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A principal can restrict an agent’s information (the persuasion problem) or discretion (the
delegation problem). We study these two problems under standard single-crossing assump-
tions on the agent’s marginal utility. We show that these problems are equivalent on the set of
monotone stochastic mechanisms, implying, in particular, the equivalence of deterministic
delegation and monotone partitional persuasion. We also show that the monotonicity restric-
tion is superfluous for linear persuasion and linear delegation, implying their equivalence on
the set of all stochastic mechanisms. Finally, using tools from the persuasion literature, we
characterize optimal delegation mechanisms, thereby generalizing and extending existing re-
sults in the delegation literature.
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1. INTRODUCTION

A principal has two ways to influence decisions of an agent: delegation and persuasion.
The delegation literature, initiated by Holmström (1977, 1984), studies the design of decision
rules, with applications to organizational decision processes (Dessein, 2002), monopoly regula-
tion policies (Alonso and Matouschek, 2008), and international trade agreements (Amador and
Bagwell, 2013). The persuasion literature, set in motion by Kamenica and Gentzkow (2011),
studies the design of information disclosure rules, with applications to grade disclosure poli-
cies (Ostrovsky and Schwarz, 2010), internet advertising strategies (Rayo and Segal, 2010),
and forensic tests (Kamenica and Gentzkow, 2011).

This paper shows that, under standard assumptions, the delegation and persuasion problems
are equivalent, thereby bridging the two strands of literature. The implication is that the existing
insights and results in one problem can be used to understand and solve the other problem.
To connect delegation and persuasion, we introduce a third problem, called discriminatory
disclosure. In general, a discriminatory disclosure problem is less constrained than a persuasion
problem and more constrained than a delegation problem. Under standard assumptions, all three
problems are equally constrained and thus equivalent.

Persuasion, delegation, and discriminatory disclosure problems describe interactions be-
tween a principal (she) and an agent (he). In persuasion, utilities depend on the agent’s decision
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and a state of the world. The principal designs a test that generates informative messages about
the state. The agent observes a message and chooses a decision. In delegation, utilities depend
on the agent’s decision and his private type. The principal designs a menu of decisions or, more
generally, a menu of lotteries over decisions. The agent chooses a lottery from the menu. In
discriminatory disclosure, utilities depend on the state, the agent’s private type, and the agent’s
binary action, 0 or 1. The principal designs a menu of tests. The agent chooses a test from the
menu, observes a message from the chosen test, and chooses action 0 or 1. We assume that
the sets of decisions, states, and types are intervals of the real line, and that the agent’s utility
function satisfies standard single-crossing assumptions.

Appealing to the revelation principle, we restrict attention to direct mechanisms in the three
problems. Our general equivalence result holds for monotone stochastic mechanisms, which
have the following interpretation. In persuasion, a higher state generates a higher lottery over
recommended decisions with respect to first-order stochastic dominance. In delegation, a higher
reported type is assigned a higher lottery over decisions with respect to first-order stochastic
dominance. In discriminatory disclosure, action 1 is recommended with a higher probability
when the state is higher and the reported type is lower.

For each primitive of one problem, our equivalence result explicitly constructs an equiva-
lent primitive of the other two problems. Up to normalization, this construction equates the
marginal utilities in persuasion and delegation with the utilities in discriminatory disclosure.
Moreover, the agent’s type in delegation and discriminatory disclosure becomes the decision
in persuasion, and the state in persuasion and discriminatory disclosure becomes the decision
in delegation. Intuitively, decisions in delegation and states in persuasion play the same role
because the principal controls discretion over decisions in delegation and information about
states in persuasion.

To sketch the intuition for the equivalence, consider a monotone mechanism in discrimina-
tory disclosure. On the one hand, this mechanism can be represented as a cutoff-state mecha-
nism. For each reported type of the agent, a cutoff is drawn from a lottery, and then the agent
is recommended action 1 whenever the state is above the cutoff. Describing these lotteries over
cutoff states as lotteries over decisions, we obtain a delegation problem. On the other hand, this
mechanism can be represented as a cutoff-type mechanism. For each state, a cutoff is drawn
from a lottery, and then the agent is recommended action 1 whenever his reported type is below
the cutoff. Describing these lotteries over cutoff types as lotteries over recommended decisions,
we obtain a persuasion problem. In general, discriminatory disclosure is more constrained than
delegation, because it has an additional obedience constraint that the agent prefers to take the
action recommended by the chosen test. Moreover, discriminatory disclosure is less constrained
than persuasion, because it allows the principal to design a menu of tests rather than a single
test. The most challenging part of our equivalence result is to show that all three problems are
in fact equally constrained when the agent’s utility satisfies single-crossing assumptions.

Much of the literature studies linear problems. In linear persuasion, the marginal utilities
are linear in the state (e.g., Gentzkow and Kamenica 2016, Kolotilin 2018, and Dworczak and
Martini 2019). Similarly, in linear discriminatory disclosure, the utilities are linear in the state
(e.g., Kolotilin et al. 2017, Bergemann and Morris 2019, and Candogan and Strack 2023).
Finally, in linear delegation, the marginal utilities are linear in the decision (e.g., Alonso and
Matouschek 2008, Kováč and Mylovanov 2009, and Amador and Bagwell 2013). By extending
Strassen’s theorem to include an additional monotone likelihood ratio property, we show that
the monotonicity restriction on mechanisms is without loss of generality in linear problems,
and thus our equivalence result holds for all stochastic mechanisms.1 Using tools from the

1Recently, Kleiner et al. (2021) show a connection between delegation with quadratic utilities (a special case of
linear delegation) and linear persuasion. See Section 5.4 for a detailed discussion.
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persuasion literature, we provide necessary and sufficient conditions for the optimality of a
candidate delegation mechanism. For familiar threshold delegation mechanisms, our conditions
coincide with those in Alonso and Matouschek (2008) and Amador and Bagwell (2013), but
we impose weaker differentiability assumptions.

The literature also studies monotone deterministic problems, where the principal designs a
monotone partition of the state space in persuasion, a delegation set of decisions in delegation,
and a menu of deterministic cutoff tests in discriminatory disclosure. The equivalence of these
problems immediately follows from our main result. Using standard conditions for the opti-
mality of full disclosure in persuasion, we provide novel conditions for the optimality of full
discretion in delegation, subsuming existing conditions. Furthermore, by translating a tractable
nonlinear setting from persuasion (Rayo 2013, Onuchic and Ray 2023) to delegation, we derive
new necessary and sufficient conditions for the optimality of a candidate delegation set in this
setting.

Recent literature considers a delegation problem where the agent has an outside option (Za-
pechelnyuk 2020, Kartik et al. 2021, Amador and Bagwell 2022, Saran 2024), whereas there
is no such constraint in the standard delegation problem (Holmström 1977, 1984, Alonso and
Matouschek 2008, and Amador and Bagwell 2013). Under natural Inada-type conditions on
the utilities, our results apply to standard delegation and delegation with outside option, in both
linear and monotone deterministic cases.

To illustrate our results, we solve a classical monopoly regulation problem in which a
welfare-maximizing regulator (principal) restricts production choices of a monopolist (agent)
who privately knows his cost. This problem is studied by Baron and Myerson (1982) as a
mechanism design problem with transfers and by Alonso and Matouschek (2008) as a dele-
gation problem without transfers. Amador and Bagwell (2022) further extend the analysis by
including the monopolist’s participation constraint.2 We provide novel and simple conditions
for the optimality of a price cap among stochastic or deterministic mechanisms.

2. EXAMPLE

Before presenting our formal setting and results, we illustrate the equivalence between per-
suasion and delegation in a simple example.

Consider first a delegation problem. In this problem, a principal commits to a set of decisions
from which a privately informed agent chooses. The utilities depend on the decision s ∈R and
the agent’s private type t ∈ [0,1] that is uniformly distributed on [0,1]. The principal’s utility is
V (s, t) and the agent’s utility is U(s, t) =−(s− t)2.

0 11/2

1/3 2/3

0 11/2

1/4 3/4

(a) Delegation problem (b) Persuasion problem

FIGURE 1.—The agent’s choices in the delegation and persuasion problems.

Suppose the principal lets the agent choose one of two decisions, 1/3 or 2/3. The agent
optimally chooses decision 1/3 if his type is t < 1/2 and decision 2/3 if his type is t > 1/2, as

2Applying the results of Halac and Yared (2022), the analysis can be further extended to allow for limited enforce-
ment and money burning.
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shown in Figure 1(a). The agent’s optimal decision as a function of his type is thus

s∗D(t) =

{
1/3, if t < 1/2,
2/3, if t > 1/2.

Consider now a persuasion problem. In this problem, the agent is free to choose any decision
s ∈R and is initially uninformed about the state t ∈ [0,1] that is uniformly distributed on [0,1].
The principal designs the agent’s information about the state. The utilities are the same as in
the delegation problem.

Clearly, the principal cannot induce the agent to choose s∗D(t) for each state t in persuasion.
Indeed, if the principal lets the agent know only whether t is below or above 1/2, then the
induced decisions are 1/4 and 3/4, as shown in Figure 1(b). Alternatively, the principal can
induce the agent to choose only decisions 1/3 and 2/3. But each of the decisions 1/3 and 2/3
is necessarily induced with positive probabilities for both t > 1/2 and t < 1/2.

This example illustrates that the instruments of delegation and persuasion work differently
in a given environment. Nevertheless, we show that the persuasion and delegation problems are
mathematically equivalent. To relate these two problems, we swap the roles of the variables, so
the type in delegation is identified with the decision in persuasion, and the state in persuasion
is identified with the decision in delegation. We also appropriately associate the utilities in the
two problems. For simplicity, in this section, we assume that the agent’s utility is U(s, t) =
−(s− t)2 in both delegation and persuasion problems, in which case we only need to associate
the principal’s utilities VD and VP .

0 11/2

−1 1/3 2/3 2

(a) Delegation problem

0 11/2

−1 1/3 2/3 2

(b) Persuasion problem

FIGURE 2.—The agent’s choices in the equivalent delegation and persuasion problems.

For illustration, we now construct a persuasion problem that is equivalent to the delegation
problem in our example. The first step is to restrict the agent’s decisions in the delegation
problem to an interval. Specifically, we reduce the decision set from R to the interval [−1,2].
The bounds of this interval are chosen arbitrarily, but far enough, so that the boundary decisions
(and therefore any decisions outside the interval) are never chosen by the agent. Consider now
the set of permitted decisions S∗ = {−1,1/3,2/3,2}, as shown in Figure 2(a). The agent’s
optimal decision for each type t is s∗D(t) as in the original problem, because s= 1/3 is preferred
to s=−1 and s= 2/3 is preferred to s= 2 for each t ∈ [0,1].

The second step is to swap the roles of s and t. So, in the persuasion problem, the agent
chooses decision t ∈ [0,1], whereas s is a state that is uniformly distributed on [−1,2].
Let the agent’s information be a monotone partition described by the set of cutoff states
S∗ = {−1,1/3,2/3,2}, so the agent knows whether the state is between −1 and 1/3, between
1/3 and 2/3, or between 2/3 and 2, as shown in Figure 2(b). That is, the permitted decisions
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in delegation (dots in Figure 2(a)) become the cutoff states in persuasion (vertical bars in Fig-
ure 2(b)). The agent’s optimal decisions are shown as dots in Figure 2(b). If the agent knows
that the state is between 1/3 and 2/3, then his optimal decision is the posterior expected state
1/2. If the agent knows that the state is between −1 and 1/3, then his optimal decision is 0,
because this is the closest decision in [0,1] to the posterior expected state −1/3. Similarly, if
the agent knows that the state is between 2/3 and 2, then his optimal decision is 1, because
this is the closest decision in [0,1] to the posterior expected state 4/3. That is, the cutoff types
in delegation (vertical bars in Figure 2(a)) become the induced decisions in persuasion (dots in
Figure 2(b)). To summarize, the agent’s optimal decision as a function of the state is

t∗P (s) =


0, if s < 1/3,
1/2, if 1/3< s< 2/3,
1, if s > 2/3.

The key observation is that s∗D(t) and t∗P (s) are inversely related, as shown in Figure 3.

2/3

1/3

1/2 1

2

s

t

−1

s∗D(t)

1/2

1/3 2

1

t

s−1 2/3

t∗P (s)

(a) Delegation problem (b) Persuasion problem

FIGURE 3.—The agent’s decision functions in the equivalent delegation and persuasion problems.

The last step is to associate the utility functions in the two problems. Let

vP (s, t) =
∂

∂t
VP (s, t) and vD(s, t) =− ∂

∂s
VD(s, t),

so that vP (s, t) and −vD(s, t) are the principal’s marginal utilities in the persuasion and delega-
tion problems. Without loss of generality, we normalize the principal’s utilities to zero from de-
cision t= 0 in persuasion and from decision s= 2 in delegation, VP (0, s) = 0 and VD(2, t) = 0,



6

so their expected utilities in the two problems are

E[VP ] =

2∫
−1

t∗P (s)∫
0

vP (s, t)dt︸ ︷︷ ︸
VP (t∗

P
(s),s)

fP (s)ds and E[VD] =

1∫
0

2∫
s∗
D

(t)

vD(s, t)ds

︸ ︷︷ ︸
VD(s∗

D
(t),t)

fD(t)dt,

where fD(t) = 1 is the uniform density on [0,1] and fP (s) = 1/3 is the uniform density on
[−1,2]. Notice that if the principal’s marginal utility in the persuasion problem satisfies

vP (s, t)fP (s) = vD(s, t)fD(t), (1)

then we obtain E[VP ] = E[VD], because the areas over which the marginal utilities are inte-
grated (shaded areas in Figure 3) are exactly the same.

We have illustrated that, when the principal’s marginal utilities satisfy (1), the delegation
problem where the agent chooses from a set of deterministic decisions is equivalent to the
persuasion problem where the agent’s information is a monotone partition of the state space.
Specifically, it is optimal to induce the agent’s decision s∗D(t) for each type t in delegation if
and only if it is optimal to induce the agent’s decision t∗P (s) for each state s in persuasion,
where t∗P (s) is the inverse of s∗D(t).

This equivalence holds more generally. It extends to monotone stochastic delegation and
persuasion problems when the agent’s marginal utility is single-crossing. In stochastic delega-
tion, the delegation mechanism is described by a conditional probability function πD(s|t) =
P(decision < s|type = t). Similarly, in stochastic persuasion, the persuasion mechanism is de-
scribed by a conditional probability function πP (t|s) = P(decision > t|state = s). In what fol-
lows, we show that, when (1) holds, mechanism πD is optimal in the delegation problem if and
only if mechanism πP is optimal in the persuasion problem, where πP (t|s) = πD(s|t).3 To con-
nect delegation and persuasion, we introduce a third problem, called discriminatory disclosure,
and show that all three problems are equivalent.

3. THREE PROBLEMS

This section introduces three principal-agent problems: a persuasion problem, a delegation
problem, and a discriminatory disclosure problem, which are labeled by letters P , D, and I in
the notation. To simplify the exposition, all functions in the paper are assumed to be bounded,
left-continuous in variables labeled s and y, and right-continuous in variables labeled t and x.

3.1. Persuasion Problem.

The agent’s utility UP (s, t) and principal’s utility VP (s, t) depend on the agent’s deci-
sion t ∈ T = [0,1] and the state of the world s ∈ S = [0,1], with the boundary conditions
UP (s,0) = 0 and VP (s,0) = 0 for all s ∈ S. The state is uniformly distributed. The only sub-
stantive assumptions here are that the decision and state are one-dimensional.4 We assume that

3In our example, the agent’s decisions s∗D(t) and t∗P (s) are deterministic and can be expressed by πD(s|t) and
πP (t|s) that take values 0 or 1. Specifically, πD(s|t) = 1 in the shaded area in Figure 3(a) and πP (t|s) = 1 in the
shaded area in Figure 3(b). When t∗P (s) is the inverse of s∗D(t), the shaded areas coincide, so πP (t|s) = πD(s|t).

4Suppose that the agent’s utility U(y,x) and principal’s utility V (y,x) depend on decision x ∈ [x,x] and state y ∈
[y, y], where y has a distribution F (y) = P(state < y). Let F−1 be the generalized inverse of F . By the Skorokhod
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utilities UP (s, t) and VP (s, t) are absolutely continuous in decision t, so that

UP (s, t) =

∫ t

0

uP (s, t̃)dt̃ and VP (s, t) =

∫ t

0

vP (s, t̃)dt̃ (2)

where uP (s, t) and vP (s, t) are marginal utilities. Given our normalizations, a pair (uP , vP )
fully describes the problem.

The principal and agent are initially uninformed about the state. The principal designs a test
that generates informative messages about the state. The agent observes a message, updates
his beliefs about the state, and chooses a decision. By the revelation principle argument, we
can assume that these messages are decision recommendations. That is, the principal chooses a
persuasion mechanism πP (t|s) that provides a stochastic decision recommendation conditional
on each state,

πP (t|s) = P (decision > t|state = s) .

We frequently use Bayes’ rule which states that, for all functions w(s, t), we have∫
S×T

w(s, t)(−πP (dt|s))ds=
∫
T×S

w(s, t)πP (ds|t)(−πP (dt)), (3)

where, with abuse of notation, πP (t) = P(decision > t) is the marginal probability and
πP (s|t) = P(state < s|decision = t) is (a version of) the conditional probability induced by
the uniform distribution of s and the conditional probability πP (t|s). We write negative signs
in (3) because πP (t) and πP (t|s) are decreasing in t.5

The key constraint on the persuasion mechanism is that the agent prefers to choose a
recommended decision given his beliefs induced by this recommendation. This incentive-
compatibility constraint is∫

S

UP (s, t)πP (ds|t)≥
∫
S

UP (s, t̂)πP (ds|t),

for all t̂ ∈ T and πP -almost all t ∈ T .
(ICP )

The agent may have profitable deviations for a πP -negligible set of recommendations.
The principal chooses a persuasion mechanism πP to

maximize WP (πP ) =

∫
S×T

VP (s, t)(−πP (dt|s))ds subject to (ICP ).

3.2. Delegation Problem.

The agent’s utility UD(s, t) and principal’s utility VD(s, t) depend on the agent’s decision s ∈
S = [0,1] and the agent’s private type t ∈ T = [0,1], with the boundary conditions UD(1, t) = 0

representation, if s is uniformly distributed on [0,1], then y = F−1(s) has distribution F . To obtain our setting, let
t= (x− x)/(x− x), let s be uniformly distributed, let UP (s, t) = U(F−1(s), x+ (x− x)t)− U(F−1(s), x),
and let VP (s, t) = V (F−1(s), x + (x − x)t) − V (F−1(s), x). Kolotilin and Zapechelnyuk (2019, Section 6.3)
illustrate this change of variables in the prosecutor-judge example of Kamenica and Gentzkow (2011) where F is
binary.

5For illustration, we have P (decision ∈ (t1, t2]|state = s) = πP (t1|s) − πP (t2|s) =
∫
(t1,t2]

(−πP (dt|s)) for
all s ∈ S and all t1, t2 ∈ T such that t1 < t2.
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and VD(1, t) = 0 for all t ∈ T . The type is uniformly distributed.6 We assume that utilities
UD(s, t) and VD(s, t) are absolutely continuous in decision s, so that

UD(s, t) =

∫ 1

s

uD(s̃, t)ds̃ and VD(s, t) =

∫ 1

s

vD(s̃, t)ds̃ (4)

where −uD(s, t) and −vD(s, t) are marginal utilities. Given our normalizations, a pair
(uD, vD) fully describes the problem.

We consider a delegation problem where the agent can always choose extreme decisions
s = 0 and s = 1. As suggested by the example in Section 2 and shown formally in Section
5.2 and Appendix A, this assumption is typically non-binding when the agent’s and principal’s
utilities are defined on a sufficiently large interval of decisions, so that the extreme decisions
are never chosen. Moreover, this assumption allows to incorporate additional constraints, such
as the agent’s participation constraint.

Formally, the principal designs a menu of lotteries over decisions which must contain the two
degenerate lotteries that assign probability one to decisions s= 0 and s= 1. The agent privately
observes his type and chooses a lottery from the menu. By the revelation principle argument,
we can label each lottery in the menu by the type of the agent who is recommended to choose
this lottery. That is, the principal chooses a delegation mechanism πD(s|t) that assigns to the
agent’s reported type a lottery over decisions,

πD(s|t) = P (decision < s|type = t) .

The key constraint on the delegation mechanism is that the agent prefers to choose a lottery
assigned to his type rather than the lottery assigned to any other type, or decisions s = 0 and
s= 1. This incentive-compatibility constraint is∫

S

UD(s, t)πD(ds|t)≥max

{∫
S

UD(s, t)πD(ds|t̂), UD(0, t), UD(1, t)

}
,

for all t̂ ∈ T and almost all t ∈ T .

(ICD)

The principal chooses a delegation mechanism πD to

maximize WD(πD) =

∫
T×S

VD(s, t)πD(ds|t)dt subject to (ICD).

3.3. Discriminatory Disclosure Problem.

The agent chooses one of two actions, a= 0 or a= 1. The agent’s utility uI(s, t) and princi-
pal’s utility vI(s, t) from a= 1 depend on the state s ∈ S = [0,1] and the agent’s private type
t ∈ T = [0,1]; the utilities from a= 0 are normalized to zero. The state and type are indepen-
dently and uniformly distributed. Given our normalizations, a pair (uI , vI) fully describes the
problem.

The principal and agent are initially uninformed about the state. The principal designs a menu
of tests which generate informative messages about the state. The agent privately observes his
type, chooses a test from the menu, observes a message from the chosen test, updates his beliefs

6As in the persuasion problem, the only substantive assumptions here are that the decision and type are one-
dimensional (see Footnote 4).
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about the state, and chooses a= 0 or a= 1. By the revelation principle argument, we can label
each test in the menu by the type of the agent who is recommended to choose this test, and
we can assume that test messages are action recommendations. That is, the principal chooses
a disclosure mechanism πI that asks the agent to report his type and then recommends him a
stochastic action conditional on his report t and the state s:

πI(s, t) = P(action = 1|state = s, type = t).

The key constraint on the disclosure mechanism is that the agent prefers to report his true
type and to choose a recommended action. This incentive-compatibility constraint is∫

S

uI(s, t)πI(s, t)ds≥
∫
S

uI(s, t)
(
â0(1− πI(s, t̂)) + â1πI(s, t̂)

)
ds,

for all â0, â1 ∈ {0,1}, all t̂ ∈ T , and almost all t ∈ T .
(ICI)

The principal chooses a disclosure mechanism πI to

maximize WI(πI) =

∫
T×S

vI(s, t)πI(s, t)dsdt subject to (ICI).

4. EQUIVALENCE

4.1. Main Result

This section shows that the three problems are equivalent. Our notion of equivalence iden-
tifies the mechanisms in the three problems. For each triple of such mechanisms, this notion
requires that (a) the principal gets the same expected utility in all three problems, and (b) in-
centive compatibility either holds or fails simultaneously in all three problems.7

Although persuasion mechanism πP , delegation mechanism πD , and disclosure mechanism
πI have different meanings in the three problems, we can identify them as follows:

πP (t|s) = πD(s|t) = πI(s, t), for all s ∈ S and all t ∈ T . (Eπ)

Since, by the definition of πP and πD , we have πP (1|s) = 0 and πD(0|t) = 0, for (Eπ) to hold,
we impose the following normalizations:

πP (t|0) = πD(s|1) = πI(0, t) = πI(s,1) = 0, for all s ∈ S and all t ∈ T . (5)

In persuasion, πP (t|0) = 0 is w.l.o.g. because state s = 0 occurs with zero probability. In
delegation, πD(s|1) = 0 is w.l.o.g. because type t = 1 occurs with zero probability, and de-
cision s = 1 is always available to the agent. In discriminatory disclosure, πI(0, t) = 0 and
πI(s,1) = 0 are w.l.o.g. because s= 0 and t= 1 occur with zero probability.

Let ΠP , ΠD , and ΠI be the sets of all persuasion mechanisms πP , delegation mechanisms
πD , and disclosure mechanisms πI that satisfy (5). Since, by definition, πP (t|s) is decreasing
in t, the set ΠP ⊂ ΠI consists of all functions in ΠI that are decreasing in t. Similarly, since,
by definition, πD(s|t) is increasing in s, the set ΠD ⊂ ΠI consists of all functions in ΠI that
are increasing in s.

7Our main result holds (with the same proof) under a stronger notion of equivalence (as in Manelli and Vincent
2010, Gershkov et al. 2013, and Kolotilin et al. 2017), which preserves not only the expected utility of the principal,
but also the interim expected utilities of both the principal and the agent.
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TABLE I

THREE EQUIVALENT PROBLEMS

Persuasion Delegation Discriminatory Disclosure

Variable s State ∼ U [0,1] Decision ∈ [0,1] State ∼ U [0,1]
Variable t Decision ∈ [0,1] Type ∼ U [0,1] Type ∼ U [0,1]
Variable a — — Action ∈ {0,1}
Agent’s utility

∫ t

0
u(s, t̃)dt̃

∫ 1

s
u(s̃, t)ds̃ au(s, t)

Principal’s utility
∫ t

0
v(s, t̃)dt̃

∫ 1

s
v(s̃, t)ds̃ av(s, t)

Mechanism π P (decision > t|s) P (decision < s|t) P(action = 1|s, t)

DEFINITION 1: Two problems (uK , vK) and (uN , vN), with K,N ∈ {P,D, I}, are equiva-
lent if, for all πK , πN ∈ΠK ∩ΠN satisfying (Eπ), we have:

(a) WK(πK) =WN(πN);
(b) πK satisfies (ICK) ⇐⇒ πN satisfies (ICN ).

All three problems are equivalent if each pair of them is equivalent.

Note that the equivalence between problems (uK , vK) and (uN , vN) is defined on the re-
stricted set of mechanisms ΠK ∩ΠN , because if mechanisms πK ∈ΠK and πN ∈ΠN satisfy
(Eπ), then πK , πN ∈ ΠK ∩ ΠN . Thus, the equivalence of persuasion and discriminatory dis-
closure is defined on the set ΠP of mechanisms that are decreasing in t, the equivalence of
delegation and discriminatory disclosure is defined on the set ΠD of mechanisms that are in-
creasing in s, and the equivalence of persuasion and delegation, as well as the equivalence of
all three problems, is defined on the set ΠM =ΠP ∩ΠD of mechanisms that are increasing in
s and decreasing in t.

We refer to mechanisms in ΠM as monotone. Monotone mechanisms have a natural interpre-
tation. Under a monotone persuasion mechanism, a higher state generates a higher lottery over
recommended decisions with respect to first-order stochastic dominance. Under a monotone
delegation mechanism, a higher reported type is assigned a higher lottery over decisions with
respect to first-order stochastic dominance. Under a monotone disclosure mechanism, action
a= 1 is recommended with a higher probability when the state is higher and the reported type
is lower.

Our main result shows that the three problems are equivalent when the agent’s utility satisfies
the standard single-crossing assumptions (Milgrom and Shannon, 1994, Quah and Strulovici,
2012, Anderson and Smith, 2024). A function u(s, t) is:

(i) upcrossing in s if, for each t,

u(s1, t)≥ (>) 0 =⇒ u(s2, t)≥ (>) 0 whenever s2 > s1;

(ii) aggregate downcrossing in t if, for each probability distribution λ ∈∆(S),∫
S

u(s, t1)λ(ds)≤ (<) 0 =⇒
∫
S

u(s, t2)λ(ds)≤ (<) 0 whenever t2 > t1.

In particular, (i) and (ii) hold if u(s, t) is increasing in s and decreasing in t. In persuasion,
upcrossing of uP in s means that the agent’s optimal decision is increasing in the state, and
aggregate downcrossing of uP in t means that the agent’s utility is single peaked in the decision
for any beliefs about the state. In delegation, upcrossing of uD in s means that the agent’s utility
is single peaked in the decision for any type, and aggregate downcrossing of uD in t means that
a higher type of the agent prefers a higher lottery over decisions.
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THEOREM 1: A persuasion problem (uP , vP ), a delegation problem (uD, vD), and a dis-
criminatory disclosure problem (uI , vI) are equivalent if

uP , uD, and uI are upcrossing in s and aggregate downcrossing in t, (SC)

(uP , vP ) = (uD, vD) = (uI , vI). (E)

Theorem 1 establishes the equivalence between the three problems on the set of monotone
mechanisms. Table I describes three equivalent problems for a given (u, v). Thus, if a monotone
mechanism solves one problem, it also solves the other two equivalent problems.

Theorem 1 follows from Lemmas 1 and 2 below. Lemma 1 establishes the equivalence
between delegation and discriminatory disclosure problems when the agent’s utilities satisfy
single-crossing in s.

LEMMA 1: Problems (uD, vD) and (uI , vI) are equivalent if (uD, vD) and (uI , vI) satisfy
(E) and uD and uI are upcrossing in s.

Lemma 2 establishes the equivalence between persuasion and discriminatory disclosure
problems when the agent’s utilities satisfy aggregate single-crossing in t.

LEMMA 2: Problems (uP , vP ) and (uI , vI) are equivalent if (uP , vP ) and (uI , vI) satisfy
(E) and uP and uI are aggregate downcrossing in t.

Jointly, the conditions of single-crossing in s and t imposed separately in Lemmas 1 and
2 are precisely the conditions imposed in Theorem 1, in which case all three problems are
equivalent. We prove Lemmas 1 and 2 in Sections 4.2 and 4.3 below.

REMARK 1: In the literature, distributions of random variables are usually not normalized
to be uniform on [0,1]. Let F be a distribution of the state y ∈ Y = [y, y] in persuasion and
discriminatory disclosure, and let G be a distribution of the agent’s type x ∈ X = [x,x] in
delegation and discriminatory disclosure. Theorem 1 then applies after the change of variables
as in Footnote 4.8 In particular, if F and G admit strictly positive densities f and g, then
persuasion, delegation, and discriminatory disclosure problems are equivalent if uP , uD , and
uI are upcrossing in y and aggregate downcrossing in x, and

uP (y,x)f(y) = uD(y,x)g(x) = uI(y,x)f(y)g(x),

vP (y,x)f(y) = vD(y,x)g(x) = vI(y,x)f(y)g(x).
(6)

where (uP , vP ) and (−uD,−vD) are the marginal utilities in persuasion and delegation, and
(uI , vI) are the utilities from action a= 1 in discriminatory disclosure.

4.2. Delegation and Discriminatory Disclosure

To connect delegation and discriminatory disclosure, we represent disclosure mechanisms as
cutoff-state mechanisms. A disclosure mechanism πI ∈ΠI is a deterministic cutoff-state mech-
anism if for each reported type t there exists a cutoff state st such that action 1 is recommended

8In expressions (2), (4), (5), and (ICD), s= 0 (s= 1) and t= 0 (t= 1) should be replaced with y = y (y = y)
and x= x (x= x).
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if and only if s > st. Under this mechanism, when the agent is truthful and obedient, the agent’s
and principal’s utilities conditional on type t are

US(st, t) =

∫ 1

st

uI(s̃, t)ds̃ and VS(st, t) =

∫ 1

st

vI(s̃, t)ds̃, for all t ∈ T . (7)

A disclosure mechanism πI ∈ ΠI is a (stochastic) cutoff-state mechanism if for each reported
type there exists a probability distribution of cutoffs such that action 1 is recommended if and
only if the state is above the cutoff.

The key observation is that each disclosure mechanism πI(s, t) that is increasing in s can
be represented as a cutoff-state mechanism where the distribution of cutoffs conditional on re-
ported type t is P(cutoff < s|type = t) = πI(s, t). Indeed, under such a distribution of cutoffs,
the probability that action 1 is recommended conditional on state s and type t equals the prob-
ability that the cutoff is less than s, which is precisely πI(s, t). When the agent is truthful and
obedient, the agent’s and principal’s utilities conditional on type t are∫

S

US(s, t)πI(ds, t) and
∫
S

VS(s, t)πI(ds, t), for all t ∈ T .

To prove part (a) of Lemma 1, we show that the utilities conditional on type t are the same in the
delegation problem (uD, vD) = (uI , vI) with πD(s|t) = πI(s, t). To prove part (b) of Lemma
1, we show that, in general, the delegation problem is a relaxation of the discriminatory dis-
closure problem, but these problems become equivalent if the assumptions of upcrossing and
monotonicity are imposed. Intuitively, when translated to discriminatory disclosure, (ICD) pro-
hibits two types of deviations: obedient misreporting, where the agent misreports his type and
chooses the recommended action; and disregarding, where the agent disregards the recommen-
dation and chooses the best of the two actions. In addition, (ICI) prohibits the third type of de-
viations: disobedient misreporting, where the agent misreports his type and chooses the action
opposite to the recommendation. Thus, (ICD) is weaker than (ICI). For the converse, suppose
that the agent’s utility uI is upcrossing in s and the disclosure mechanism πI is increasing in s.
Then disobedient misreporting can never be better for the agent than disregarding. Thus, (ICD)
is equivalent to (ICI), and part (b) of Lemma 1 follows.9

PROOF OF LEMMA 1: Consider a discriminatory disclosure problem (uI , vI) with πI ∈ΠI

and a delegation problem (uD, vD) with πD ∈ΠD such that

uI(s, t) = uD(s, t), vI(s, t) = vD(s, t), and πI(s, t) = πD(s|t), (ED)

where uD and uI are upcrossing in s. Then, for all t ∈ T , we have∫
S

vI(s, t)πI(s, t)ds=

∫
S

VS(s, t)πI(ds, t) =

∫
S

(∫ 1

s

vI(s̃, t)ds̃

)
πI(ds, t)

=

∫
S

(∫ 1

s

vD(s̃, t)ds̃

)
πD(ds|t) =

∫
S

VD(s, t)πD(ds|t),
(8)

9Lemma 1 continues to hold under a weaker notion of upcrossing defined by Karlin and Rubin (1956): for each
t, u(s1, t) > 0 =⇒ u(s2, t) ≥ 0 whenever s2 > s1. Appendix C.1 provides an example where a mechanism πD

in delegation is incentive compatible, but the mechanism πI given by (ED) in discriminatory disclosure is not, when
uD is not upcrossing in s.
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where the first equality is by the representation of the disclosure mechanism as a cutoff-state
mechanism, the second equality is by (7), the third equality is by (ED), and the fourth equality
is by (4). Thus, part (a) follows from

WI(πI) =

∫
T×S

vI(s, t)πI(s, t)dsdt=

∫
T×S

VD(s, t)πD(ds|t)dt=WD(πD).

We now prove part (b). By the same logic as in (8), for all â0, â1 ∈ {0,1} and all t, t̂ ∈ T ,∫
S

uI(s, t)
(
â0(1− πI(s, t̂)) + â1πI(s, t̂)

)
ds

= â0

(
UD(0, t)−

∫
S

UD(s, t)πD(ds|t̂)
)
+ â1

∫
S

UD(s, t)πD(ds|t̂).
(9)

Thus, πI satisfies (ICI) iff∫
S

UD(s, t)πD(ds|t)≥ â0

(
UD(0, t)−

∫
S

UD(s, t)πD(ds|t̂)
)
+ â1

∫
S

UD(s, t)πD(ds|t̂),

for all â0, â1 ∈ {0,1}, all t̂ ∈ T , and almost all t ∈ T .

Note that (ICI) written for all (â0, â1, t̂) such that (â0, â1) ̸= (1,0) is equivalent to (ICD). To
prove that (ICI) is equivalent to (ICD), suppose by contradiction that πD satisfies (ICD), but πI

violates (ICI) for (â0, â1) = (1,0). That is, there exist t, t̂ ∈ T such that

UD(0, t)−
∫
S

UD(s, t)πD(ds|t̂)>
∫
S

UD(s, t)πD(ds|t)

≥max

{∫
S

UD(s, t)πD(ds|t̂), UD(0, t), 0

}
,

(10)

where, by (9), the first inequality states that (ICI) fails for (â0, â1) = (1,0), and the second
inequality states that (ICD) holds, given that UD(1, t) = 0 by (4). Next, we have∫

S

uD(s, t)(1− πD(s|t̂))ds=
∫
S

uI(s, t)(1− πI(s, t̂))ds

= UD(0, t)−
∫
S

UD(s, t)πD(ds|t̂)> 0,

(11)

where the first equality is by (ED), the second equality is by (9) evaluated at (â0, â1) = (1,0),
and the inequality is by (10). Since uD is upcrossing in s, there exists st ∈ S such that
uD(s, t) ≤ 0 for s < st and uD(s, t) ≥ 0 for s > st. Observe that πD(st|t̂) < 1, as otherwise
we would have had∫

S

uD(s, t)(1− πD(s|t̂))ds=
∫ st

0

uD(s, t)(1− πD(s|t̂))ds≤ 0,
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where the inequality holds because uD(s, t)≤ 0 for s < st. Thus,∫
S

uD(s, t)πD(s|t̂)ds=
1

1− πD(st|t̂)

(∫
S

uD(s, t)(πD(s|t̂)− πD(st|t̂))ds

+ πD(st|t̂)
∫
S

uD(s, t)(1− πD(s|t̂))ds
)

≥ πD(st|t̂)
1− πD(st|t̂)

∫
S

uD(s, t)(1− πD(s|t̂))ds≥ 0,

(12)

where the equality holds by rearrangement, the first inequality holds because πD(s|t̂) is in-
creasing in s and uD(s, t) ≤ (≥) 0 for s < (>)st, and the second inequality holds by (11).
Finally, we have

UD(0, t)−
∫
S

UD(s, t)πD(ds|t̂)ds= UD(0, t)−
∫
S

uD(s, t)πD(s|t̂)ds≤ UD(0, t),

where the equality is by (ED) and (9) with (â0, â1) = (0,1), and the inequality is by (12). This
inequality contradicts (10). Thus, πI satisfies (ICI) iff πD satisfies (ICD). Q.E.D.

4.3. Persuasion and Discriminatory Disclosure

To connect persuasion and discriminatory disclosure, we represent disclosure mechanisms
as cutoff-type mechanisms. A disclosure mechanism πI ∈ ΠI is a deterministic cutoff-type
mechanism if for each state s there exists a cutoff type ts such that action 1 is recommended if
and only if t < ts. Under this mechanism, when the agent is truthful and obedient, the agent’s
and principal’s utilities conditional on state s are

UT (ts, s) =

∫ ts

0

uI(s, t̃)dt̃ and VT (ts, s) =

∫ ts

0

vI(s, t̃)dt̃, for all s ∈ S. (13)

A disclosure mechanism is a (stochastic) cutoff-type mechanism if for each state there exists a
probability distribution of cutoffs such that action 1 is recommended if and only if the type is
below the cutoff.

The key observation is that each disclosure mechanism πI(s, t) that is decreasing in t can be
represented as a cutoff-type mechanism where the distribution of cutoffs conditional on state s
is P(cutoff > t|state = s) = πI(s, t). Indeed, under such a distribution of cutoffs, the probability
that action 1 is recommended conditional on state s and type t equals the probability that the
cutoff is greater than t, which is precisely πI(s, t). When the agent is truthful and obedient, the
agent’s and principal’s utilities conditional on state s are∫

T

UT (s, t)(−πI(s,dt)) and
∫
T

VT (s, t)(−πI(s,dt)), for all s ∈ S.

To prove part (a) of Lemma 2, we show that the utilities conditional on state s are the same
in the persuasion problem (uP , vP ) = (uI , vI) with πP (t|s) = πI(s, t). To prove part (b) of
Lemma 2, we show that, in general, the discriminatory disclosure problem is a relaxation of
the persuasion problem, but these problems become equivalent if the assumptions of aggregate
downcrossing and monotonicity are imposed. Intuitively, when translated to discriminatory
disclosure, (ICP ) prohibits agent’s deviations when he observes the realized cutoff. In contrast,
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(ICI) prohibits agent’s deviations when he observes only that his type is above or below the
cutoff. Thus, (ICI) is weaker than (ICP ). For the converse, suppose that, in the discriminatory
disclosure problem, the agent’s utility uI is aggregate downcrossing in t and the disclosure
mechanism πI is decreasing in t. Then the agent optimally chooses action 1 if and only if his
type is below the realized cutoff, regardless of whether he observes the cutoff or only that his
type is below or above the cutoff. Thus, (ICI) is equivalent to (ICP ), and part (b) of Lemma 2
follows.10

PROOF OF LEMMA 2: Consider a discriminatory disclosure problem with (uI , vI) and πI ∈
ΠI , and a persuasion problem with (uP , vP ) and πP ∈ΠP such that

uI(s, t) = uP (s, t), vI(s, t) = vP (s, t), and πI(s, t) = πP (t|s), (EP )

where uP and uI are aggregate downcrossing in t. Then, for all s ∈ S, we have∫
T

vI(s, t)πI(s, t)dt=

∫
T

VT (s, t)(−πI(s,dt)) =

∫
T

(∫ t

0

vI(s, t̃)dt̃

)
(−πI(s,dt))

=

∫
T

(∫ t

0

vP (s, t̃)dt̃

)
(−πP (dt|s)) =

∫
T

VP (s, t)(−πP (dt|s)),

where the first equality is by the representation of the disclosure mechanism as a cutoff-type
mechanism, the second equality is by (13), the third equality is by (EP ), and the fourth equality
is by (2). Thus, part (a) follows from

WI(πI) =

∫
S×T

vI(s, t)πI(s, t)dtds=

∫
S×T

VP (s, t)(−πP (dt|s))ds=WP (πP ).

We now prove part (b). First, suppose that πP satisfies (ICP ). Then, for all t̂ ∈ T and almost
all t ∈ T , we have

0≤
∫
S

(UP (s, t)−UP (s, t̂))πP (ds|t) =
∫ t

t̂

(∫
S

uP (s, t̃)πP (ds|t)
)
dt̃.

Thus, as uP is aggregate downcrossing in t, for almost all t ∈ T , we have∫
S

uP (s, t̃)πP (ds|t)≥ (≤) 0 for t̃ < (>) t. (14)

Next, let r denote the realized cutoff type, and define

Aâ0,â1,t̂
(r) = â01{r ≤ t̂}+ â11{r > t̂}. (15)

Since the conditional distribution of r given s is 1− πI(s, r), we have∫
T

Aâ0,â1,t̂
(r)(−πI(s,dr)) = â0(1− πI(s, t̂)) + â1πI(s, t̂). (16)

10Appendix C.1 provides an example where a mechanism πI in discriminatory disclosure is incentive compatible,
but the mechanism πP given by (EP ) in persuasion is not, when uI is not aggregate downcrossing in t.
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For all â0, â1 ∈ {0,1}, all t̂ ∈ T , almost all t ∈ T , we have

−
∫
S

uI(s, t)
(
â0(1− πI(s, t̂)) + â1πI(s, t̂)

)
ds=

∫
S×T

uI(s, t)Aâ0,â1,t̂
(r)πI(s,dr)ds

=

∫
S×T

uP (s, t)Aâ0,â1,t̂
(r)πP (dr|s)ds=

∫
T

Aâ0,â1,t̂
(r)

(∫
S

uP (s, t)πP (ds|r)
)
πP (dr)

≥
∫
T

1{r > t}
(∫

S

uP (s, t)πP (ds|r)
)
πP (dr) =

∫
S×T

uP (s, t)1{r > t}πP (dr|s)ds

=

∫
S×T

uI(s, t)1{r > t}πI(dr|s)ds=
∫
S×T

uI(s, t)A0,1,t(r)πI(s,dr)ds

=−
∫
S

uI(s, t)πI(s, t)ds,

where the first and last equalities are by (16), the second and fifth equalities are by (EP ), the
third and forth equalities are by Bayes’ rule (3), the inequality is by (14), and the sixths equality
is by (15) with (â0, â1, t̂) = (0,1, t). Consequently, if πP satisfies (ICP ), then πI satisfies (ICI).

Second, suppose that πI satisfies (ICI). Then for all t̂ ∈ T and almost all t > t̂ we have

0≥
∫
S

uI(s, t)(πI(s, t̂)− πI(s, t))ds=

∫
S

uP (s, t)(πP (t̂|s)− πP (t|s))ds

=

∫
S

∫
(t̂,t]

uP (s, t)(−πP (dt̃|s))ds=
∫
(t̂,t]

∫
S

uP (s, t)πP (ds|t̃)(−πP (dt̃)),

(17)

where the inequality is by (ICI) with (â0, â1) = (0,1), the first equality is by (EP ), the second
inequality is by the definition of πP , and the third equality is by Bayes’ rule (3). Similarly, for
almost all t ∈ T we have

0≥
∫
S

uI(s, t)ds−
∫
S

uI(s, t)πI(s, t)ds=

∫
S

uP (s, t)(1− πP (t|s))ds

=

∫
S

∫
[0,t]

uP (s, t)(−πP (dt̃|s))ds=
∫
[0,t]

∫
S

uP (s, t)πP (ds|t̃)(−πP (dt̃)),

(18)

where the inequality is by (ICI) with (â0, â1) = (1,1), the first equality is by (EP ), the second
inequality is by the definition of πP , and the third equality is by Bayes’ rule (3).
Thus, by (17) and (18), for πP -almost all t̃ and all ε > 0, there exists t ∈ [t̃, t̃+ ε] such that∫

S

uP (s, t)πP (ds|t̃)≤ 0.

By aggregate downcrossing of uP in t, we obtain∫
S

uP (s, t)πP (ds|t̃)≤ 0 for πP -almost all t̃ and all t > t̃. (19)

By symmetric arguments, we obtain∫
S

uP (s, t)πP (ds|t̃)≥ 0 for πP -almost all t̃ and all t < t̃. (20)
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Consequently, for πP -almost all t̃ ∈ T and all t̂ ∈ T , we obtain

0≤
∫ t̃

t̂

(∫
S

uP (s, t)πP (ds|t̃)
)
dt=

∫
S

(UP (s, t̃)−UP (s, t̂))πP (ds|t̃),

where the inequality is by (19) and (20), and the equality is by (2). Consequently, if πI satisfies
(ICI), then πP satisfies (ICP ). Q.E.D.

5. LINEAR CASE

In this section, we consider a popular subclass of the persuasion, delegation, and discrim-
inatory disclosure problems, referred to as linear problems. For K ∈ {P,D, I}, a problem
(uK , vK) is linear if11

uK(s, t) = c(s)− b(t) and vK(s, t) = αc(s)− d(b(t)), (L)

where α ∈R, b and c are continuous and strictly increasing, d is continuous, and

c(0)≤ b(0)< b(1)≤ c(1).

Clearly, if uK satisfies (L), then it satisfies (SC), so all our results apply.
In linear persuasion and linear discriminatory disclosure, the (marginal) utilities are linear in

an increasing transformation c of the state. Similarly, in linear delegation, the marginal utili-
ties are linear in an increasing transformation c of the decision. Intuitively, the linear problems
are tractable, because the analysis depends only on the mean value of c(s). For illustration, in
linear persuasion, if the state is known to be in an interval (s1, s2], then the agent-optimal and
principal-optimal decisions depend only on

∫ s2

s1
c(s)ds/(s2 − s1). Similarly, in linear delega-

tion, if the only permitted decisions are s1 and s2, then the agent-optimal and principal-optimal
assignments of types to these decisions depend only on

∫ s2

s1
c(s)ds/(s2 − s1).

In the persuasion literature, the state is typically defined as y = c(s), which has a distribution
F (y) = P (c(s)< y) = c−1(y) on the interval Y = [y, y] = [c(0), c(1)]. Analogously, in the
delegation literature, the type is typically defined as x= b(t), which has a distribution G(x) =

P (b(t)≤ x) = b−1(x) on the interval X = [x,x] = [b(0), b(1)]. Finally, in the discriminatory
disclosure literature, both the state and the type are defined as y = c(s) and x = b(t), which
have distributions F and G. Since c and b are strictly increasing and continuous, F and G are
continuous and have full support on Y . In this section, we use the transformed state y and type
x in line with the literature.

11Many of our results continue to hold under the weaker assumption that b and c are non-decreasing and are
not necessarily continuous. Moreover, condition c(0) ≤ b(0) < b(1) ≤ c(1) can be relaxed. Indeed, in persuasion,
decisions t such that b(t)< c(0) and b(t)> c(1) can never be chosen. In delegation, types t such that b(t)< c(0)
and b(t)> c(1) always choose decisions 0 and 1, respectively. In discriminatory disclosure, types t such that b(t)<
c(0) and b(t)> c(1) always choose actions 1 and 0, respectively. Consequently, w.l.o.g., we can remove all t such
that b(t) ̸∈ [c(0), c(1)] from consideration.
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5.1. Monotonization

This section shows that the restriction to monotone mechanisms is w.l.o.g. in the three linear
problems.12 Specifically, for each incentive-compatible mechanism, there exists an incentive-
compatible monotone mechanism such that the expected utilities are the same.13

THEOREM 2: For each K ∈ {P,D, I}, each (uK , vK) that satisfies (L), and each πK ∈ΠK

that satisfies (ICK), there exists a monotone mechanism π̂K ∈ ΠM ⊂ ΠK that satisfies (ICK)
such that WK(π̂K) =WK(πK).

It suffices to prove Theorem 2 for discriminatory disclosure, K = I , as then the result for
persuasion, K = P , and delegation, K =D, follows from Lemmas 2 and 1.14

Before proving Theorem 2 for K = I , we introduce notation and present two key lemmas.
We use the transformed state and type, y = c(s) and x= b(t), which have distributions F and
G. The agent’s and principal’s utilities from a= 1 given state y and type x are

u(y,x) = y− x and v(y,x) = αy− d(x), for all y ∈ Y and all x ∈X .

By (L), X ⊆ Y , so Y is a common interval domain for y and x. Consider a mechanism π(y,x)
in variables y and x on Y × Y that satisfies the incentive-compatibility constraint∫

Y

(y− x)π(y,x)F (dy)≥
∫
Y

(y− x) (â0(1− π(y, x̂)) + â1π(y, x̂))F (dy),

for all â0, â1 ∈ {0,1} and all x, x̂ ∈ Y .

(IC)

When the agent’s type is x, he chooses action 0 with interim probability Hπ(x) and obtains
interim utility Uπ(x) given by

Hπ(x) =

∫
Y

(1− π(y,x))F (dy), Uπ(x) =

∫
Y

(y− x)π(y,x)F (dy), for all x ∈ Y , (21)

and the principal obtains interim utility Vπ(x) given by

Vπ(x) =

∫
Y

(αy− d(x))π(y,x)F (dy)

= αUπ(x) + (αx− d(x))(1−Hπ(x)), for all x ∈X.

(22)

12Appendix C.2 shows that the restriction to monotone mechanisms is not w.l.o.g. in nonlinear problems. In fact,
in nonlinear persuasion, optimal mechanisms are often nonmonotone (Rayo and Segal 2010, Goldstein and Leitner
2018, Guo and Shmaya 2019, Kolotilin et al. 2024).

13This result (with the same proof) extends to the stronger notion of equivalence stated in Footnote 7. That is, for
each incentive-compatible mechanism, there exists an incentive-compatible monotone mechanism that preserves the
interim expected utilities of both the principal and the agent.

14Indeed, consider a persuasion problem (uP , vP ) with mechanism πP that satisfies (ICP ). By Lemma 2, in
the discriminatory disclosure problem (uI , vI) = (uP , vP ), the disclosure mechanism πI(t, s) = πP (t|s) satisfies
(ICI ) and WI(πI) =WP (πP ). By Theorem 2 for K = I , there exists a monotone disclosure mechanism π̂I that sat-
isfies (ICI ) and WI(π̂I) =WI(πI). Again by Lemma 2, the monotone persuasion mechanism π̂P (t|s) = π̂I(s, t)
satisfies (ICP ) and WP (π̂P ) =WI(π̂I). The argument for K =D is analogous.
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Since the agent’s interim utility is maximized under full disclosure of y, we have

Uπ(x) =

∫
Y

(y− x)π(y,x)F (dy)≤
∫
Y

(y− x)1{y > x}F (dy)

=

∫ y

x

(y− x)F (dy) =

∫ y

x

(1− F (y))dy, for all x ∈ Y ,

(23)

where the first and second equalities are by definition, the inequality is by pointwise maximiza-
tion, and the last equality is by integration by parts.

Now, we present two key lemmas. Lemma 3 is the envelope characterization of incentive
compatibility (Kolotilin et al., 2017, Lemma 1).

LEMMA 3—(Kolotilin et al., 2017): A mechanism π satisfies (IC) if and only if

Hπ is increasing, Uπ(y) =

∫
Y

(1− F (y))dy,

Uπ(x) =

∫ y

x

(1−Hπ(x̃))dx̃, for all x ∈ Y .

(24)

Lemma 4 is the extension of Strassen’s theorem with the additional monotone likelihood
ratio property.15 Strassen (1965) shows that if a distribution F is a mean-preserving spread of
a distribution H , then there exists a joint distribution P of (x, y) such that (i) the marginal
distributions of x and y are H and F and (ii) the expected value of y given x is x, meaning
that (x, y) is a martingale. Müller and Rüschendorf (2001, Theorem 4.1) provide a constructive
proof of Strassen’s theorem. Importantly, they show that their constructed conditional distribu-
tion P (y|x) increases in x with respect to first-order stochastic dominance. We show that their
P (y|x) increases in x with respect to the likelihood ratio order.16

LEMMA 4: Let F and H be two distributions on Y = [y, y]⊂R that satisfy∫ y

x

(1−H(x̃))dx̃≤
∫ y

x

(1− F (x̃))dx̃, for all x ∈ Y , with equality at x= y. (MPS)

There exists a conditional distribution P (y|x), with x, y ∈ Y , that satisfies∫
[y,y]

P (y|x)H(dx) = F (y), for all y ∈ Y , (25)∫
[y,y]

yP (dy|x) = x, for all x ∈ Y , (26)∫
[y1,y2]

P (dy|x1)

∫
[y3,y4]

P (dy|x2)≥
∫
[y1,y2]

P (dy|x2)

∫
[y3,y4]

P (dy|x1),

for all y ≤ x1 < x2 ≤ y and all y ≤ y1 < y2 < y3 < y4 ≤ y.

(27)

15The proof of Lemma 4 and other omitted proofs are in Appendix B.
16One difficulty is that the likelihood ratio order is not an integral stochastic order, so we cannot use standard results

on monotonicity of Markov processes (e.g., Müller and Stoyan, 2002, Section 5.2), as Müller and Rüschendorf do.
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The last two ingredients for the proof of Theorem 2 are two simple claims. Claim 1 is a
straightforward implication of Lemmas 3 and 4.

CLAIM 1: For each distribution H that satisfies (MPS), there exists a mechanism π̂(y,x)
that is increasing in y and decreasing in x, satisfies (IC), and Hπ̂(x) =H(x) for all x ∈ Y .

Indeed, if H satisfies (MPS), by Lemma 4, there exists a conditional distribution P (y|x) that
satisfies (25)–(27). By (27), P (y|x) is increasing in x with respect to the likelihood ratio order.
Since the likelihood ratio order is invariant under a permutation of variables x and y (e.g.,
Müller and Stoyan, 2002, Theorem 3.10.14), it follows that a conditional distribution P (x|y),
derived by Bayes’ rule from P (y|x) and H(x), is increasing in y with respect to the likelihood
ratio order. Therefore, it is also increasing in y with respect to first-order stochastic dominance
(e.g., Müller and Stoyan, 2002, Theorem 3.10.16), meaning that P (x|y) is decreasing in y.

Since a distribution P (x|y) is increasing in x, it follows that the disclosure mechanism π̂
given by

π̂(y,x) = 1− P (x|y), for all y,x ∈ Y , (28)

is increasing in y and decreasing in x. Moreover, it is easy to check that Hπ̂(x) =H(x) and
Uπ̂(x) =

∫ y

x
(1−H(x̃))dx̃ for all x ∈ Y , so π̂ satisfies (IC) by Lemma 3.

Claim 2 shows that, for each disclosure mechanism πI that satisfies (ICI), there exists a
mechanism π(y,x) that represents πI(s, t) in variables y and x on Y ×Y and satisfies (IC). To
prove Claim 2, we extend the set of types from X to Y , and let each type x ∈ Y of the agent
choose a report x̂ ∈X and actions â0, â1 ∈ {0,1} to maximize his interim utility.

CLAIM 2: For each mechanism πI that satisfies (ICI) there exists a mechanism π on Y ×Y
that satisfies (IC) and π(y,x) = πI(F (y),G(x)) for all y ∈ Y and all x ∈ [x,x).

We finally prove Theorem 2. Consider any πI that satisfies (ICI). By Claim 2, there exists
π on Y × Y that represents πI in variables y and x, and satisfies (IC). As x = x occurs with
zero probability, the principal obtains the same expected utility under π and πI . By (23) and
Lemma 3, H =Hπ satisfies (MPS). By Claim 1, there exists a monotone π̂ that satisfies (IC),
and Hπ̂ =Hπ . Then, by Lemma 3 and (22), Uπ̂ = Uπ and Vπ̂ = Vπ . Consequently, the principal
obtains the same expected utility under π̂ and π:

W (π̂) =

∫
X

Vπ̂(x)G(dx) =

∫
X

Vπ(x)G(dx) =W (π).

Finally, π̂I given by π̂I(s, t) = π̂(c(s), b(t)) for all s ∈ S and all t ∈ T is monotone, satisfies
(ICI), and the principal obtains the same expected utility under π̂I and π̂.17

5.2. Compactification

In our delegation problem presented in Section 3.2, the principal has the constraint that the
two extreme decisions, s= 0 and s= 1, are always available to the agent. However, the prin-
cipal has no such constraint in a standard delegation setting (Holmström, 1977, 1984, Alonso

17By construction, π̂I(s, t) is right-continuous in t and satisfies π̂I(s,1) = 0. By monotonicity of π̂I , π̃I given
by π̃I(s, t) = lims̃↑s π̂I(s̃, t) for all s ∈ (0,1] and π̃(0, t) = 0 is left-continuous in s and coincides with π̂I almost
everywhere. So, by redefining π̂I in this way if necessary, w.l.o.g., we can assume that π̂I(s, t) is left-continuous in
s, right-continuous in t, and satisfies (5).
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and Matouschek, 2008, Amador and Bagwell, 2013), and only one such decision is available
in a delegation setting where the agent has an outside option (Kartik et al., 2021, Amador and
Bagwell, 2022, Saran, 2024). This section shows that, under natural Inada-type assumptions,
which are satisfied in the delegation literature, both standard delegation and delegation with
outside option can be represented as our delegation problem.

In all delegation settings we consider, the agent’s decision s belongs to a closed interval of the
real line, S ⊆R. We use the transformed type, x= b(t), which has distribution G on X = [x,x].
Other primitives are the same as in Section 3.2. Letting c be defined on S, with [0,1]⊂ S, the
agent’s and principal’s marginal utilities satisfy (L), so, by (4), up to type-dependent constants,
their utilities are given by

U(s,x) = xs−C(s) and V (s,x) = d(x)s− αC(s),

where C(s) =

∫ s

0

c(s̃)ds̃.
(29)

For convenience, we change the variable y = c(s). The (transformed) decisions y are in the
set Y0 = c(S), with X ⊂ Y0 by (L). In the transformed variables, the agent’s and principal’s
utilities are given by

U(y,x) = xc−1(y)−C(c−1(y)) and V (y,x) = d(x)c−1(y)− αC(c−1(y)),

for all y ∈ Y0 and all x ∈X.
(30)

In standard delegation, the set of decisions is the real line S = R, so that Y0 = (y
0
, y0) =

c(R), and the agent has no outside option. So a delegation mechanism π must satisfy only the
incentive-compatibility constraint∫

Y0

U(y,x)π(dy|x)≥
∫
Y0

U(y,x)π(dy|x̂), for all x, x̂ ∈X . (IC0)

In delegation with outside option, the set of decisions is a ray S = [s,∞), so that Y0 =
[y, y0) = c([s,∞)), and the agent can always choose the outside option y = c(s). So a delega-
tion mechanism π must satisfy the incentive-compatibility constraint (IC0) and the participation
constraint ∫

Y0

U(y,x)π(dy|x)≥ U(y,x), for all x ∈X . (IC1)

In our delegation problem of Section 3.2, the set of decisions is a compact interval S = [s, s],
so that Y0 = [y, y] = [c(s), c(s)], and the agent can always choose the extreme decisions y and
y.18 So a delegation mechanism π must satisfy the incentive-compatibility constraint (IC0), the
participation constraint (IC1), and the additional constraint∫

Y0

U(y,x)π(dy|x)≥ U(y,x), for all x ∈X . (IC2)

To show that both standard delegation and delegation with outside option can be repre-
sented as our delegation, for each incentive-compatible mechanism π we find another incentive-
compatible mechanism π̃ with support on a compact interval Y = [y, y] such that the agent’s

18In Section 3.2, w.l.o.g., we normalized [s, s] = [0,1], but here it is convenient not to use this normalization.
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and principal’s interim utilities are the same:∫
Y

U(y,x)π̃(dy|x) =
∫
Y0

U(y,x)π(dy|x), for all x ∈X ,∫
Y

V (y,x)π̃(dy|x) =
∫
Y0

V (y,x)π(dy|x), for all x ∈X .
(31)

We first show that standard delegation can be represented as our delegation if U(y,x) →
−∞ and V (y,x)→−∞ for all x ∈X as y → y0 and as y → y

0
. Say that a mechanism π is

undominated by V0 :X →R if∫
Y0

V (y,x)π(dy|x)≥ V0(x), for some x ∈X .

From the principal’s optimization perspective, it is w.l.o.g. to consider undominated mecha-
nisms. To this end, we can set V0 to be the principal’s interim or expected utility if a decision
y∗ ∈ Y0 is implemented for all reports of the agent,

V0(x) = V (y∗, x) or V0(x) =

∫
X

V (y∗, x̃)G(dx̃), for some y∗ ∈ Y0. (32)

PROPOSITION 1: Suppose that Y0 = (y
0
, y0)⊆R, α> 0, and

y
0
< x< y0 and αy

0
< d(x)<αy0, for all x ∈X. (33)

For each continuous V0, there exist y, y ∈ Y0 (with y < x < x < y) such that the following
holds. For each mechanism π that satisfies (IC0) and is undominated by V0, there exists another
mechanism π̃ with support in Y = [y, y] that satisfies (IC0)–(IC2) (with strict inequalities in
(IC1) and (IC2)) and (31).

We now show that delegation with outside option can be represented as our delegation if
U(y,x)→−∞ for all x ∈X as y→ y0.

PROPOSITION 2: Suppose that Y0 = [y, y0)⊂R and

y ≤ x < y0, for all x ∈X . (34)

Then there exists y ∈ Y0 (with y > x) such that the following holds. For each mechanism π
that satisfies (IC0) and (IC1), there exists another mechanism π̃ with support in Y = [y, y] that
satisfies (IC0)–(IC2) (with strict inequality in (IC2)) and (31).

5.3. Optimization

Using the tools from the literature on linear persuasion, this section fully characterizes opti-
mal mechanisms in standard delegation and delegation with outside option. Let the utilities be
given by (30), and suppose that the type x has distribution G that admits a càdlàg density g,
meaning that g is right-continuous and has left limits on X = [x,x].

We now impose assumptions of Section 5.2 to represent standard delegation and delegation
with outside option as our delegation problem with an appropriately defined decision set Y =
[y, y]⊂ Y0. Our analysis then applies simultaneously to both variants of the delegation problem,
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with the understanding that Y differs in the two variants. In fact, since delegation with outside
option features an additional constraint (namely, (IC1)), we can always define Y to be larger in
standard delegation than in delegation with outside option.

First, consider standard delegation. Suppose that the assumptions of Proposition 1 hold with
V0 given by (32). Let Y be as in Proposition 1. W.l.o.g., we restrict attention to delegation
mechanisms π(y|x) in variables y and x on Y ×X that satisfy (IC0)–(IC2), with strict inequal-
ities in (IC1) and (IC2). Let Π0 be the set of all such delegation mechanisms.

Second, consider delegation with outside option y. Suppose that the assumptions of Propo-
sition 2 hold. Let Y be as in Proposition 2. W.l.o.g., we restrict attention to delegation mecha-
nisms π(y|x) in variables y and x on Y ×X that satisfy (IC0)–(IC2), with strict inequality in
(IC2). Let Π1 be the set of all such delegation mechanisms.

By (30), the agent’s and principal’s utilities, up to a strictly increasing affine transformation,
are given by

U(y,x) =

∫ y

y

(ỹ− x)F (dỹ) and V (y,x) =

∫ y

y

(αỹ− d(x))F (dỹ),

where F (y) =
c−1(y)− c−1(y)

c−1(y)− c−1(y)
.

(35)

Next, define the backward bias ν : Y →R as

ν(z) =


0, if z ∈ [y,x],∫ z

x
(αz − d(x̃))g(x̃)dx̃, if z ∈ (x,x],

αz −
∫ x

x
d(x̃)g(x̃)dx̃, if z ∈ (x, y].

(36)

The backward bias is introduced by Alonso and Matouschek (2008) and is frequently used in
the literature on linear delegation.19 In the equivalent persuasion problem, the same function
ν represents the principal’s indirect utility, which is widely used in the literature on linear
persuasion. Indeed, in the equivalent persuasion problem, the agent’s and principal’s utilities
are given by

UP (y,x) =

∫ x

x

(y− x̃)g(x̃)dx̃ and VP (y,x) =

∫ x

x

(αy− d(x̃))g(x̃)dx̃, (37)

and the state y has distribution F . For each distribution λ ∈∆(Y ), we have Eλ[UP (y,x)] =
UP (Eλ[y], x) and Eλ[VP (y,x)] = VP (Eλ[y], x), so the utilities depend on posterior beliefs only
through the posterior mean. Each posterior mean z ∈ Y induces the agent to choose decision
x∗(z) = x if z ≤ x, decision x∗(z) = z if z ∈ (x,x], and decision x∗(z) = x if z > x. Thus, the
principal’s indirect utility VP (z,x

∗(z)) is precisely ν(z) given by (36).
Consider a delegation mechanism π ∈ Π0 or π ∈ Π1. By Lemma 1 and Claim 2, π can be

extended to Y × Y such that (IC0)–(IC2) hold for all x, x̂ ∈ Y (rather than just in X). Next, let
a distribution Hπ on Y be given by20

Hπ(x) =

∫
Y

(1− π(y|x))F (dy), for all x ∈ Y , (38)

19The utilities in Alonso and Matouschek (2008) are given by (29) with c(s) = s and α = 1. In this case, the
agent’s and principal’s preferred decisions are x and d(x). Alonso and Matouschek (2008) define the backward bias
as ν(z) =G(z)(z − EG[d(x)|x≤ z]) for all z ∈ Y , which coincides with (36).

20It follows from Lemmas 1 and 3, and Claim 2 that Hπ is a distribution on Y .
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and let supp(Hπ) denote the support of Hπ .
We now present two simple claims which show that the delegation problem can be solved by

standard methods from the persuasion literature. Claim 3 shows that the principal’s expected
utility can be expressed as

∫
Y
ν(x)Hπ(dx).

CLAIM 3: For j = 0,1,

W (π) =

∫
Y

ν(x)Hπ(dx), for all π ∈Πj . (39)

Claim 4 shows that the delegation problem can be expressed as a maximization over distri-
butions H such that F is a mean-preserving spread of H . Although Claim 4 takes the same
form for standard delegation and delegation with outside option, the optimal mechanisms are
not the same, because the set Y and thus condition (MPS) differ in the two variants.

CLAIM 4: For j = 0,1, mechanism π maximizes W on Πj if and only if Hπ maximizes∫
Y
ν(x)H(dx) over distributions H that satisfy (MPS).

We now characterize optimal delegation mechanisms by adapting Theorem 6 in Dworczak
and Kolotilin (2024) from persuasion to delegation, and generalizing it to allow for nondif-
ferentiable functions ν and nonmonotone mechanisms π. Let ν ′ be the set of all generalized
derivatives of ν:

ν ′(x) =

[
lim inf

ε→0

ν(x+ ε)− ν(x)

ε
, limsup

ε→0

ν(x+ ε)− ν(x)

ε

]
, for all x ∈ Y .

As d is continuous and g is càdlàg, ν given by (36) has left and right derivatives, so ν ′(x) is
simply the interval between ν′(x−) and ν′(x+).

THEOREM 3: For j = 0,1, mechanism π maximizes W on Πj if and only if there exists a
selection ν′ from ν′ such that p : Y →R given by

p(y) = sup
x∈supp(Hπ)

(ν(x) + ν′(x)(y− x)) , for all y ∈ Y , (40)

satisfies

p(y)≥ ν(y), for all y ∈ Y , (41)∫
Y

p(y)F (dy) =

∫
Y

ν(x)Hπ(dx), (42)

Condition (42) in Theorem 3 can be simplified when π ∈ Πj is monotone (i.e., π(y|x) is
decreasing in x for all y ∈ Y ) or deterministic (i.e., π(y|x) ∈ {0,1} for all y ∈ Y and all
x ∈X). For a monotone π ∈Πj , define a joint distribution Jπ ∈∆(Y × Y ) as

Jπ(y,x) =

∫ y

y

(1− π(ỹ|x))F (dỹ), for all (y,x) ∈ Y × Y . (43)

For a deterministic π ∈Πj , there exists a corresponding compact delegation set B ⊂ Y and
agent’s best-response function y∗

B(x) ∈ argmaxy∈B U(y,x) such that π(y|x) = 1{y∗
B(x)< y}

for all y ∈ Y and all x ∈X . For each y ∈ Y , let

zB(y) = inf{ỹ ∈B ∪ {y} : ỹ ≥ y} and zB(y) = sup{ỹ ∈B ∪ {y} : ỹ < y},
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with the convention zB(y) = y, and let

x∗
B(y) = EF [y|y ∈ [zB(y), zB(y)]] =

y, if zB(y) = zB(y),∫ zB(y)

zB(y)
yF (dy)

F (zB(y))−F (zB(y))
, if zB(y)< zB(y).

(44)

REMARK 2: For j = 0,1, if π ∈Πj is monotone, then condition (42) simplifies to

p(y) = ν(x) + ν′(x)(y− x), for Jπ-almost all (y,x) ∈ Y × Y . (45)

For j = 0,1, if π ∈ Πj is deterministic with a corresponding compact delegation set B, then
condition (42) simplifies to

p(y) = ν(x∗
B(y)) + ν′(x∗

B(y))(y− x∗
B(y)), for all y ∈ Y . (46)

Theorem 3 with Remark 2 easily yield the optimality conditions for threshold delegation,
which permits all decisions on one side of a given threshold. Consider floor delegation which
permits all decisions above y∗. Recall that the set of decisions is Y0 = (y

0
, y0) in standard

delegation and Y0 = [y, y0) in delegation with outside option y. Let g be continuous on X , so
that ν′(x) is a singleton for all x ̸∈ {x,x}. First, Theorem 3 with Remark 2 immediately imply
that full discretion (i.e., y∗ ≤ x) is optimal if and only if ν is convex on Y0. Second, Corollary
1 shows when nontrivial floor delegation (i.e., y∗ > x) is optimal.

COROLLARY 1: Let y∗ ∈ (x, y0). Delegation set {y} ∪ [y∗, y0) in delegation with outside
option y (delegation set [y∗, y0) in standard delegation) is optimal if and only if

(a) ν is convex on [y∗, y0),
(b) there exists ν′(z∗) ∈ ν ′(z∗) such that ν(y)≤ ν(z∗)+ ν′(z∗)(y− z∗) for all y ≤ y∗ with

equality at y = y∗,
where z∗ =

∫ y∗

y
yF (dy)/(F (y∗) − F (y)) in delegation with outside option (z∗ ∈ (y

0
, x) in

standard delegation).

5.4. Related Literature on Linear Delegation

Recently, Kleiner et al. (2021) show that a standard delegation problem with quadratic utili-
ties (a special case of linear delegation with F (y) = y) simplifies to maximizing

∫
ν(x)H(dx)

over H satisfying (MPS), thereby indirectly establishing the connection to linear persuasion
where the same maximization problem arises (e.g., Kolotilin, 2018, Proposition 2). Instead,
our equivalence applies to the general class of linear persuasion, linear delegation (covering
both standard delegation and delegation with outside option), and linear discriminatory disclo-
sure problems. Moreover, our equivalence identifies a direct mapping between the primitives of
the equivalent problems (see Table I). Finally, thanks to Theorem 2, our equivalence holds on
the space of primitive mechanisms π, and thus on a narrower space of induced distributions H ,
as in Kleiner et al. The latter space is narrower, as every π induces a unique H , but not every H
is induced by a unique π. In particular, there exist H , distinct πP ∈ΠP and πD ∈ΠD inducing
H , and ν such that H uniquely maximizes

∫
ν(x)H(dx) subject to (MPS), but πP ̸∈ΠD and

πD ̸∈ ΠP . Thus, the equivalence is stronger on the space of π than on the space of H . Our
proof of the equivalence crucially relies on our Theorems 1 and 2, which have no counterparts
in Kleiner et al.
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The delegation literature has largely focused on the optimality of threshold delegation21 in
standard delegation, which corresponds to censorship in linear persuasion.22 The most general
result is due to Amador and Bagwell (2013, Propositions 1 and 2).23 Our approach easily yields
essentially the same result but under weaker differentiability assumptions (Corollary 1). We
allow for stochastic mechanisms, whereas Amador and Bagwell (2013) restrict to determinis-
tic mechanisms but permit money burning.24 However, allowing for money burning does not
change our conditions for the optimality of floor delegation if α ≤ 1, in which case money
burning is a costlier incentive tool than stochastic mechanisms.

Special cases of linear delegation with outside option are studied in Zapechelnyuk (2020),
Kartik et al. (2021), Amador and Bagwell (2022), and Saran (2024). As we consider the general
case of linear delegation, our conditions for the optimality of threshold delegation (Corollary
1) subsume the corresponding conditions in these papers.

6. NONLINEAR DETERMINISTIC CASE

In this section, we consider another popular subclass of the persuasion, delegation, and dis-
criminatory disclosure problems, referred to as deterministic problems. For K ∈ {P,D, I}, a
monotone mechanism πK ∈ ΠM is deterministic if it takes values 0 or 1, and a problem K is
deterministic if the principal is constrained to deterministic mechanisms.

As in Remark 1, we use variables y ∈ Y = [y, y] and x ∈X = [x,x] that have strictly posi-
tive densities f and g, and assume that (6) holds. In discriminatory disclosure, the agent’s and
principal’s utilities from action a= 1 are given by u(y,x) and v(y,x). In the other two prob-
lems, the utilities are determined by (6). In persuasion, the agent’s and principal’s utilities are
given by

UP (y,x) =

∫ x

x

u(y, x̃)g(x̃)dx̃ and VP (y,x) =

∫ x

x

v(y, x̃)g(x̃)dx̃. (47)

In delegation, the agent’s and principal’s utilities are given by

UD(y,x) =

∫ y

y

u(ỹ, x)f(ỹ)dỹ and VD(y,x) =

∫ y

y

v(ỹ, x)f(ỹ)dỹ. (48)

We impose strict single-crossing assumptions: u is strictly upcrossing in y if, for each x ∈X ,

u(y1, x)≥ 0 =⇒ u(y2, x)> 0 whenever y2 > y1,

and u is strictly aggregate downcrossing in x if, for each probability distribution λ ∈∆(Y ),∫
Y

u(y,x1)λ(dy)≤ 0 =⇒
∫
Y

u(y,x2)λ(dy)< 0 whenever x2 > x1.

21The delegation literature also shows when interval delegation (which permits all decisions in an interval) and gap
delegation (which prohibits all decisions in an interval) are optimal. These results easily follow from our Theorem 3
with Remark 2 (see Kolotilin and Zapechelnyuk, 2019, Proposition 2).

22Censorship in linear persuasion is studied, among others, by Kamenica and Gentzkow (2011), Kolotilin (2015),
Gentzkow and Kamenica (2016), Kolotilin et al. (2017), Kolotilin (2018), Dworczak and Martini (2019), Kleiner
et al. (2021), Kolotilin et al. (2022), and Arieli et al. (2023).

23See also Amador et al. (2018). Alonso and Matouschek (2008) study the case with quadratic utilities (F (y) = y).
More specialized cases are studied, among others, in Holmström (1977, 1984), Melumad and Shibano (1991), and
Martimort and Semenov (2006).

24Goltsman et al. (2009), Kováč and Mylovanov (2009), and Kleiner et al. (2021) also allow for stochastic mech-
anisms but restrict attention to quadratic utilities (F (y) = y).
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Under strict single-crossing, an incentive-compatible deterministic mechanism can be de-
scribed by a subset B of S, representing a monotone partition in persuasion, a delegation set in
delegation, and a menu of cutoff tests in discriminatory disclosure.25 We next show that the set
of all incentive-compatible deterministic mechanisms in the three problems is identified with

B = {B ⊂ Y :B is closed and {y, y} ⊂B}.
In persuasion, an incentive-compatible deterministic mechanism is described by a mono-

tone partition that divides the set of states Y into convex sets — singletons and intervals. The
agent observes which partition element contains the state and chooses an optimal decision. A
monotone partition is represented by a set B ∈ B of boundary points of all partition elements.
Specifically, let

zB(y) = inf{ỹ ∈B : ỹ ≥ y} and zB(y) = sup{ỹ ∈B : ỹ < y},
with the convention zB(y) = y. The partition element of B that contains state y ∈ Y is the sin-
gleton {y} (so the state is revealed) when zB(y) = zB(y), and it is the interval (zB(y), zB(y)]
(so the state is pooled with other states in that interval) when zB(y) < zB(y). For example,
if Y = [0,1] and B = [0,1/2] ∪ {1}, then all states in [0,1/2] are revealed, and all states in
(1/2,1] are pooled.

In delegation, an incentive-compatible deterministic mechanism is described by a delegation
set B ⊂ Y . The agent privately observes his type and chooses an optimal decision from the del-
egation set. As the agent can always choose extreme decisions y = y and y = y, these decisions
are included in B, so B ∈ B.

In discriminatory disclosure, an incentive-compatible deterministic mechanism is described
by a menu B ⊂ Y of cutoff tests. The agent privately observes his type x, chooses his preferred
cutoff test b from the menu B, observes whether the state y is below or above b, and chooses
an optimal action a ∈ {0,1}. As the agent can always ignore the test, the uninformative tests
b= y and b= y are included in B, so B ∈ B.

6.1. Equivalence

This section shows that in the case of deterministic mechanisms, our equivalence result takes
a simple form: for each set B ∈ B, the principal’s expected utility is the same in the three
equivalent problems. To state this result, we define the agent’s best-response function and the
principal’s expected utility in the three problems for each set B ∈ B. In persuasion with mono-
tone partition B, when the state is y, the agent optimally chooses decision given by

x∗
B(y) ∈ argmax

x∈X

{
UP (y,x), if zB(y) = zB(y),∫ zB(y)

zB(y)
UP (ỹ, x)f(ỹ)dỹ, if zB(y)< zB(y),

(49)

so the principal’s expected utility is

WP (B) =

∫
Y

VP (y,x
∗
B(y))f(y)dy, for all B ∈ B.

25Our analysis can be extended from strict single-crossing to single-crossing. Strict single crossing ensures that
the agent’s best-response correspondence is single valued almost everywhere in the three problems, and, thus, for all
B, the principal’s expected utility is also single valued. Without strict single-crossing, the agent’s best response and,
thus, the principal’s expected utility W (B) are generally set valued. In this case, by Aumann’s (1965) integration
of correspondences, Corollary 2 in Section 6.1 would equate the sets of the principal’s expected utilities in the three
problems for all B, as shown in Kolotilin and Zapechelnyuk (2019, Theorem 1′).
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In delegation with delegation set B, the agent with type x optimally chooses decision

y∗
B(x) ∈ argmax

y∈B

UD(y,x), (50)

so the principal’s expected utility is

WD(B) =

∫
X

VD(y
∗
B(x), x)g(x)dx, for all B ∈ B.

In discriminatory disclosure with menu of cutoff tests B, when the state is y, the agent with
type x optimally chooses action

a∗
B(y,x) =

{
a∗
0(x), if y ≤ b∗(x),

a∗
1(x), if y > b∗(x),

(51)

where (a∗
0(x), a

∗
1(x), b

∗(x)) ∈ argmax
(a0,a1,b)∈{0,1}2×B

a0

∫ b

y

u(y,x)f(y)dy+ a1

∫ y

b

u(y,x)f(y)dy,

so the principal’s expected utility is

WI(B) =

∫
X×Y

v(y,x)a∗
B(y,x)f(y)g(x)dydx, for all B ∈ B.

In the deterministic case, Theorem 1 with Remark 1 simplifies as follows.

COROLLARY 2: A deterministic persuasion problem (uP , vP , f), a deterministic delegation
problem (uD, vD, g), and a deterministic discriminatory disclosure problem (uI , vI , f, g) sat-
isfy WP (B) = WD(B) = WI(B) for all B ∈ B and all y∗

B , x∗
B and a∗

B given by (49)–(51)
if uP , uD , and uI are strictly upcrossing in y and strictly aggregate downcrossing in x, and
satisfy (6).

6.2. Optimization

Using the tools from the literature on nonlinear persuasion, this section derives two results
on optimal deterministic delegation.26 First, for general utility functions, Proposition 3 provides
a sufficient condition for the optimality of full discretion, which permits all decisions. Second,
for a special class of nonlinear utility functions, Proposition 4 provides necessary and sufficient
conditions for the optimality of any candidate delegation set.

Our analysis applies to our delegation problem, as well as to standard delegation and del-
egation with outside option, after applying compactification analogously to Section 5.2 (see
Appendix A). We henceforth restrict attention to our delegation problem.

For each decision y ∈ Y , define x∗(y) = argmaxx∈X

∫ x

x
u(y, x̃)g(x̃)dx̃. In the interior case,

x∗(y) is the type x whose preferred decision is y, so that u(y,x∗(y)) = 0.

26A promising avenue for future research is to establish new results in persuasion using tools from delegation.
In particular, the Lagrangian method developed by Amador and Bagwell (2013) is widely used to study delegation
problems with a nonlinear utility of the principal. Using our equivalence, this method can be applied to nonlinear
monotone persuasion problems, which are currently not well understood.
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PROPOSITION 3: Let g, v, and ux = ∂u/∂x be continuous functions. Delegation set B = Y
maximizes W on B if∫ x∗(y2)

x

v(y2, x̃)g(x̃)dx̃

u(y2, x)
≥

∫ x

x∗(y1)

v(y1, x̃)g(x̃)dx̃

−u(y1, x)
,

for all y1, y2 ∈ Y and all x ∈X such that u(y1, x)< 0< u(y2, x).

(52)

Proposition 3 adapts the results from the persuasion literature. Kolotilin (2018, Proposition
1(ii)) and Kolotilin et al. (2024, Theorem 5) show that full disclosure is optimal among all (and
thus among all monotone) persuasion mechanisms if, for all ρ ∈ (0,1) and all y1, y2 ∈ Y , the
principal prefers to split posterior λ that assigns probabilities ρ and 1− ρ to states y1 and y2
into two degenerate posteriors that assign probability 1 to y1 and y2.27 This condition can be
expressed as (52), because in persuasion the utilities are given by (47) and posterior λ induces
decision x if ρu(y1, x)+(1−ρ)u(y2, x) = 0. Thus, if (52) holds, then full discretion is optimal
among all monotone (and thus among all deterministic) delegation mechanisms by Corollary
2.28

We now show that condition (52) is weaker than common conditions for full discretion in
the delegation literature, and it applies to a broader class of utilities.

REMARK 3: Let X ⊂ Y , u(y,x) = y−x, and vy = ∂v/∂y be a continuous function.29 Then
(52) holds if (

min
y,x∈Y ×X

vy(y,x)

)
G(x) + v(x,x)g(x) is increasing in x on X ,

v(x,x)g(x)≥ 0 if x > y and v(x,x)g(x)≤ 0 if x < y.

(53)

Amador and Bagwell (2013, Proposition 1) and Kartik et al. (2021, Proposition 1) show
that, in standard delegation and delegation with outside option, full discretion is optimal if (53)
holds.30 Their Lagrangian method uses the envelope characterization of incentive compatibility,
which relies on u(y,x) = y−x, and the concavity of the Lagrangian, which relies on (53). Our
approach is valid for a general u and does not rely on the concavity of the Lagrangian.

Consider now a popular subclass of nonlinear problems referred to as linear∗ problems. For
comparability with the linear case of Section 5, we use variables s and t that are uniformly
distributed on S = T = [0,1], and replace y = s and x= t in the notation.

For K ∈ {P,D, I}, a problem (uK , vK) is linear∗ if

uK(s, t) = c(s)− b(t) and vK(s, t) = e(c(s))− βb(t),

where β ∈R, b and c are continuous and strictly increasing, and e is continuous.
(L∗)

In contrast to (L), where u and v are linear in c(s), here u and v are linear in b(t). W.l.o.g., we
normalize c(0) = 0 and c(1) = 1.

27Kolotilin (2018) and Kolotilin et al. (2024) assume that x∗(y) is interior for all y, but the result easily extends
to the general case with possible boundary solutions, as follows from the proof of Proposition 3.

28This result does not depend on f which determines the utilities in (48).
29In standard delegation and in delegation with outside option, X ⊂ Y follows from Propositions 1′ and 2′.
30See also Amador and Bagwell (2022) for related results in delegation with outside option.
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We now characterize optimal delegation sets in linear∗ delegation when b(t) = t. Define

η(s) =

∫ s

0

(
e(c(s̃))− βc(s̃)

2

)
ds̃,

and let conv η be the largest convex function on S such that conv η ≤ η. Next, for each delega-
tion set B ∈ B, define

ηB(s) =

{
η(s), if zB(s) = zB(s),

zB(s)−s

zB(s)−zB(s)
η(zB(s)) +

s−zB(s)

zB(s)−zB(s)
η(zB(s)), if zB(s)< zB(s).

PROPOSITION 4: Suppose that (L∗) holds with b(t) = t. Delegation set B maximizes W on
B if and only if ηB = conv η.

To prove Proposition 4, we apply Corollary 2 to recast this delegation problem as a per-
suasion problem, and then solve it using the standard ironing technique of Myerson (1981).
A similar characterization of optimal monotone partitions in linear∗ persuasion, albeit in a
slightly less general case, appears in Rayo (2013, Theorem 1) and Onuchic and Ray (2023,
Theorem 1). Proposition 4 also complements the characterization of optimal delegation sets in
Kartik et al. (2021). They consider linear∗ delegation with outside option in the special case
where c(s) = s, and the principal’s utility is type-independent (β = 0) and concave in y (e(y)
is increasing), but, unlike in Proposition 4, they allow nonlinear b(t).

7. APPLICATION TO MONOPOLY REGULATION

This section illustrates how the results in Sections 5.3 and 6.2 can be used to characterize
the optimality of a quantity floor (which is equivalent to a price cap) in the classical problem
of monopoly regulation.

There are a unit mass of consumers with unit demand, a monopolist (agent), and a regulator
(principal). The monopolist chooses a quantity s ∈ S = [0,1] at cost (1− x)s, where x ∈ [0,1]
is the monopolist’s private type that has a distribution G with a continuously differentiable and
strictly positive density g. The monopolist’s profit is given by

U(s,x) = p(s)s− (1− x)s, (54)

where p(s) is the inverse demand. Assume that p(s) is twice continuously differentiable and
strictly decreasing on S, and the monopolist’s marginal revenue p(s) + p′(s)s is nonnegative
and strictly decreasing on S. For convenience, let p(0) = 1 and p(1)+p′(1) = 0, so that p(s)+
p′(s)s ∈ [0,1].31

The regulator chooses a delegation set to maximize the weighted sum of the consumer and
producer surpluses:

V (s,x) =

∫ s

0

(p(s̃)− p(s))ds̃+ βU(s,x), (55)

where β ∈ [0,1] is a parameter. Quantities s= 0 and s= 1 are always included in the delegation
set, because s= 0 is the monopolist’s outside option, whereas s= 1 is either strictly worse than
s= 0 for the monopolist or it is the first-best choice for the principal, as Claim 5 shows.

31The substantive assumption here is that the marginal revenue is nonnegative. The interval of relevant types is
equal to the interval of values of the marginal revenue. The types outside this interval are irrelevant as they make
trivial choices. We normalize this interval to be [0,1].
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CLAIM 5: For each x ∈ [0,1], either U(1, x)<U(0, x) or V (s,x) is increasing in s.

Let c(s) = 1− p(s)− p′(s)s and e(c(s)) = p′(s)s+ βc(s).32 We have

u(s,x) =−∂U(s,x)

∂s
= c(s)− x and v(s,x) =−∂V (s,x)

∂s
= e(c(s))− βx.

This problem is linear∗ (i.e., (L∗) holds). This problem is also linear (i.e., (L) holds) if the elas-
ticity of the slope of the inverse demand, p′′(s)s/p′(s), is constant. Then the inverse demand
takes the form of p(s) = 1− sk/(k+ 1) for k > 0, in which case, letting y = sk, we obtain

u(y,x) = y− x and v(y,x) =

(
β − k

k+ 1

)
y− βx.

We now show that optimal delegation takes the form of a quantity floor (that is, any quantity
above a certain threshold is permitted) if (1) the elasticity of the slope of the inverse demand is
constant, the density of types is log-concave, and the weight on the producer surplus is not too
large33 or (2) this elasticity is decreasing and the density of types is uniform.34

COROLLARY 3: There exists s∗ ∈ [0,1] such that delegation set {0} ∪ [s∗,1] is optimal if
one of the following two conditions hold:
(1) p′′(s)s/p′(s) = k− 1 for some k > 0, g′(x)/g(x) is decreasing, and β ≤ 2k/(k+ 1);
(2) p′′(s)s/p′(s) is decreasing and g(x) = 1.
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APPENDIX

APPENDIX A: COMPACTIFICATION IN DETERMINISTIC DELEGATION

Analogously to Section 5.2, this section shows that, under Inada-type assumptions, standard
deterministic delegation and deterministic delegation with outside option can be represented as
our deterministic delegation problem.

In standard delegation, the set of decisions is Y0 = (y
0
, y0). In delegation with outside option,

the set of decisions is Y0 = [y, y0), and the agent can always choose the outside option y.
Say that a delegation set B ⊂ Y0 is undominated by V0 :X →R if

V (y∗
B(x), x)≥ V0(x), for some x ∈X .

Propositions 1′ and 2′ are the deterministic counterparts of Propositions 1 and 2.

PROPOSITION 1′: Suppose that Y0 = (y
0
, y0)⊆R, and

max
x∈X

U(y,x)→−∞ and max
x∈X

V (y,x)→−∞ as y→ y
0

and y→ y0. (56)

For each continuous V0, there exist y, y ∈ Y0 (with u(y,x)< 0< u(y,x)) such that the follow-
ing holds. For each delegation set B that is undominated by V0, there exists another delegation
set B̃ ⊂ Y = [y, y] with {y, y} ⊂ B̃ such that y∗

B̃
(x) = y∗

B(x) for almost all x ∈X .

PROOF: Define

Z =

{
y ∈ Y0 : max

x∈X
V (y,x)≥min

x∈X
V0(x)

}
.

If Z is empty, then every B ⊂ Y0 is dominated by V0, and the proposition holds trivially.
Assume henceforth that Z is nonempty. Let z = inf Z and z = supZ . By (56), compactness of
X , and continuity of V and V0, we have y

0
< z ≤ z < y0.

Next, let ε > 0 and define

Ỹ =

{
y ∈ Y0 : max

x∈X
U(y,x)≥ min

x∈X,z∈[z,z]
U(z,x)− ε

}
.

As [z, z]⊂ Ỹ , Ỹ is nonempty. Let y = inf Ỹ and y = sup Ỹ . By (56), compactness of X and
[z, z], and continuity of U , we have z > y > y

0
and z < y < y0. Let Y = [y, y]. Thus, each

type of the agent strictly prefers every decision in [z, z] to every decision outside of Y . For
each B ⊂ Y0 undominated by V0, let B̃ = (B ∩ Y )∪ {y, y}. Then, by (50) and strict aggregate
downcrossing of u in x, we have y∗

B̃
(x) = y∗

B(x) for almost all x ∈X . Q.E.D.

PROPOSITION 2′: Suppose that Y0 = [y, y0)⊂R and

max
x∈X

U(y,x)→−∞ as y→ y0. (57)

Then there exists y ∈ Y0 (with u(y,x)< 0) such that the following holds. For each delegation
set B with y ∈B, there exists another delegation set B̃ ⊂ Y = [y, y] with {y, y} ⊂ B̃ such that
y∗
B̃
(x) = y∗

B(x) for almost all x ∈X .
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PROOF: Let ε > 0 and define

y = inf

{
y ∈ Y0 : max

x∈X
U(y,x)≥min

x∈X
U(y,x)− ε

}
.

By (57), compactness of X and continuity of U , we have y < y < y0. Let Y = [y, y]. Thus, each
type of the agent strictly prefers decision y to every decision outside of Y . For each B ⊂ Y0

with y ∈ B, let B̃ = (B ∩ Y ) ∪ {y}. Then, by (50) and strict aggregate downcrossing of u in
x, we have y∗

B̃
(x) = y∗

B(x) for almost all x ∈X . Q.E.D.

APPENDIX B: PROOFS

B.1. Proof of Lemma 4

Consider a sequence of intervals (xn, xn)⊂ Y with n ∈N. For each n ∈N, let

Qn(xn+1|xn) =

{
δxn , if xn /∈ (xn, xn),
xn−xn

xn−xn
δxn

+
xn−xn

xn−xn
δxn , if xn ∈ (xn, xn),

where δx, with x ∈ Y , denotes the degenerate distribution at x. Let H1 = H , and for each
n ∈ N, let Hn+1(xn+1) =

∫
Qn(xn+1|xn)Hn(dxn). This construction gives a finitely sup-

ported conditional distribution Pn(xn+1|x) such that
∫
Pn(xn+1|x)H(dx) =Hn+1(xn+1) for

all xn+1 ∈ Y , and
∫
xn+1Pn(dxn+1|x) = x for all x ∈ Y . In the proof of their Theorem 4.1,

Müller and Rüschendorf (2001) show that a sequence of intervals (xn, xn) can be chosen in
such a way that Pn(·|x) converges weakly to P (·|x) such that

∫
P (y|x)H(dx) = F (y) for all

y ∈ Y , and
∫
yP (dy|x) = x for all x ∈ Y .

Since the likelihood ratio is closed with respect to weak convergence (e.g., Müller and
Stoyan, 2002, Theorem 1.4.9), it remains to show that Pn(xn+1|x) increases in x with respect
to the likelihood ratio order. Since Pn(xn+1|x) has a finite support, by induction, it suffices to
show that, for all intervals (z, z)⊂ Y , all finite sets Z ⊂ Y , and all discrete probability densities
h1(·) and h2(·) supported on Z that are ordered with respect to the likelihood ratio order,

h1(y1)h2(y2)≥ h2(y1)h1(y2), for all y2 > y1, (58)

we have that discrete probability densities h̃l(·), with l = 1,2, supported on Z̃ = Z ∪ {z, z} \
(z, z) and defined by

h̃l(y) =


∑

z̃∈Z∩[z,z] hl(z̃)
z−z̃
z−z

, if y = z,

hl(y), if y /∈ [z, z],∑
z̃∈Z∩[z,z] hl(z̃)

z̃−z

z−z
, if y = z,

(59)

are also ordered with respect to the likelihood ratio order,

h̃1(y1)h̃2(y2)≥ h̃2(y1)h̃1(y2), for all y2 > y1,

This follows from direct calculations for all possible cases with y2 > y1. The only non-trivial
case is where y1 = z and y2 = z. In this case, we have

h̃1(z)h̃2(z)− h̃2(z)h̃1(z) =

 ∑
z̃∈Z∩[z,z]

h1(z̃)
z − z̃

z − z

 ∑
z̃∈Z∩[z,z]

h2(z̃)
z̃ − z

z − z


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−

 ∑
z̃∈Z∩[z,z]

h2(z̃)
z − z̃

z − z

 ∑
z̃∈Z∩[z,z]

h1(z̃)
z̃ − z

z − z


=

∑
y1,y2∈Z∩[z,z]: y1<y2

(h1(y1)h2(y2)− h2(y1)h1(y2))
y2 − y1
z − z

≥ 0,

where the first equality is by (59), the second equality is by rearrangement, and the inequality
is by (58). Q.E.D.

B.2. Proofs of Claims 1–4

PROOF OF CLAIM 1: It suffices to show that Hπ̂(x) =H(x) and Uπ̂(x) =
∫ y

x
(1−H(x̃))dx̃

for all x ∈ Y . Indeed, for all x ∈ Y , we have

Hπ̂(x) =

∫
Y

(1− π̂(y,x))F (dy) =

∫
Y

P (x|y)F (dy) =H(x),

where the first equality is by definition, the second equality is by (28), and the third equality is
by (25) and Bayes’ rule. Moreover, for all x ∈ Y , we have

Uπ̂(x) =

∫
Y

(y− x)π̂(y,x)F (dy) =

∫
Y

(y− x)(1− P (x|y))F (dy)

=

∫
Y

(y− x)

(∫
(x,y]

P (dx̃|y)
)
F (dy) =

∫
(x,y]

∫
Y

(y− x)P (dy|x̃)H(dx̃)

=

∫
(x,y]

(x̃− x)H(dx̃) =

∫
(x,y]

(1−H(x̃))dx̃,

where the first equality is by the definition, the second equality is by (28), the third equality is
by the Leibniz rule, the fourth equality is by Bayes’ rule, the fifth equality is by (26), and the
sixth equality is by integration by parts. Q.E.D.

PROOF OF CLAIM 2: Let πI satisfy (ICI). Since πI is right-continuous in t, it follows that
π̃ given by π̃(y,x) = πI(F (y),G(x)) for all (y,x) ∈ Y × Y satisfies (IC) for all x, x̂ ∈ [x,x).
By the standard argument, (IC) with (x, x̂) ∈ {(x1, x2), (x2, x1)} and (â0, â1) = (0,1) yields

−(1−Hπ̃(x1))(x2 − x1)≤ Uπ̃(x2)−Uπ̃(x1)≤−(1−Hπ̃(x2))(x2 − x1),

for all x≤ x1 < x2 < x.

Hence, Hπ̃ is increasing on [x,x), and, by the envelope theorem,

Uπ̃(x2)−Uπ̃(x1) =−
∫ x2

x1

(1−Hπ̃(x̃))dx̃, for all x≤ x1 < x2 < x. (60)

Since Hπ̃ and Uπ̃ are monotone on [x,x), the left limits Hπ̃(x−) = limx↑xHπ̃(x) and
Uπ̃(x−) = limx↑xUπ̃(x) exist. Moreover, there exists a left-continuous function ϕ : Y → [0,1]
such that Hπ̃(x−) =

∫
Y
(1− ϕ(y))F (dy) and Uπ̃(x−) =

∫
Y
(y− x)ϕ(y)F (dy).



PERSUASION MEETS DELEGATION 37

Let

x∗ =min

{
x ∈ [y,x] : Uπ̃(x) + (1−Hπ̃(x))(x− x)≥

∫
Y

(y− x)F (dy)

}
,

x∗ =max{x ∈ [x, y] : Uπ̃(x−) + (1−Hπ̃(x−))(x− x)≥ 0} ,

which are well-defined because Uπ̃(x) ≥
∫
Y
(y − x)F (dy) by (IC) with (â0, â1) = (1,1) and

Uπ̃(x−)≥ 0 by (IC) with (â0, â1) = (0,0). Consider π given for each (y,x) ∈ Y × Y by

π(y,x) =



1, if x ∈ [y,x∗)

π̃(y,x), if x ∈ [x∗, x),

π̃(y,x), if x ∈ [x,x),

ϕ(y), if x ∈ [x,x∗),

0, if x ∈ [x∗, y],

(61)

Since π(y,x) = π̃(y,x) for all (y,x) ∈ Y × [x,x), we have Hπ(x) = Hπ̃(x) and Uπ(x) =
Uπ̃(x) for all x ∈ [x,x). By (61) and the monotonicity of Hπ̃ on [x,x), Hπ is increasing on Y .

Next, we have:

Uπ(x) = 0 =

∫ y

x

(1−Hπ(x̃))dx̃, for all x ∈ [x∗, y], (62)

where the equalities are by the definition of π, Hπ , and Uπ;

Uπ(x) = (x∗ − x)(1−Hπ(x)) =

∫ y

x

(1−Hπ(x̃))dx̃, for all x ∈ [x,x∗), (63)

where the first equality is by the definition of π, Hπ , Uπ , and x∗, and the second is by (62);

Uπ(x) = Uπ(x) +

∫ x

x

(1−Hπ̃(x̃))dx̃=

∫ y

x

(1−Hπ̃(x̃))dx̃, for all x ∈ [x,x), (64)

where the first equality is by (60) and the definition of π(y,x), and the second is by (63);

Uπ(x) = Uπ(x) + (x− x)(1−H(x)) =

∫ y

x

(1−Hπ̃(x̃))dx̃, for all x ∈ [x∗, x), (65)

where the first equality is by the definition of π, Hπ , and Uπ , and the second is by (64);

Uπ(x) = Uπ(x
∗) + (x∗ − x)(1−H(y)) =

∫ y

x

(1−Hπ̃(x̃))dx̃, for all x ∈ [y,x∗), (66)

where the first equality is by the definition of π, Hπ , Uπ , and x∗, and the second is by (65);

Uπ(y) =

∫
Y

(y− y)F (dy) =

∫
Y

(1− F (y))dy, (67)

where the first equality is by the definition of π and Uπ , and the second is by integration by
parts. Since π satisfies (24), it satisfies (IC) by Lemma 3. Q.E.D.
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PROOF OF CLAIM 3: Let j = 0,1 and let π ∈Πj . The principal’s interim utility is

Vπ(x) = α

∫ y

x

(1−Hπ(x̃))dx̃+ (αx− d(x))(1−Hπ(x))

=−αx

∫
(x,y]

Hπ(dx̃) + α

∫
(x,y]

x̃Hπ(dx̃) + (αx− d(x))

∫
(x,y]

Hπ(dx̃) (68)

=

∫
(x,y]

(αx̃− d(x))Hπ(dx̃), for all x ∈X,

where the first equality is by (22), Lemmas 1 and 3, and Claim 2, the second equality is by
integration by parts, and the last equality is by rearrangement. So, the principal’s expected
utility is

W (π) =

∫
X

(∫
(x,y]

(αx̃− d(x))Hπ(dx̃)

)
g(x)dx

=

∫
X

(∫ x̃

x

(αx̃− d(x))g(x)dx

)
Hπ(dx̃) +

∫
(x,y]

(∫
X

(αx̃− d(x))g(x)dx

)
Hπ(dx̃)

=

∫
Y

ν(x̃)Hπ(dx̃),

where the first equality is by (68) and the definition of W (π), the second equality is by Fubini’s
theorem, and the third equality is by the definition of ν. Q.E.D.

PROOF OF CLAIM 4: Let j = 0,1 and let π ∈Πj .
If. Suppose that Hπ maximizes

∫
Y
ν(x)H(dx) over distributions H that satisfy (MPS). We

show that the principal’s expected utility is higher under π than under any π̃ ∈Πj . As π̃ ∈Πj ,
it satisfies (IC0)–(IC2). Observe that Hπ and Hπ̃ satisfy (MPS) by Lemmas 1 and 3, Claim 2,
and condition (23). The claim follows from

W (π̃) =

∫
Y

ν(x)Hπ̃(dx)≤
∫
Y

ν(x)Hπ(dx) =W (π),

where the equalities hold by Claim 3, and the inequality holds by the optimality of Hπ . Hence
π is optimal on Πj .

Only if. Suppose that π is optimal on Πj . Consider any distribution H on Y that satisfies
(MPS). By Lemma 1 and Claim 1, there exists a (monotone) delegation mechanism π̂ on Y ×Y
with Hπ̂ =H that satisfies (IC0)–(IC2) for all x, x̂ ∈ Y . We have∫

Y

ν(x)Hπ(dx) =W (π)≥W (π̂) =

∫
Y

ν(x)Hπ̂(dx) =

∫
Y

ν(x)H(dx),

where the first and second equalities are by Claim 3, the inequality is by the optimality of π,
and the third equality is by Hπ̂ =H . Thus, Hπ maximizes

∫
Y
ν(x)H(dx) over distributions H

that satisfy (MPS). Q.E.D.

B.3. Proofs of Propositions 1 and 2

To simplify notation, we prove Propositions 1 and 2 using the original decision variable s
with S = R in standard delegation and S = [s,∞) in delegation with outside option. When
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we refer to constraints (IC0)–(IC2) and conditions (33)–(34), it is understood that they are
expressed in variable s rather than y.

We first introduce some notations and prove a lemma. Let k : X → R and ℓ : X → R be
continuous functions. Define

Z =

{
s ∈ S : max

x∈X

(
k(x)s− ℓ(x)−C(s)

)
≥ 0

}
,

z = inf Z, z = supZ.

(69)

Note that z and z can be infinite if Z is unbounded or empty. Also, define

Λ=

{
λ ∈∆(S) : max

x∈X
Eλ

[
k(x)s− ℓ(x)−C(s)

]
≥ 0

}
. (70)

CLAIM 6: If z and z are finite, and

max
x∈X

(
k(x)z − ℓ(x)−C(z)

)
= 0 and max

x∈X

(
k(x)z − ℓ(x)−C(z)

)
= 0, (71)

then, for each λ ∈ Λ, there exists λ̂ ∈ Λ such that supp(λ̂) ⊂ [z, z], Eλ̂[s] = Eλ[s], and
Eλ̂[C(s)] = Eλ[C(s)].

PROOF: Let L(s) =maxx∈X

(
k(x)s− ℓ(x)

)
. For all s ∈ S and all λ ∈∆(S), we have

max
x∈X

(
k(x)s− ℓ(x)−C(s)

)
= L(s)−C(s),

max
x∈X

Eλ

[
k(x)s− ℓ(x)−C(s)

]
= L(Eλ[s])−Eλ[C(s)].

(72)

Fix λ ∈ Λ. We have

0≤ L(Eλ[s])]−Eλ[C(s)]≤ L(Eλ[s])]−C(Eλ[s]),

where the first inequality is by (72) and λ ∈ Λ, and the second inequality is by the convexity
of C . Then, by (72) and the definition of z and z, Eλ[s] ∈ [z, z]. Moreover, if Eλ[s] = z or
Eλ[s] = z, then λ= δz , so λ̂= λ is as required. Assume henceforth that z < Eλ[s]< z. Let

θ =
Eλ[s]− z

z − z
and τ =

(1− θ)C(z) + θC(z)−Eλ[C(s)]

(1− θ)C(z) + θC(z)−C(Eλ[s])
.

We claim that τ ∈ [0,1]. Indeed, the numerator is smaller than the denominator because C is
convex. Moreover, the denominator is strictly positive because z < Eλ[s]< z and C is strictly
convex. Finally, the numerator is positive, because

(1− θ)C(z) + θC(z)−Eλ[C(s)] = (1− θ)L(z) + θL(z)−Eλ[C(s)]

≥ (1− θ)L(z) + θL(z)−L(Eλ[s])≥ 0,

where the equality is by (71), the first inequality is by the definition of Λ, and the second
inequality is by the convexity of L(s) and the definition of θ, which implies that (1−θ)z+θz =
Eλ[s].
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Let λ̂ ∈ Λ be given by

λ̂= τδEλ[s] + (1− τ)(1− θ)δz + (1− τ)θδz.

By construction, supp(λ̂) ⊂ [z, z]. Moreover, by the definition of θ and τ , we have Eλ̂[s] =
Eλ[s] and Eλ̂[C(s)] = Eλ[C(s)]. Q.E.D.

PROOF OF PROPOSITION 1: Let k(x) = d(x)/α and ℓ(x) = V0(x)/α. By (29), we have

V (s,x)− V0(x) = α
(
k(x)s− ℓ(x)−C(s)

)
.

Observe that Z ⊂ R and Λ ⊂∆(R), given by (69) and (70), are the sets of deterministic and
stochastic decisions that are undominated by V0.

We now show that z and z, given by (69), are finite. If Z is empty, that is, V (s,x)−V0(x)< 0
for all s ∈ R and all x ∈ X , then there is no mechanism that is undominated by V0, and the
proposition holds trivially. Assume henceforth that Z is nonempty, and thus z ≤ z. By (33) and
continuity of d and V0, we have z >−∞ and z <∞.

Next, define

s∗ = inf

{
s ∈R : max

x∈X,z∈[z,z]
(U(s,x)−U(z,x))≥ 0

}
,

s∗ = sup

{
s ∈R : max

x∈X,z∈[z,z]
(U(s,x)−U(z,x))≥ 0

}
.

By (33) and compactness of [z, z], we have z ≥ s∗ >−∞ and z ≤ s∗ <∞. Let S∗ = [s∗, s∗].
By the definition of S∗, each type of the agent strictly prefers every decision in [z, z] — and,
thus, every lottery over [z, z] — to every decision s ̸∈ S∗.

Let π be a mechanism that satisfies (IC0) and is undominated by V0. Because z and z are
finite and S =R, condition (71) of Claim 6 is satisfied. Thus, by Claim 6, there exists a mech-
anism π̃ such that supp(π̃)⊂ [z, z]⊂ S∗, and

Eπ̃(·|x)[s] = Eπ(·|x)[s] and Eπ̃(·|x)[C(s)] = Eπ(·|x)[C(s)], for all x ∈X.

By (29), equalities (31) hold for all x ∈X . Finally, let ε1, ε2 > 0 be such that c(s∗ − ε1)< x
and c(s∗ + ε2)> x, and let Y = [y, y] = [c(s∗ − ε1), c(s

∗ + ε2)]. By the definition of s∗ and s∗

and (33), π̃ satisfies (IC1) and (IC2) with strict inequalities. Q.E.D.

PROOF OF PROPOSITION 2: Let k(x) = x and ℓ(x) = xs−C(s). Thus, by (29), we have

U(s,x)−U(s,x) = k(x)s− ℓ(x)−C(s). (73)

Observe that Z ⊂ [s,∞] and Λ⊂∆([s,∞)), given by (69) and (70), are the sets of determin-
istic and stochastic decisions that are preferred to the outside option s by at least one type of
the agent.

Let π be a mechanism that satisfies (IC0)–(IC1). Observe that z = s, and, by (34), we have
z <∞. Then, by S = [s,∞), (69), and (73), the condition (71) of Claim 6 is satisfied. Thus,
by Claim 6, there exists a mechanism π̃ such that supp(π̃)⊂ [z, z], and

Eπ̃(·|x)[s] = Eπ(·|x)[s] and Eπ̃(·|x)[C(s)] = EπD(·|x)[C(s)], for all x ∈X.

By (29), equalities (31) holds for all x ∈X . Finally, let ε > 0 be such that c(z + ε) > x, and
let Y = [y, y] = [c(z), c(z + ε)]. By the definition of z and (34), π̃ satisfies (IC2) with strict
inequality. Q.E.D.
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B.4. Proof of Theorem 3

Let j = 0,1 and let π ∈Πj . We first prove three simple claims.

CLAIM 7: Let ν′ ∈ ν′. If p satisfies (40), then it is continuous and convex.

PROOF: Let p be given by (40). Then |ν′(x)| ≤ L for all x ∈ Y with L ∈R given by

L= sup
x∈Y

|(αx− d(x))g(x) + αG(x)|,

where L ∈R, because d is continuous, g is càdlàg, and Y is compact. Hence, by (40), for each
y ∈ Y , there exists a converging sequence xn in supp(Hπ), with converging ν′(xn), such that

p(z)≥ lim
n→∞

(ν(xn) + ν′(xn)(z − xn)), for all z ∈ Y , with equality at z = y. (74)

Then, p is continuous, because, by (74), for all z ∈ Y ,

p(y)− p(z)≤ lim
n→∞

(ν(xn) + ν′(xn)(y− xn)− ν(xn)− ν′(xn)(z − xn))

= lim
n→∞

ν′(xn)(y− z)≤ L|y− z|.

Also, p is convex, since, by (74), for all z, z′ ∈ Y and all ρ ∈ [0,1] with ρz + (1− ρ)z′ = y,

p(y)− ρp(z)− (1− ρ)p(z′)≤ lim
n→∞

ν′(xn)(y− ρz − (1− ρ)z′) = 0. Q.E.D.

CLAIM 8: If p is convex and satisfies (41) and (42), then, for all distributions H on Y that
satisfy (MPS), we have∫

Y

ν(x)H(dx)≤
∫
Y

p(x)H(dx)≤
∫
Y

p(y)F (dy) =

∫
Y

ν(x)Hπ(dx). (75)

PROOF: Let p be convex and satisfy (41) and (42), and let H be a distribution that satisfies
(MPS). The first inequality holds by (41), the second inequality holds because p is convex and
H satisfies (MPS), and the equality holds by (42). Q.E.D.

CLAIM 9: If p is continuous and convex, and satisfies (41) and (42), then there exists a
selection ν′ from ν′ such that pπ given by (40) satisfies p(y)≥ pπ(y) for all y ∈ Y .

PROOF: Let p be continuous and convex, and satisfy (41) and (42). Observe that for H =
Hπ , all inequalities in (75) hold with equality. Hence, by the continuity of ν and p, we have

p(x) = ν(x), for all x ∈ supp(Hπ). (76)

Fix x ∈ supp(Hπ) such that x < y. For all y ∈ (x, y] and all ε ∈ (0,1], we have

p(y)− p(x)

y− x
≥ p(x+ ε(y− x))− p(x)

ε(y− x)
≥ ν(x+ ε(y− x))− ν(x)

ε(y− x)
,

where the first inequality is by the convexity of p and the second inequality is by (41) and (76).
Taking the limit ε ↓ 0 implies that

p(y)− p(x)

y− x
≥ ν′(x+), for all y ∈ (x, y].
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Since p is convex, taking the limit y ↓ x implies that p′(x+) is well defined and satisfies
p′(x+) ≥ ν′(x+). By a symmetric argument, for all x ∈ supp(Hπ) such that x > y, we have
that p′(x−) is well defined and satisfies p′(x−)≤ ν′(x−).

If x= y ∈ supp(Hπ), then

p(y)≥ p(y) + p′(y
+
)(y− y)≥ ν(y) + ν′(y)(y− y), for all y ∈ Y ,

where the first inequality is by the convexity of p and the second inequality is by (41) and
p′(y

+
)≥ ν′(y

+
) = ν′(y). Similarly, if x= y ∈ supp(Hπ), then

p(y)≥ p(y) + p′(y−)(y− y)≥ ν(y) + ν′(y)(y− y), for all y ∈ Y .

Finally, consider x ∈ supp(Hπ) such that x ∈ (y, y). By the convexity of p, we have p′(x−)≤
p′(x+). In both cases ν′(x−) < ν′(x+) and ν′(x−) ≥ ν′(x+), the inequalities p′(x−) ≤
ν′(x−), p′(x+) ≥ ν′(x+), and p′(x−) ≤ p′(x+) imply that there exists ν′(x) ∈ ν ′(x) such
that p′(x−)≤ ν′(x)≤ p′(x+). Then, by the convexity of p and (41), we have

p(y)≥ p(x)− p′(x−)(x− y)≥ ν(x)− ν′(x)(x− y), for all y < x,

p(y)≥ p(x) + p′(x+)(y− x)≥ ν(x) + ν′(x)(y− x), for all y > x.

In sum, there exists a selection ν′ from ν ′ such that

p(y)≥ ν(x) + ν′(x)(y− x), for all x ∈ supp(Hπ) and all y ∈ Y .

Thus, pπ given by (40) satisfies p≥ pπ . Q.E.D.

We now prove Theorem 3.
If. Suppose that there exists a selection ν′ from ν′ such that p given by (40) satisfies (41) and

(42). Then π is optimal by Claims 4, 7, and 8.
Only if. Suppose that π is optimal. By Claim 4, Hπ maximizes

∫
Y
ν(x)H(dx) over distribu-

tions H that satisfy (MPS). Thus, since ν given by (36) is Lipschitz continuous, Theorem 2 in
Dworczak and Martini (2019) implies that there exists a continuous and convex function p on
Y that satisfies (41) and (42). Next, by Claim 9, there exists a selection ν′ from ν′ such that pπ
given by (40) satisfies p(y)≥ pπ(y) for all y ∈ Y . Then,∫

Y

p(y)F (dy) =

∫
Y

ν(x)Hπ(dx)≤
∫
Y

pπ(x)Hπ(dx)≤
∫
Y

pπ(y)F (dy)≤
∫
Y

p(y)F (dy),

where the equality holds by (42), the first inequality holds because pπ(x) ≥ ν(x) for all x ∈
supp(Hπ) by (40), the second inequality holds because pπ is convex by Claim 7 and Hπ

satisfies (MPS), and the last inequality holds by p≥ pπ . So all inequalities hold with equality.
Thus, p= pπ , by the continuity of p and pπ . Q.E.D.

B.5. Proof of Remark 2

Let j = 0,1 and let π ∈ Πj be monotone. The marginal distributions of Jπ are F and Hπ ,
because

Jπ(y, y) =

∫ y

y

(1− π(ỹ|y))F (dỹ) =

∫ y

y

F (dỹ) = F (y), for all y ∈ Y ,

Jπ(y,x) =

∫ y

y

(1− π(y|x))F (dy) =Hπ(x), for all x ∈ Y ,

(77)
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where the first equalities in both lines hold by (43), the second equality in the first line holds
by (IC1), and the second equality in the second line holds by (38).

Consider πP given by πP (x|y) = π(y|x) for all y ∈ Y and all x ∈ Y . By assumption, π(y|x)
is a monotone delegation mechanism, so it is increasing and left-continuous in y and decreasing
and right-continuous in x, and satisfies π(ỹ|y) = 0 by (IC1). Thus, πP is a monotone persuasion
mechanism. By the definition of persuasion mechanisms and (43),

Jπ(y,x) =

∫ y

y

(1− πP (x|ỹ))F (dỹ) = P(state < y,decision ≤ x), for all (y,x) ∈ Y × Y .

By Lemmas 1 and 2 and Claim 2, for all x̂ ∈ Y and Hπ-almost all x ∈ Y , we have∫
Y

(∫ x

y

(y− x̃)dx̃

)
πP (dy|x)≥

∫
Y

(∫ x̂

y

(y− x̃)dx̃

)
πP (dy|x). (78)

Condition (78) implies the first-order condition∫
Y

(y− x)πP (dy|x) = 0, for Hπ-almost all x ∈ Y .

Then, for all functions ϕ : Y →R, we have∫
Y ×Y

ϕ(x)(y− x)Jπ(dy,dx) =

∫
X

ϕ(x)

∫
Y

(y− x) (−πP (dy|x))Hπ(dx) = 0. (79)

Fix p ∈ Pπ . Then∫
Y

ν(x)Hπ(dx) =

∫
Y ×Y

ν(x)Jπ(dy,dx) =

∫
Y ×Y

(ν(x) + ν′(x)(y− x))Jπ(dy,dx)

≤
∫
Y ×Y

p(y)Jπ(dy,dx) =

∫
Y

p(y)F (dy),

(80)

where the first and last equalities are by (77), the second equality is by (79), and the inequality
is by (40). Thus, (42) holds if and only if the inequality holds with equality, which is equivalent
to (45).

Let j = 0,1, let π ∈Πj be deterministic, and let B ⊂ Y be a corresponding compact delega-
tion set. Then an extension of π from Y ×X to Y ×Y that satisfies (IC0)–(IC2) for all x, x̂ ∈ Y
is given by

π(y|x) = 1{x∗
B(y)> x}, for all (y,x) ∈ Y × Y . (81)

Then, by (38), (43) and (81),

Hπ(x) =

∫
Y

1{x∗
B(y)≤ x}F (dy) and Jπ(y,x) =

∫ y

y

1{x∗
B(ỹ)≤ x}F (dỹ),

for all y ∈ Y and all x ∈ Y .

Since f(y)> 0 for all y ∈ Y and Hπ is a distribution of x∗
B(y) where y has distribution F , we

have

x∗
B(y) ∈ supp(Hπ), for all y ∈ Y . (82)
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We thus obtain∫
Y

ν(x)Hπ(dx) =

∫
Y ×Y

ν(x)Jπ(dy,dx) =

∫
Y ×Y

(ν(x) + ν′(x)(y− x))Jπ(dy,dx)

=

∫
Y

(ν(x∗
B(y)) + ν′(x∗

B(y))(y− x∗
B(y)))F (dy)≤

∫
Y

p(y)F (dy),

(83)

where the first equality is by (77), the second equality is by (79), the third equality is because
Jπ is a joint distribution of (y,x∗

B(y)) where y has distribution F , and the inequality is by (40)
and (82). Thus, (42) holds if and only if inequality (83) holds with equality, which is equivalent
to (46) by (40) and the continuity of p on Y . Q.E.D.

B.6. Proof of Corollary 1

We first prove Corollary 1 for delegation with outside option, and then explain how the proof
changes in standard delegation.

Only if. Suppose that delegation set {y}∪ [y∗, y0) is optimal. As follows from Proposition 2,
there exists Y = [y, y]⊂ [y, y0), such that the agent’s best response for all x ∈X is the same
under delegation sets {y} ∪ [y∗, y0) and B = {y} ∪ [y∗, y]. By (44), we have

x∗
B(y) =

{
y, if y ≥ y∗,

z∗, if y < y∗,
where z∗ =

1

F (y∗)− F (y)

∫ y∗

y

F (dy).

Hence, by (46), we have

p(y) =

{
ν(y), for all y ∈ (y∗, y],
ν(z∗) + ν′(z∗)(y− z∗), for all y ∈ [y, y∗].

(84)

We thus obtain (a) by (40) and Claim 7, and (b) by (41).
If. Suppose that conditions (a) and (b) hold. Then, p given by (84) satisfies (40), (41), and

(46), so delegation set {y} ∪ [y∗, y0) is optimal.
In standard delegation, for the only if part, we instead apply Proposition 1 with V0 given by

(32) and observe that z∗ ∈ (y,x), because the agent with any type x ∈X strictly prefers y∗ to
y. The rest of the proof is the same. Q.E.D.

B.7. Proof of Corollary 2

Let B ∈ B be a monotone partition in persuasion. Since uP is strictly aggregate down-
crossing in x, x∗

B(y) given by (49) is uniquely defined for all y ∈ Y . Redefine x∗
B(y) = x,

which is w.l.o.g. because state y = y occurs with zero probability and is always revealed, as
zB(y) = zB(y) = y by definition. The corresponding persuasion mechanism is given by

πP (x|y) = 1{x∗
B(y)> x}, for all y ∈ Y and all x ∈X .

Observe that (i) πP is left-continuous in y, because partition intervals (zB(y), zB(y)] are closed
on the right; (ii) πP is right-continuous in x because πP is defined using a strict inequality;
(iii) πP satisfies the normalization πP (x|y) = 0 for all x ∈X because x∗

B(y) = x; (iv) πP is
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monotone, because uP is upcrossing in y and thus x∗
B(y) is increasing in y; (v) πP is incentive-

compatible, because the agent’s decision is optimal for each partition element, except possibly
for {y}. In sum, mechanism πP is monotone, deterministic, and incentive-compatible.

Consider deterministic mechanisms πD and πI given by πD(y|x) = πI(y,x) = πP (x|y) for
all y ∈ Y and all x ∈X . Note that

πI(y,x) = πD(y|x) = 1{y∗(x)< y}, for all y ∈ Y and all x ∈X,

where y∗(x) =

{
inf{y ∈ Y : x∗

B(y)> x}, if x < x∗
B(y),

y, if x≥ x∗
B(y).

By Theorem 1, πD and πI are incentive-compatible and satisfy WP (πP ) = WD(πD) =
WI(πI). Since πD is incentive-compatible, we have, for almost all x ∈X ,

UD(y
∗(x), x)≥max{sup

x̂∈X

UD(y
∗(x̂), x),UD(y,x),UD(y,x)}=max

y∈B
UD(y,x),

and thus y∗(x) satisfies (50). Next, by strict aggregate downcrossing of uD in x, y∗
B that satisfies

(50) is uniquely defined for almost all x, so y∗ = y∗
B almost everywhere. Similarly, since πI is

incentive-compatible, we have, for almost all x ∈X ,∫ y

y∗(x)

uI(y,x)f(y)dy ≥ max
(a0,a1,b)∈{0,1}2×B

a0

∫ b

y

uI(y,x)f(y)dy+ a1

∫ y

b

uI(y,x)f(y)dy,

and thus a∗(y,x) = 1{y > y∗(x)} satisfies (51). Next, by strict aggregate downcrossing of uI

in x, for a∗
B that satisfies (51), we have a∗ = a∗

B almost everywhere. Q.E.D.

B.8. Proof of Proposition 3 and Remark 3

By Corollary 2, it suffices to show that if (52) holds, then full disclosure maximizes the
principal’s expected utility in the equivalent persuasion problem where the utilities are given
by (47). Under full disclosure, each state y ∈ Y is revealed, so the principal chooses decision
x∗(y). As decisions x /∈ [x∗(y), x∗(y)] can never be chosen, w.l.o.g., assume that X = [x,x] =
[x∗(y), x∗(y)]. For each x ∈X , let y∗(x) ∈ Y be such that u(y∗(x), x) = 0.

CLAIM 10: Define a function q :X →R by

q(x) =

{
0, if x= x and u(y,x)< 0 or x= x and u(y,x)> 0,

−v(y∗(x),x)g(x)
ux(y∗(x),x) , otherwise.

(85)

Condition (52) holds iff

E(y,x) = VP (y,x
∗(y))− VP (y,x)− q(x)u(y,x)≥ 0, for all y ∈ Y and all x ∈X. (86)

PROOF: Suppose that (86) holds. By rearrangement, for all y1, y2 ∈ Y and all x ∈X such
that u(y1, x)< 0< u(y2, x), we have

VP (y2, x
∗(y2))− VP (y2, x)

u(y2, x)
≥ q(x)≥ VP (y1, x)− VP (y1, x

∗(y1))

−u(y1, x)
, (87)
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yielding (52) by (47). Conversely, suppose that (52) holds. There are four cases to consider
depending on whether u(y,x) and u(y,x) are equal to 0. By symmetry, it suffices to consider
the case u(y,x)< 0 = u(y,x). Fix any x ∈ [x,x). By (47) and (52), we have

inf
y2>y∗(x)

VP (y2, x
∗(y2))− VP (y2, x)

u(y2, x)
≥ sup

y1<y∗(x)

VP (y1, x)− VP (y1, x
∗(y1))

−u(y1, x)
. (88)

Hence there exists q(x) ∈R bounded above by the left-hand side of (88) and below by the right-
hand side of (88), so (87) holds for all y1, y2 ∈ Y such that u(y1, x)< 0< u(y2, x). If x= x,
the right-hand side of (87) is 0, so (87) holds with q(x) = 0. If x ∈ (x,x), L’Hôpital’s rule for
y2 ↓ y∗(x) and y1 ↑ y∗(x) implies that q(x) = −v(y∗(x), x)g(x)/ux(y

∗(x), x). Rearranging
(87) yields E(y,x)≥ 0 for all y ̸= y∗(x), and thus for all y ∈ Y by continuity in y. Moreover,
by continuity in x, we have E(y,x)≥ 0 for all y ∈ Y . Q.E.D.

For each incentive-compatible persuasion mechanism πP , define

JπP
(y,x) = P(state < y,decision ≤ x) =

∫ y

y

(1− πP (x|ỹ))F (dỹ), for all (y,x) ∈ Y ×X.

If (52) holds, then so does (86), by Claim 10. Then, the principal gets a higher expected utility
under full disclosure than under πP , because

∫
VP (y,x)(−πP (dx|y)F (dy) =

∫
VP (y,x)JπP

(dy,dx)

=

∫
(VP (y,x) + q(x)u(y,x))JπP

(dy,dx)

≤
∫

VP (y,x
∗(y))JπP

(dy,dx) =

∫
VP (y,x

∗(y))F (dy),

where the first and last inequalities are by the definition of JπP
, the second equality is by

incentive compatibility of πP and the definition of q(x) and q(x) in (85), and the inequality is
by (86).

We now prove Remark 3. Suppose that u(y,x) = y− x and (53) holds. There are four cases
to consider depending on whether y and y are equal to x and x. By symmetry, it suffices to
consider the case y < x and y = x. By (85), q(x) = v(x,x)g(x) for x ∈ (x,x] and q(x) = 0.
Denote κ=miny,x∈Y ×X vy(y,x). Note that E(x,x) = 0. By Claim 10, (52) holds if E(y,x)≥
0 for all (y,x). If x= x, then E(y,x) = 0 for y ≤ x and E(y,x)≥ 0 for y > x, because

Ey(y,x) = v(y, y)g(y) +

∫ y

x

vy(y, x̃)g(x̃)dx̃≥ v(y, y)g(y) + κG(y)− κG(x)

≥ v(y, y)g(y) + κG(y)− κG(x)− v(x,x)g(x)≥ 0,

where the first inequality is by the definition of κ, and the second and third inequalities are by
(53). If x ∈ (x,x] and y ∈ (x,x], then E(y,x)≥ 0 because, for y ≥ (≤)x, we have

Ey(y,x) = v(y, y)g(y) +

∫ y

x

vy(y, x̃)g(x̃)dx̃− v(x,x)g(x)

≥ (≤)v(y, y)g(y) + κG(y)− κG(x)− v(x,x)g(x)≥ (≤)0,
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where the first inequality is by the definition of κ, and the second inequality is by (53). Finally,
if x ∈ (x,x] and y ∈ [y,x], then E(y,x)≥ 0 because

Ey(y,x) =−
∫ x

x

vy(y, x̃)g(x̃)dx̃− v(x,x)g(x)≤ κG(x)− κG(x)− v(x,x)g(x)

≤ v(x,x)g(x) + κG(x)− κG(x)− v(x,x)g(x)≤ 0,

where the first inequality is by the definition of κ, and the second and third inequalities are by
(53). Q.E.D.

B.9. Proof of Proposition 4

By Corollary 2, it suffices to characterize optimal monotone partitions in the equivalent per-
suasion problem where

UP (s, t) = c(s)t− t2

2
and VP (s, t) = e(c(s))t− βt2

2
. (89)

A monotone partition B ∈ B is represented by a countable set of pooling intervals (bi, bi]. The
remaining states B̃ = S \

(⋃
i(bi, bi]

)
are revealed.

Let mi =
∫ bi
bi

c(s)ds/(bi − bi). Note that the left derivative of ηB is

η′
B(s) =

{
e(c(s))− βc(s)

2
, if s ∈ B̃,

1

bi−bi

∫ bi
bi

(
e(c(s̃))− βc(s̃)

2

)
ds̃, if s ∈ (bi, bi].

(90)

We have

WP (B) =

∫
B̃

VP (s, s)ds+
∑
i

∫ bi

bi

VP (s,mi)ds

=

∫
B̃

(
e(c(s))c(s)− β(c(s))2

2

)
ds+

∑
i

∫ bi

bi

(
e(c(s))mi −

βm2
i

2

)
ds

=

∫
B̃

c(s)ηB(ds) +
∑
i

∫ bi

bi

c(s)ηB(ds) =

∫
S

c(s)ηB(ds)

= ηB(1)−
∫
S

ηB(s)c(ds)≤ η(1)−
∫
S

conv η(s)c(ds),

(91)

where the first equality is by the definition of WP , the second equality is by (89), the third
equality is by (90) and

∫ bi
bi

mids=
∫ bi
bi

c(s)ds, the fourth equality is by B̃ ∪
(⋃

i(bi, bi]
)
= S,

the fifth equality is by integration by parts and normalizations c(0) = 0 and c(1) = 1, and the
inequality is by the definitions of ηB and conv η, and by ηB(1) = η(1). Finally, let B∗ be such
that conv η = ηB∗ . That is, conv η is linear on (b∗i , b

∗
i ] for each i and conv η = η on B̃∗. By

(91) and the strict monotonicity of c, we have WP (B)≤WP (B
∗) for B ∈ B, with equality if

and only if ηB = conv η. Q.E.D.
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B.10. Proofs of Claim 5 and Corollary 3

PROOF OF CLAIM 5: Suppose that U(1, x)≥ U(0, x), that is, 1− x≤ p(1). Then

∂V (s,x)

∂s
= βp(s)− (1− β)p′(s)s− β(1− x)≥ βp(s)− (1− β)p′(s)s− βp(1)≥ 0,

where the first inequality is by 1 − x ≤ p(1), and the second inequality is by p(s) ≥ p(1),
p′(s)≤ 0, and β ∈ [0,1]. Q.E.D.

PROOF OF COROLLARY 3: Part (1). We have

ν′(y) =

(
β − k

k+ 1

)
G(y)− k

k+ 1
g(y)y,

ν′′(y) = g(y)y

((
β − 2k

k+ 1

)
1

y
−
(

k

k+ 1

)
g′(y)

g(y)

)
.

Given (1), the expression in the parentheses is increasing. Corollary 1 implies that there exists
s∗ ∈ [0,1] such that delegation set {0} ∪ [s∗,1] is optimal.

Part (2). We have

η′(s) = e(c(s))− β

2
c(s) =

β

2
(1− p(s)) +

(
1− β

2

)
p′(s)s,

η′′(s) = (1− β)p′(s) +

(
1− β

2

)
p′′(s)s= p′(s)

(
1− β +

(
1− β

2

)
p′′(s)s

p′(s)

)
.

Given (2), the expression in the parentheses is decreasing, and p′(s)< 0. Proposition 4 implies
that there exists s∗ ∈ [0,1] such that delegation set {0} ∪ [s∗,1] is optimal. Q.E.D.

APPENDIX C: COUNTEREXAMPLES

C.1. Failure of Equivalence Without Single-Crossing Utilities

First, we show that Lemma 1 does not hold if uD(s, t) is not upcrossing in s. Consider a
delegation problem with (uD, vD) given by

uD(s, t) =


1, (s, t) ∈ [0, 1

3
]× [ 1

2
,1],

−1, (s, t) ∈ ( 1
3
,1]× [ 1

2
,1],

0, otherwise,
vD(s, t) =

{
3, (s, t) ∈ ( 1

3
,1]× [0, 1

2
),

−1, otherwise.

Note that uD(s, t) is not upcrossing in s. Let

πD(s, t) =

{
1, (s, t) ∈ ( 1

3
,1]× [0, 1

2
),

0, otherwise.

Mechanism πD satisfies (ICD). However, in the discriminatory disclosure problem with
(uI , vI) = (uD, vD), mechanism πI = πD violates (ICI). Indeed, the agent with a type t ∈
[1/2,1] strictly prefers to misreport his type and choose the action opposite to the recommenda-
tion. Moreover, the principal’s expected utility of 1 attained by incentive-compatible delegation
mechanism πD is not attained by any incentive-compatible disclosure mechanism.
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Second, we show that Lemma 2 does not hold if uI(s, t) is not aggregate downcrossing in t.
Consider a discriminatory disclosure problem with (uI , vI) given by

uI(s, t) =


−1, (s, t) ∈ [0, 1

3
]× [ 1

2
,1],

1, (s, t) ∈ ( 1
3
,1]× [ 1

2
,1],

0, otherwise,
vI(s, t) =

{
3, (s, t) ∈ [0, 1

3
]× [0, 1

2
),

−1, otherwise.

Note that uI(s, t) is not aggregate downcrossing in t (although it satisfies a weaker notion of
aggregate downcrossing defined by Karlin and Rubin, 1956). Let

πI(s, t) =


1, (s, t) ∈ (0, 1

3
]× [0, 1

2
),

1
2
, (s, t) ∈ ( 1

3
,1]× [0,1),

0, otherwise.

Mechanism πI satisfies (ICI). However, in the persuasion problem with (uP , vP ) = (uI , vI),
mechanism πP = πI violates (ICP ). Indeed, when s ∈ (1/3,1], the agent is recommended
decision t= 0 with probability 1/2. But, conditional on this recommendation, the agent infers
that s ∈ (1/3,1], in which case he strictly prefers t = 1. Moreover, the principal’s expected
utility of 1/6 attained by incentive-compatible disclosure mechanism πI is not attained by any
incentive-compatible persuasion mechanism.

C.2. Suboptimality of Monotone Mechanisms

First, we show that the principal’s expected utility can be strictly higher under non-monotone
disclosure and persuasion mechanisms than under any delegation mechanism. Consider a dis-
criminatory disclosure problem with (uI , vI) given by

uI(s, t) = 0, (s, t) ∈ [0,1]× [0,1], and vI(s, t) =

{
1, (s, t) ∈ [0, 1

2
]× [0,1],

−1, (s, t) ∈ ( 1
2
,1]× [0,1].

The principal’s maximum utility of 1/2 is attained by the first-best disclosure mechanism

πI(s, t) =

{
1, (s, t) ∈ (0, 1

2
]× [0,1),

0, otherwise.

In the persuasion problem with (uP , vP ) = (uI , vI), mechanism πP = πI also maximizes the
principal’s expected utility. Now consider the delegation problem with (uD, vD) = (uI , vI).
Note that πD(s|t) = πI(s, t) is not a well-defined delegation mechanism, because πI is not
increasing in s. Moreover, since VD(s, t) = max{−s, s− 1} ≤ 0 for all (s, t), the principal’s
expected utility in delegation is at most 0.

Second, we show that the principal’s expected utility can be strictly higher under non-
monotone disclosure and delegation mechanisms than under any persuasion mechanism. Con-
sider a discriminatory disclosure problem with (uI , vI) given by

uI(s, t) = 0, (s, t) ∈ [0,1]× [0,1], and vI(s, t) =

{
−1, (s, t) ∈ [0,1]× [0, 1

2
),

1, (s, t) ∈ [0,1]× [ 1
2
,1].
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The principal’s maximum utility of 1/2 is attained by the first-best disclosure mechanism

πI(s, t) =

{
1, (s, t) ∈ (0,1]× [ 1

2
,1),

0, otherwise.

In the delegation problem with (uD, vD) = (uI , vI), mechanism πD = πI also maximizes the
principal’s expected utility. Now consider the persuasion problem with (uP , vP ) = (uI , vI).
Note that πP (t|s) = πI(s, t) is not a well-defined persuasion mechanism, because πI is not
decreasing in t. Moreover, since VP (s, t) = max{−t, t− 1} ≤ 0 for all (s, t), the principal’s
expected utility in persuasion is at most 0.
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