim
z→∞

Up̄(F(z,σ), y)

V (F(z,σ), y)
= inf

σ<
2(1−δ)
δ

1− δ(1− σ)

4(1− δ) + 2δσ
=

1

4
,

as can be easily verified for all σ ∈ [0, 1]. We thus obtain

inf
σ∈[0,1],z≥0

Up̄(F(z,σ), y)

V (F(z,σ), y)
≥ 1

4
.

Moreover, for a sequence (zk, σk)k∈N such that zk → ∞, σk → 0, and δ(σkzk−κ)
1−δ(1−σk)

> y

for all k,

lim
k→∞

Up̄(F(zk,σk), y)

V (F(zk,σk), y)
=

1

4
.

�
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