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Introduction

I A new car dealership designs a test drive

I seeks advice of an analyst to model consumer behavior
I makes decision on the basis of this advice
I prefers simplicity

I Analyst has three models of consumer behavior: A, B, C

I but not enough data to identify one

I How to choose among these models?
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How to choose among models?

Bayesian approach

“Ambiguity” approach

“The most informed person
on the planet” approach

Principle of insufficient reason
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Principle of Insufficient Reason

Its modern version called Principle of Maximum Entropy:
Among viable hypotheses (models), choose “the one which is
maximally noncommittal with regard to missing information.”
(Jaynes 1957)

I Advantages:

I Simple and practical
I Independent of the objective

I Common criticism: Sensitive to the choice of variables

I Common defense: Variables are context-dependent
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In this paper:

We apply the principle of insufficient reason within the context of
persuasion of a privately informed receiver

I to justify the use of the linear persuasion model

I to provide a new justification to simple disclosure rules:

I Fully revealing and completely uninformative
I Upper and lower censorship
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Model

I Two players: Principal (she) and Agent (he)

I Agent chooses: to accept a proposal (a = 1) or reject it
(a = 0)

I Proposal is described by:

I state s ∈ S = [0, 1]
I type t ∈ T = [0, 1]

I Type t is Agent’s private information

I f (s) a probability density of state

I g(t) a probability density of type
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Model

I Agent’s utility:

I 0 if the proposal is rejected (a = 0)
I U(s − t) if the proposal is accepted (a = 1)

I Assumption: U(0) = 0 and U(s − t) is increasing

I Normalization: U(1)− U(−1) = 1

I Principal would like to persuade Agent to accept the proposal
I Principal’s utility:

I 0 if the proposal is rejected (a = 0)
I 1 if the proposal is accepted (a = 1)
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Persuasion

I The agent privately knows his type, but he does not observe
the state

I The principal designs a signal: a random variable
m ∈ M = [0, 1] that is, possibly, correlated with s.

I A signal is described by a probability distribution π(m|s)
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Timing

1. Principal announces a signal distribution π(m|s)

2. State s, type t, and signal m are realized

3. Agent observes t and m, and then makes his choice between
a = 0 and a = 1.
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Principle of Insufficient Reason

I f captures the symmetric uncertainty of Principal and Agent

I Assumption: Density f is common knowledge

I Asymmetric information about Agent’s type and utility

I Distribution of types captures the likelihood that the agent’s
accepts the proposal with a given nonrandom s

I Utility captures Agent’s evaluation of lotteries over s (attitude
towards risk)

I Principal is ignorant about the agent’s utility and distribution
of types.

I Principal makes a “best guess” of what the agent’s utility and
distribution of types could be

I which is consistent with the data she has
I and the least contradictory to any new data that may appear
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Digression: Lottery Comparison Representation of
Preferences

I Let X be a set of monetary prizes (an interval of R)

I Let ∆(X ) be the set of lotteries over X

I Let � be a preference relation over ∆(X )

Definition
A preference relation � admits a vNM expected utility
representation if there exists a utility function U : X → R such
that for each p1, p2 ∈ ∆(X )

p1 � p2 if and only if

∫
x∈X

U(x)dp1(x) ≥
∫
x∈X

U(x)dp2(x).
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Lottery Comparison Representation of Preferences

I Let b and p be lotteries (probability distributions) in ∆(X )

I Lottery b will be called a benchmark lottery

I Let B and P be the associated random variables. Define

Cb(p) = Pr[B ≤ P] =

∫
x∈X

b(x)dp(x).

Definition
A preference relation � admits a lottery comparison representation
if there exists a benchmark lottery b ∈ ∆(X ) such that for each
p1, p2 ∈ ∆(X )

p1 � p2 if and only if Cb(p1) ≥ Cb(p2).
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Lottery Comparison Representation of Preferences

I vNM utility representation orders lotteries by their expected
utilities

I Lottery comparison representation orders lotteries by how they
compare to a given benchmark lottery

Proposition 1

A preference relation � has a vNM expected utility representation
if and only if it has a lottery comparison representation.

Moreover, if a vNM utility U and a benchmark lottery b both
represent �, then there exist α ∈ R and β > 0 such that

α + βU(x) = b(x) for each x ∈ X .

I We can now treat U(x) as a probability distribution
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Maximum Entropy

I Entropy of a random variable with a probability density p is

H(p) = −
∫
X
p(x) ln p(x)dx .

I Well-known facts about maximum entropy:

I Maximum-entropy distribution on X = [x0, x1] is uniform
I Maximum-entropy distribution on X = [x0, x1] with a given

mean is truncated exponential
I Maximum-entropy distribution on X = [x0, x1] with given

mean and variance is truncated normal
I H(g , u) = H(g) + H(u)
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Maximum-Entropy Utility

Proposition 2

The maximum-entropy utility is risk neutral.

I Utility U(x) is HARA if −U ′′(x)/U ′(x) = c0/(c1x + c2) for
some constants c0, c1, and c2.

Corollary 1

The maximum-entropy utility in the class of CARA, CRRA, or
HARA is risk neutral.

I In what follows, assume risk neutral utility

15 / 19



Maximum-Entropy Utility

Proposition 2

The maximum-entropy utility is risk neutral.

I Utility U(x) is HARA if −U ′′(x)/U ′(x) = c0/(c1x + c2) for
some constants c0, c1, and c2.

Corollary 1

The maximum-entropy utility in the class of CARA, CRRA, or
HARA is risk neutral.

I In what follows, assume risk neutral utility

15 / 19



Maximum-Entropy Utility

Proposition 2

The maximum-entropy utility is risk neutral.

I Utility U(x) is HARA if −U ′′(x)/U ′(x) = c0/(c1x + c2) for
some constants c0, c1, and c2.

Corollary 1

The maximum-entropy utility in the class of CARA, CRRA, or
HARA is risk neutral.

I In what follows, assume risk neutral utility

15 / 19



Maximum-Entropy Utility

Proposition 2

The maximum-entropy utility is risk neutral.

I Utility U(x) is HARA if −U ′′(x)/U ′(x) = c0/(c1x + c2) for
some constants c0, c1, and c2.

Corollary 1

The maximum-entropy utility in the class of CARA, CRRA, or
HARA is risk neutral.

I In what follows, assume risk neutral utility

15 / 19



Maximum-Entropy Utility

Proposition 2

The maximum-entropy utility is risk neutral.

I Utility U(x) is HARA if −U ′′(x)/U ′(x) = c0/(c1x + c2) for
some constants c0, c1, and c2.

Corollary 1

The maximum-entropy utility in the class of CARA, CRRA, or
HARA is risk neutral.

I In what follows, assume risk neutral utility

15 / 19



Optimal Persuasion under Insufficient Reason

I Theorem 1
Suppose that Principal applies PIR to

I all g(t).

Then every signal is optimal.

I Why?

I Persuasion problem is linear because maximum entropy U is
linear

I In a linear problem with uniform distribution, every signal is
optimal.
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Optimal Persuasion under Insufficient Reason

I Theorem 2
Suppose that Principal applies PIR to

I all g(t) with a given mean µ.

Then the optimal signal is
I fully revealing when µ ≥ 1/2,
I completely uninformative when µ ≤ 1/2.

I Why?

I Exponential density is either increasing or decreasing
I Fully revealing signal is optimal if the density is increasing
I Completely uninformative signal is optimal if the density is

decreasing

17 / 19



Optimal Persuasion under Insufficient Reason

I Theorem 2
Suppose that Principal applies PIR to

I all g(t) with a given mean µ.

Then the optimal signal is
I fully revealing when µ ≥ 1/2,
I completely uninformative when µ ≤ 1/2.

I Why?

I Exponential density is either increasing or decreasing
I Fully revealing signal is optimal if the density is increasing
I Completely uninformative signal is optimal if the density is

decreasing

17 / 19



Optimal Persuasion under Insufficient Reason

I Theorem 2
Suppose that Principal applies PIR to

I all g(t) with a given mean µ.

Then the optimal signal is
I fully revealing when µ ≥ 1/2,
I completely uninformative when µ ≤ 1/2.

I Why?

I Exponential density is either increasing or decreasing
I Fully revealing signal is optimal if the density is increasing
I Completely uninformative signal is optimal if the density is

decreasing

17 / 19



Optimal Persuasion under Insufficient Reason

I Theorem 2
Suppose that Principal applies PIR to

I all g(t) with a given mean µ.

Then the optimal signal is
I fully revealing when µ ≥ 1/2,
I completely uninformative when µ ≤ 1/2.

I Why?
I Exponential density is either increasing or decreasing

I Fully revealing signal is optimal if the density is increasing
I Completely uninformative signal is optimal if the density is

decreasing

17 / 19



Optimal Persuasion under Insufficient Reason

I Theorem 2
Suppose that Principal applies PIR to

I all g(t) with a given mean µ.

Then the optimal signal is
I fully revealing when µ ≥ 1/2,
I completely uninformative when µ ≤ 1/2.

I Why?
I Exponential density is either increasing or decreasing
I Fully revealing signal is optimal if the density is increasing

I Completely uninformative signal is optimal if the density is
decreasing

17 / 19



Optimal Persuasion under Insufficient Reason

I Theorem 2
Suppose that Principal applies PIR to

I all g(t) with a given mean µ.

Then the optimal signal is
I fully revealing when µ ≥ 1/2,
I completely uninformative when µ ≤ 1/2.

I Why?
I Exponential density is either increasing or decreasing
I Fully revealing signal is optimal if the density is increasing
I Completely uninformative signal is optimal if the density is

decreasing

17 / 19



Optimal Persuasion under Insufficient Reason

I Theorem 3
Suppose that Principal applies PIR to

I all g(t) with given mean µ and variance σ2.

Then the optimal signal is either upper or lower censorship.

I Why?

I Truncated normal density is log-concave or log-convex
I If the density is log-concave (log-convex) then upper (lower)

censorship is optimal
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Concluding Remarks

I We use PIR as a simple method of resolving
ignorance/ambiguity

I We justify the linearity assumption in the persuasion model

I We justify simple disclosure rules

I Extensions

I Correlation
I Observing the mean utility

I Many questions to answer:

I What about other summary statistics?
I What if we observe the mean with, e.g., left censoring?
I What are naturally occurring summary statistics about risk

attitude?
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