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a  b  s  t  r  a  c  t

Regret-minimizing  strategies  for  repeated  games  have  been  receiving  increasing  attention
in the literature.  These  are  simple  adaptive  behavior  rules  that  lead  to  no regrets  and,  if
followed  by  all  players,  exhibit  nice  convergence  properties:  the  average  play  converges  to
correlated  equilibrium,  or  even  to  Nash  equilibrium  in  certain  classes  of  games.  However,
the no-regret  property  relies  on  a strong  assumption  that  each  player  treats  her  opponents
as unresponsive  and  fully  ignores  the  opponents’  possible  reactions  to her actions.  We  show
that  if at  least  one  player  is  slightly  responsive,  it is  impossible  to  achieve  no  regrets,  and
convergence  results  for  regret  minimization  with  responsive  opponents  are  unknown.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In a repeated interaction, an individual follows a regret-minimizing strategy if, loosely speaking, she reinforces those
actions that she regrets not having played enough in the past. A particularly simple strategy is regret matching, which is
defined by the following rule:

Switch next period to a different action with a probability that is proportional to the regret for that action, where regret
is defined as the increase in payoff had such a change always been made in the past (Hart and Mas-Colell, 2000; Hart,
2005).

This strategy, in particular, has the property “never change a winning team,” in other words, do not switch to a different
action, as long as the current action keeps being a best reply to the observed (average) actions of the opponents.

Regret-minimizing strategies that lead to “no regrets” irrespective of what the opponents play, called no-regret strategies,
received a lot of attention in the recent literature.1 The main value of these strategies is that they are simple adaptive behavior
rules that are neither computationally demanding nor relying on common knowledge assumptions and yet exhibiting nice
convergence properties. If all players follow no-regret strategies, their average joint play converges to the set of correlated
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equilibria or to the Hannan set,2 depending on the notion of regret in use (Hart and Mas-Colell, 2000; see also Lehrer, 2003;
Cesa-Bianchi and Lugosi, 2006); or even to Nash equilibria on certain classes of games (Hart and Mas-Colell, 2003; Marden
et al., 2007).

In this note we raise the question of validity of the regret minimization objective in the context of games. On the one
hand, according to the notions of regret used in the literature, an individual who  contemplates whether she could have done
better by having played a particular action more often in the past does not take into account the effect of her actions on the
subsequent behavior of her opponent. This is perfectly fine in a decision making environment, but not in a game, where,
by definition, players are responsive to their opponents’ behavior. We  show by example that failure to take the opponent’s
responsiveness into account may  lead to unrealistic behavior.3

On the other hand, if we extend the notion of regret to take into account the above mentioned effect, then it becomes
impossible to guarantee no regrets, even against a severely restricted set of the opponent’s strategies. We  show that if an
opponent is slightly responsive to the player’s past behavior, the maximum regret need not converge to zero. Consequently,
even if all players play regret-minimizing strategies (such as Hart and Mas-Colell’s (2000) regret matching) with respect
to this extended notion of regret, their regrets need not vanish in the long run, and consequently, the known convergence
results are not guaranteed.

2. Regrets

Consider a finite two-player game, with players named Alice and Bob.4 Let A and B be sets of actions of Alice and Bob,
respectively, and let u : A × B → R  be Alice’s payoff function. The game is played repeatedly in time periods t = 1, 2, . . .,  in
which players choose actions (at, bt). The history of realized actions is observable for both players.

Denote by UT (a, b) the average payoff of Alice up to period T,

UT (a, b) = 1
T

T∑
t=1

u(at, bt),

and denote by UT (a(a∗|a′), b) the average payoff that Alice would have obtained had she played a′ instead of the reference
action a* every time in the past when she actually played a*,

UT (a(a∗|a′), b) = 1
T

T∑
t=1

wt(a′),

where

wt(a′) =
{

u(a′, bt), if at = a∗,
u(at, bt), if at /= a∗.

Alice’s regret rT(a′, a* ; a, b) for choosing action a* instead of action a′ after T periods is defined as the excess of UT (a(a∗|a′), b)
over UT (a, b),

rT (a′, a∗; a, b) = UT (a(a∗|a′), b) − UT (a, b).

The objective of the previous literature has been to identify strategies for Alice that guarantee no regrets in the long run.
More specifically, let hT = ((a1, b1), . . .,  (aT, bT)) denote the history of play up to T, and let H be the set of all finite histories.
Alice has a no-regret strategy  ̨ : H → �(A) if lim sup T→∞rT(a′, a* ; a, b) ≤ 0 holds almost surely under  ̨ for all deterministic
sequences b and all pairs of actions (a*, a′).

According to the above definition of regret,5 Alice evaluates her regret for choosing action a* instead of action a′ by
contemplating how much higher payoff, on average, she could have received had she played a′ in every past period when
she actually played a*, assuming that the play of the opponents would have remained unchanged. This definition is plausible
in the context of decision making, when an individual’s actions have no effect on the opponent, who can be perceived as an

2 The Hannan set of a game is the set of all mixed action profiles that satisfy Hannan’s (1957) no-regret condition. It is also known as the set of coarse
correlated equilibria first appeared in Moulin and Vial (1978),  but explicitly defined as a solution concept by Young (2004, ch. 3).

3 This problem is recognized in the computer science literature. Farias and Megiddo (2004) and Cesa-Bianchi and Lugosi (2006, ch. 7.11) show that regret
minimizing strategies fail to lead to the cooperative outcome in a repeated prisoner’s dilemma. Our example is different and, as we  believe, has a value on
its  own, as it illuminates failure to learn the Pareto dominant equilibrium of a one-shot game, whereas the above literature shows failure to learn playing
strictly dominated actions.

4 Bob can be considered as a set of players, so the arguments presented below trivially extend to n-player games.
5 Specifically, we  have been considering conditional regrets. The unconditional regret of Alice for an action a′ refers to the difference in her average payoff

had  she always chosen a′ instead of her actual past play. “No conditional regret” implies “no unconditional regret”, but not vice versa, unless Alice has only
two  actions.
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Fig. 1. Game 1.

abstract environment. It is much less appealing if the individual is engaged in a game, where the opponent’s future play can
be responsive to the individual’s present actions.

3. An example

For illustration, consider the following coordination game (Fig. 1). Suppose that the observed play up to period T ≥ 2 is
((a1, b1), (a2, b2), . . .,  (aT, bT)) = ((L, L), (L, L), . . .,  (L, L)). Given this history, from the perspective of Alice, playing L is a best
reply to the average realized play of Bob.

Does Alice have regret for action R? Not according to the above definition. Looking at the observed sequence of play, Alice
takes the actions of Bob as given and realizes that had she chosen R every time she chose L, she would have gotten a lower
payoff.

This argument relies on the assumption that the sequence of Bob’s actions does not depend on what Alice plays. In other
words, Bob’s action in a given period does not depend on the previous choices of Alice. However, if Bob’s strategy is adaptive,
in the sense that Bob’s choices depend on Alice’s previous actions, then it is not clear whether or not Alice could not have
done better. For instance, if Bob’s strategy is to choose a best response to what Alice did in the last round, then Alice would
regret not choosing R.

To summarize: Could Alice have done better by having switched to R?
(I) No, if Bob’s strategy is independent of Alice’s actions.
(II) Possibly, if Bob’s strategy is adaptive.
As argued above, the definition of regret implicitly relies on the assumption that Bob’s strategy is independent of Alice’s

actions. However, in game situations players can react to what the opponents do. Hence, the evaluation of the regret of
not choosing R depends on how the opponent would have reacted to this change. This reaction has to be included into the
definition of regret.

Note that the above discussion does not require that Alice knows Bob’s payoffs. It is only Bob’s behavior that Alice has
to be concerned with, in particular, whether or not Bob can condition his choices on what Alice does and react as described
above.

4. Regrets against history dependent behavior

Above we consider regrets of Alice when facing a given sequence of actions chosen by Bob. In other words, the strategy
of Bob was independent of Alice’s actions. Let us now adjust our definition to allow for Bob to be adaptive, namely, to react
to what Alice has chosen in the past. To increase generality we will also allow Bob to choose mixed actions, and hence to
use a mixed strategy.

Denote by hT = ((a1, b1), . . .,  (aT, bT)) the history of play up to T, and let H be the set of all finite histories. Let  ̨ : H → �(A)
and  ̌ : H → �(B) be strategies of Alice and Bob, respectively, that prescribe mixed actions for every history ht ∈ H. Denote
by UT(˛, ˇ) the expected average payoff of Alice up to period T when she plays  ̨ against Bob playing ˇ,

UT (˛, ˇ) = E(˛,ˇ)

[
1
T

T∑
t=1

u(at, bt)

]
,

where the expectation is taken with respect to the probability measure over H induced by (˛, ˇ).
Fix Alice’s strategy ˛. Denote by ˛(a∗|a′) the strategy obtained from  ̨ by replacement of a* by a′ in all periods where the

realized action of  ̨ is a*. Formally, for every history h ∈ H let

˛(a∗|a′)(h)[a∗] = 0, and
˛(a∗|a′)(h)[a′] = ˛(h)[a∗] + ˛(h)[a′],

where ˛(h)[k] denotes the probability that ˛(h) assigns to action k ∈ A.
For a given strategy  ̌ of Bob, UT (˛(a∗|a′), ˇ) is the expected average payoff that Alice would have obtained had she played

a′ every time in the past when her strategy  ̨ stipulated to play a*, and when at every stage t ≤ T Bob would have responded
according to  ̌ to the new history.

Let B be a set of Bob’s feasible strategies, and let  ̌ ∈ B. Then Alice’s regret for choosing a* instead of a′ is given by

�T (a′, a∗; ˛, ˇ) = UT (˛(a∗|a′), ˇ) − UT (˛, ˇ).
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If �T(a′, a* ; ˛, ˇ) ≤ 0 for all  ̌ ∈ B, then Alice can conclude that she could not have done better by switching a* to a′ in the
past, no matter what is the actual strategy of Bob.

A strategy of Alice is called a no-regret strategy against B if it guarantees that Alice’s regrets become non-positive in the
limit for every strategy of Bob in B,

lim sup
T→∞

�T (a′, a∗; ˛, ˇ) ≤ 0 for all  ̌ ∈ B and all a′, a∗ ∈ A.

We hasten to point out that, apart from the use of expectations, the definition of no-regret strategy for adaptive opponents
is identical to that for non-adaptive opponents. In particular, we do not introduce a new notion of regret, we  only adapt the
notion to a richer set of strategies of Bob.

It is known that there exist no-regret strategies against an unresponsive opponent as considered in Section 2, i.e., when
B contains only deterministic sequences (or distributions over such sequences) (e.g., Hannan, 1957; Hart and Mas-Colell,
2000, 2001; Cesa-Bianchi and Lugosi, 2003). Yet, as we show below, a minimum of adaptiveness of Bob’s strategies to Alice’s
past actions leads to an impossibility result.

Bob’s strategy is called q-fictitious play if in every period t = 2, 3, . . .,  with probability 1 − q Bob repeats his last-period
action, and with probability q he best-replies to Alice’s average past play. The initial play of Bob is arbitrary.

For some ε > 0 denote by Bε the set of q-fictitious play strategies with q ∈ [0, ε]. In particular, Bε contains non-adaptive
strategies where Bob plays a constant action (0-fictitious play).

The next proposition shows that no strategy can guarantee the maximum regret to converge to zero if Alice cannot
exclude the possibility that her opponent is responsive, even if the degree of responsiveness is arbitrarily small.

Proposition. There exists a game such that, for every ε > 0, there does not exist a no-regret strategy against Bε.

Before proving the proposition, let us briefly explain the intuition behind it. Assume that Bob plays L in period one. In
order to guarantee no regrets, Alice needs to identify whether Bob is non-adaptive (q = 0) and thus playing constant action L,
or he is adaptive (q > 0) and thus able to coordinate on the Pareto superior equilibrium (R, R). In the former case, Alice should
always respond by action L, whereas in the latter case Alice can guarantee convergence to equilibrium (R, R) with probability
one by always playing R. To see this, observe that since q > 0, the probability that Bob has never played fictitious play by
period t is (1 − q)t, which converges to zero as t→ ∞.  Hence, with probability one Bob will eventually best-reply to Alice’s
past average play. If Alice has been playing R frequently enough, Bob will switch to R as well, and then the joint play locks in
(R, R) forever. However, the problem is that Alice can never be confident enough that Bob is non-adaptive, no matter how long
she observes Bob playing L. Since q > 0 can be arbitrarily small, the fact that Bob has always played L conveys no information
about Bob’s adaptiveness. That is to say, from Alice’s perspective, Bob’s types q = 0 and q > 0 are statistically indistinguishable.

Proof. Consider the coordination game described earlier (Fig. 1). Fix ε > 0 and suppose that Bob plays q-fictitious play,
ˇq ∈ Bε, q ∈ [0, ε], and let his initial action be L. More specifically, in every period t ≥ 2, with probability q Bob chooses action
R if Alice has played R at least 1/100 fraction of time so far, and otherwise Bob chooses L; with probability 1 − q Bob repeats
his last-period action.

Observe that if Alice knew that q = 0, then her best reply would be to always play L, since Bob is non-adaptive and repeats
L forever, so UT = u(L, L) = 1. On the other hand, if she knew that q > 0, then her best reply would be to always play R, since
eventually, with probability 1, Bob would switch to R after observing Alice’s past average play being R, and the further play
would be locked on (R, R) forever, so UT → u(R, R) = 100 as T→ ∞.  Note that in order to derive Alice’s regret for choosing
action, say, R instead of L, one needs to replace Alice’s action L by R in every instance where she plays L. Since there are only
two actions, it means to compare the performance of strategy  ̨ with constant play of R. Thus the two  constant strategies
(always R and always L) are our benchmarks relative to which Alice will measure her regret. The task of Alice is to design a
strategy that, without knowing q = 0 or q > 0, will result in limit average payoffs close to 1 in the former case and to 100 in
the latter case. We will show that this construction is impossible.

Suppose by contradiction that there exists a no-regret strategy for Alice against Bε. Note that after the first time, t, where
Bob played R, Alice has a no-regret strategy for the subgame on t+ 1, t + 2, . . .,  by playing R constantly from t + 1 on. To see
this, observe that in every period after t, Bob either repeats his last action, R, or best-replies to Alice’s average play. The best
reply action is also R, since it has been his best-reply in period t and Alice has played only R since then. Alice’s payoff will be
constantly 100 from period t + 1 on, and hence, she will have no regrets. Thus, a no-regret strategy (if it exists) can be fully
described by Alice’s play in every period t, so long as Bob plays L; and it stipulates to play R constantly after the first time
Bob played R.

Let z∗
t be the frequency with which Alice chose action R in {a1, . . .,  at}. Consider the subsequence of periods, {ts}, such

that z∗
ts

≥ 1/100 and Bob has chosen L constantly up to ts. These are the periods where Bob would have played R had he taken
the best-reply action.

First, suppose that this subsequence is finite, i.e., there is a number S such that |{ts}| = S. Let us evaluate the expected
payoff for Alice when Bob follows q ficitious play with q > 0. The probability that Bob never plays R up to tS is equal to
(1 − q)S. In this event the play will be locked on (L, L) forever, thus Alice’s average payoff UT will approach u(L, L) = 1. With
the complementary probability 1 − (1 − q)S, Bob plays R before or on tS. From that period on the play is locked on (R, R), thus
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Fig. 2. Game 2.

Alice’s average payoff UT will approach u(R, R) = 100. The expected payoff (from the perspective of period zero) will therefore
approach

lim
T→∞

UT = (1 − (1 − q)S) · 100 + (1 − q)S · 1 = 100 − 99(1 − q)S.

Thus, Alice’s regret for not playing R constantly is

lim
T→∞

(UT (R) − UT ) = 99(1 − q)S.

It is straightforward to see that, for a given S, this regret is bounded away from zero for every sufficiently small q. For example,
for every q ≤ 9/(S + 9) the regret is at least 1/100.6

Alternatively, suppose that subsequence {ts} is infinite. Let us evaluate the expected payoff of Alice when Bob is non-
adaptive (q = 0), so that he never plays R. In every period ts, the frequency of action R in Alice’s past play is at least 1/100.
Thus,

Uts ≤ 99
100

u(L, L) + 1
100

u(R, L) = 99
100

· 1 + 1
100

· 0 = 99
100

Hence Alice’s regret for not playing L constantly is

lim sup
T→∞

(UT (L) − UT ) ≥ lim sup
s→∞

(Uts (L) − Uts ) ≥ 1 − 99
100

= 1
100

.

It follows that no matter what Alice plays, there exists a strategy in Bε of Bob such that lim sup of Alice’s regret for one of
the constant actions is bounded away from zero. �

One may  wish to evaluate regret without taking expectations, in the spirit of an ex-post perspective, when looking back
at what has happened. It is as if one only evaluates regret against Bob who is choosing some pure strategy. Our proof above
does not show that such a no “ex-post” regret strategy fails to exist, as it relied on deriving regret when Bob chooses a mixed
strategy. However, it can easily be adapted. We  say that Bob plays a deterministic q-fictitious play for some q ∈ [0, 1] if there
is a deterministic subsequence of periods where Bob best-replies to Alice’s past play, with the property that up to every
period T the fraction of periods where Bob has best-replied does not exceed q. It is then easy to see that if Bε is the set of
deterministic q-fictitious play strategies with q ≤ ε, then a no-regret strategy for Alice does not exist for any ε > 0.

Alternatively, the following example shows that there does not exist a no-regret strategy for Alice against Bob using one
of three simple pure strategies. The key to this example will be that Bob uses trigger strategies. Consider the game in Fig. 2
and suppose that the set of strategies of Bob includes the following:

(Non-adaptive) Bob constantly plays M.
(Adaptive-L) Bob starts with M.  Then, if Alice played L in the initial period, then Bob will play L from period 2 forever,

otherwise he will play M forever.
(Adaptive-R) the same as adaptive-L except L is replaced by R.

In this game, Alice’s long-run average payoff is determined entirely by Bob’s type and Alice’s initial action, since Bob’s actions
are constant from period 2 on. Now observe that no matter what Alice plays in period 1, there is a type of Bob, either adaptive-
L or adaptive-R,  that would make her regret for action L or R, respectively, in all subsequent periods. Indeed, if Alice chooses,
for instance, L in the first period and Bob’s type is adaptive-R,  then the following play of Bob will be constantly M,  and Alice’s
average payoff will be 1. However, Alice could have obtained the average payoff of 2, had she started her play with R.

5. Conclusion

To sum up, the notion of regret used in the literature is not satisfactory in the context of repeated games as it fails to take
into account possible reaction of opponents to changes in one’s actions. We  define an extended notion of regret, with respect
to opponents’ strategies (rather than realized actions) and show that in this case no-regret strategies need not exist when
the opponents are adaptive. Two examples provide the intuition for this result: the regrets persist because the opponent’s

6 Inequality 99(1 − q)S ≥ 1/100 is equivalent to S ln (1 − q) ≥ − ln 9900. Since ln (1 − q) ≥ − q/(1 − q) and ln 9900 ≥ 9, the above inequality holds if
Sq/(1  − q) ≤ 9. Rearranging the terms yields q ≤ 9/(S + 9).
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strategy cannot be statistically identified (as in the former example) or because the opponent uses trigger strategies, where
an early decision of the player (which is payoff-relevant for the entire infinitely repeated interaction) has to be made when
the player has not been yet informed about the opponent’s strategy. The first example, in fact, shows that the no-regret
property of regret minimizing strategies is not robust, as it fails to hold even when there is only a small probability that the
opponent is adaptive. All arguments extend to n-player games, where it suffices that one player is adaptive.

We conclude that the existing no-regret strategies should be used with caution in the context of repeated games. They are
appropriate if players are boundedly rational and assume that their opponents are non-adaptive. However, more realistically,
if players understand that their own behavior may  influence others’, then the no-regret property cannot be achieved.
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