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Abstract
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1 Introduction

A common method of resolving disputes is compulsory arbitration. Arbitration is used

in labor contracts, international business transactions, divorce and child custody, security

regulations, and general commerce. Two commonly used arbitration rules are final offer

arbitration and conventional arbitration. Under final offer arbitration, the parties who

cannot agree on a solution to a dispute submit their proposals to the arbitrator who then

chooses one of these proposals as the binding solution. Under conventional arbitration,

the arbitrator is unrestricted in her choice of a solution given the parties’ proposals.1

The early proponents of conventional arbitration in the United States viewed it as

a superior alternative to costly strikes in labor disputes.2,3 Nevertheless, conventional

arbitration has been criticized for providing incentives for the parties to exaggerate their

proposals in order to influence the arbitration outcome and the final offer arbitration

procedure was suggested (Stevens 1966) as a means to pressure the disputants to make

more reasonable offers. Both the critique and the solution were later questioned by the

1For a review of dispute resolution mechanisms, see Roberts (2007).
2An example is the enactment by the US Congress in 1963 of a compulsory arbitration statute to

avoid a nationwide railroad strike (Stevens 1966).
3Arbitration is not a novel tool of dispute resolution. In Ancient Greece, final offer arbitration,

for instance, was used during the trial of Socrates (Ashenfelter, Currie, Farber and Spiegel 1992), while

conventional arbitration was prescribed, although not followed, as the method of conflict resolution in the

Thirty Years Peace treaty between Athens and Sparta. See Roebuck (2001) for an account of arbitration

practice in Ancient Greece.
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results in Crawford (1979), Farber (1980), Brams and Merrill (1983), and Gibbons (1988)

that conventional arbitration has a higher degree of proposal convergence than final offer

arbitration, leaving an open question of the rationale for the widespread use of final offer

arbitration in practice (Roberts 2007, Spier 2007).

In this paper, we provide an explanation for the prevalence of both arbitration rules:

We show that conventional arbitration is optimal if the utility of the disputing parties is

transferable, whereas final offer arbitration can be optimal if this is not the case. These

results are in line with the observation that final offer arbitration is often used in labor

market disputes, where one of the parties is either an employee or a labor union and thus

might be risk-averse or wealth constrained, while conventional arbitration is commonly

used for dispute resolutions between commercial companies who are more likely to be

risk-neutral and unconstrained in payments to each other.

Our approach differs from that in the existing literature in two respects. First, we focus

on welfare maximization rather than minimization of the disagreement rate. Second, we

study environments with and without transferable utility.4

The superiority of final offer arbitration in environments without transferable utility

is consistent with the fact that it has a higher degree of proposal divergence at the

arbitration stage. The divergence of proposals and the restriction that the arbitrator must

4The arbitration literature has predominantly focused on the environment without transferable utility.

See Crawford (1979), Farber (1980), Brams and Merrill (1983), and Gibbons (1988) and the references

therein. For an example of analysis with transfers, see Brams and Merrill (1991).
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pick a side and cannot modify the proposals creates inefficiency and stochasticity in the

arbitration award. Crucially, this provides incentives for the parties to agree on a socially

optimal outcome prior to the arbitration. By contrast, under conventional arbitration, the

arbitrator is free to assign any award based on her inference from the parties’ proposals,

creating room for counterproductive attempts at strategic manipulation of the outcome

by the disputing parties.

The ranking of conventional and final offer arbitration is reversed in the environments

with transferable utility because transfers constitute an additional incentive tool. The

flexibility in providing incentives through transfers and the flexibility in the choice of

the arbitration outcome are complementary, rendering conventional arbitration a more

attractive mechanism.

In our model, the parties have conflicting preferences over the arbitration award and

are strategic. The socially optimal action is represented by an uncertain state. We model

arbitration as a two-stage game. In the first stage, the parties privately observe some

information about the state and make simultaneous proposals about the arbitration award.

If the proposals coincide, it is implemented. Otherwise, the parties enter arbitration by

making two new proposals to an arbitrator. The arbitrator observes the new proposals

and chooses an arbitration award; we assume that the arbitrator is not a part of and does

not observe the proposals made in the first stage. Under conventional arbitration, the

arbitrator’s choice is unrestricted. Under final offer arbitration, the action awarded must

coincide with one of the proposals. The arbitrator is benevolent and her payoff is given by
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a utility function that is maximized at the socially optimal action. This model captures

environments in which the disputing parties have the decision rights over the action but

have conceded, in case of a disagreement, to use one of the arbitration procedures.

Before turning to the analysis of final offer and conventional arbitration, we take a

look at the benchmark of optimal arbitration rules that maximize the expected welfare.

By the revelation principle, optimal arbitration rules can be sought for among direct rules

in which the parties report their information truthfully and the rule implements a lottery

over actions and, possibly, a transfer contingent on the reports. Proposition 1 establishes

that in the environment with transferable utility there exists an arbitration rule that

implements a welfare maximizing action in each state. The construction of transfers,

which ensures incentive compatibility of this rule, is done using standard mechanism

design methods.5

A priori, implementing an optimal arbitration rule requires commitment. Providing

incentives for the parties to report their information truthfully might require, at least

sometimes, implementing an outcome that would not be optimal given the reports. By

contrast, conventional arbitration assumes no commitment – the arbitrator is free to

choose any award she considers desirable after observing the proposals. In Proposition

2, we observe that the optimal arbitration rule can be replicated through conventional

arbitration in an equilibrium in which the parties report their information to the arbitra-

5The (ex-post) efficient outcome is feasible in our model because there is no outside option for the

parties subjected to the arbitration rule and thus there are no individual rationality constraints.
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tor, who imposes the optimal decision and the corresponding transfers. Commitment has

no additional value in this environment because the arbitrator is impartial about mone-

tary transfers between the parties. Given the optimal transfer schedule, it is optimal for

the parties to report their information truthfully and it is optimal for the arbitrator to

implement the socially optimal action.

The analysis of the environment without transfers is more difficult. We distinguish two

environments, with complete and incomplete information. In complete information envi-

ronments, the parties have identical information. This is the standard assumption made

in the literature (e.g., Gibbons 1988).6 This assumption is meant to capture environments

in which there is a close relationship between the disputing parties as, for example, in case

of a union and a company arguing about wage, business partners arguing over an intended

interpretation of a contract, or a family in divorce proceedings deciding on the distribu-

tion of custody rights. In this environment, an optimal arbitration rule provides incentives

for the parties to tell the truth through punishment of disagreements. In Proposition 3,

6The assumption is also standard in the literature on cheap talk communication between a decision

maker and two informed agents in payoff environments similar to the one in this paper. It has been

made, for example, in Gilligan and Krehbiel (1989), Krishna and Morgan (2001a, 2001b), Battaglini

(2002), Levy and Razin (2007), Ambrus and Takahashi (2008), and Li (2008, 2010). The agents are

imperfectly informed in the models of Austen-Smith (1993), Wolinsky (2002), and Battaglini (2004).

Ambrus and Lu (2010) construct fully revealing equilibria robust to noise in cheap talk environments.

See also Li and Suen (2009) for a survey of work on decision making in committees; this literature often

assumes that different members of the committee hold distinct pieces of information.
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we show that an optimal arbitration rule can be found among “constant-threat” rules in

which every disagreement in parties’ reports is punished by the same (stochastic) action

with a two-point support. This result is deceptively simple; the surprising part is that

the punishment is constant and independent of the exact nature of parties’ reports to the

arbitrator. The proof relies in a curious way on a minmax inequality and concavity of the

parties’ payoff functions. It proceeds by showing that in truthtelling equilibrium of any

arbitration rule there exists a best deviation for each of the parties and that there exists

a stochastic action that delivers a lower payoff than the best deviation simultaneously for

both parties. Hence, truthful reporting is also optimal in the modified constant-threat

rule in which any disagreement is followed by this action.

In Proposition 4, we show that the optimal arbitration rule can be implemented

through final offer arbitration. This result requires an additional assumption that the

preferences of the disputing parties are not too aligned. The idea is that the parties

behave spitefully at the arbitration stage and make extreme proposals that minimize

the payoff of their opponent. The arbitrator then randomizes between these proposals

replicating the constant-threat punishment in the optimal arbitration rule and providing

incentives for the parties to agree on an outcome prior to arbitration. Hence, final offer ar-

bitration weakly outperforms conventional arbitration. Furthermore, in the environments

in which the parties always prefer opposing extreme decisions, conventional arbitration

performs especially poorly and is strictly inferior to final offer arbitration (Corollary 1).7

7For some recent studies of conventional and final offer arbitration in different environments, see
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Intuitively, final offer arbitration provides the arbitrator with more commitment power

to impose punishments for disagreements, as compared to conventional arbitration. This

difference becomes relevant in the environments without transfers where it may not be

feasible to implement socially optimal outcome in each state.

We study incomplete information environments in Section 4.4. Unfortunately, the

analysis of optimal arbitration rules and final offer arbitration rule for arbitrary noise

structures has proven intractable. We, therefore, focus on a restricted class of informa-

tion structures. Specifically, we consider environments in which the support of parties’

information is discrete and study performance of final offer arbitration in the limit as the

information structure converges to that of complete information. In Proposition 6, we

construct a constant-threat arbitration rule that is incentive compatible in the noisy en-

vironment and implements an outcome that converges to that of the optimal arbitration

rule under complete information as the noise vanishes. In Proposition 7, we show that

in spite of the noise this rule can be implemented through final offer arbitration. The

crucial part of the proof is a construction of the incentives for the arbitrator to randomize

between the parties’ proposals after a disagreement. Unlike in the environment with com-

plete information, disagreement is not an out-of-equilibrium event and we do not have

the freedom of assigning out-of-equilibrium beliefs that make randomization optimal.8 In

Hanany, Kilgour and Gerchak (2007), Olszewski (2011), and Yildiz (2011).
8As pointed out by Battaglini (2002) in the context of cheap talk communication between two perfectly

informed agents and a decision maker, the equilibria in complete information environments might contain

implausible out-of-equilibrium beliefs. This issue is avoided in the noisy environments.
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equilibrium, the disputing parties randomize over their proposals in a manner that induce

beliefs which make the arbitrator indifferent about approving of the proposals. We also

need to provide incentives for the parties to randomize; this is possible by requiring the

parties to randomize only in a subset of extreme states.

Our model of arbitration is related to that in Gibbons (1988), who studies conventional

and final offer arbitration in a similar environment and, by contrast to our model, shows

that conventional arbitration is superior to final offer arbitration. In Gibbons (1988), the

arbitrator observes a noisy private signal about the state; the parties are risk-neutral, and

their preferences are state-independent (we do not require the latter assumption, except

in Section 4.3). Our results are different because we model final offer arbitration as a two-

period dynamic interaction in which arbitration is preceded by negotiation, whereas there

is no negotiation stage in Gibbons (1988). This allows separating disagreement at the

negotiation stage from the punishment at the arbitration stage and gives the arbitrator

more flexibility in providing incentives for the parties to agree on an optimal outcome.

A number of papers explore arbitration procedures different from final offer and con-

ventional arbitration: combined arbitration (Brams and Merrill 1986), final offer arbitra-

tion with a bonus (Brams and Merrill 1991), double-offer arbitration (Zeng, Nakamura

and Ibaraki 1996), amended final offer arbitration (Zeng 2003), closest-offer principle

arbitration (Armstrong and Hurley 2002), etc.9 This literature focuses on incremental

improvement of the existing arbitration procedures and their relative performance; char-

9See Armstrong and Hurley (2002) for a review.
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acterization of optimal arbitration rules is left open.

There is a connection between the model in this paper and the cheap talk literature

with two privately informed agents and a decision maker (Krishna and Morgan 2001b,

Battaglini 2002, Ambrus and Takahashi 2008, Ambrus and Lu 2010).10 As we discuss

it in Section 4, any outcome of cheap talk communication between the disputing parties

and the arbitrator can be implemented through conventional arbitration, whereas the

converse is not necessarily true, because the arbitrator cannot overrule the outcome if

the parties agree prior to arbitration. The literature on cheap talk has focused on es-

tablishing conditions under which the decision maker can achieve the first best outcome

of implementing the optimal action in each state (Krishna and Morgan 2001a, Krishna

and Morgan 2001b, Battaglini 2002, Ambrus and Takahashi 2008).11 We are interested

in the performance of the specific arbitration procedures against the benchmark case in

which the arbitrator has full commitment power, regardless of whether the first best out-

come is implementable. The problem of optimal decision rules for two agents with private

information has been studied in Martimort and Semenov (2008). Our models and ap-

proaches are quite different. In particular, they focus on agents who are biased in the

same direction and consider dominant strategy implementation. Our paper is also related

10Crawford and Sobel (1982) is the seminal reference on cheap talk communication with one agent.

For models of cheap talk communication with two agents see also Krishna and Morgan (2004), Battaglini

(2004), Li (2008, 2010).
11The models in this literature are predominantly static. An exception is Esö and Fong (2010), who

show that the first best outcome can be implemented in a dynamic cheap talk environment.
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to Battaglini (2004) who considers a multidimensional environment with multiple agents

and noisy signals. Battaglini shows that minimal commitment power is sufficient to im-

plement an outcome arbitrarily close to the first best as the number of agents becomes

sufficiently high.

The remainder of the paper is organized as follows. Section 2 describes the model. We

study the environment with transfers in Section 3 and the environment without transfers

in Section 4. The proof omitted in the text is in the Appendix.

2 The Model

There are two agents i = 1, 2 and a benevolent arbitrator i = 0. The agents have decision

rights over an action from set Y = [0, 1]. In addition, the agents might be able to transfer

utility by making a payment; let t denote the net payment from agent 1 to agent 2. We

consider two environments, with unrestricted transfers, t ∈ R, and without transfers,

t ≡ 0.12

The parties have conflicting preferences and are strategic. In addition, they have

unverifiable private information. For instance, in labor contract disputes over wages

12Transferable utility is a good assumption for environments in which the disputing parties are risk-

neutral, liquidity unconstrained, and able to exchange monetary payments. In practice, there are multiple

reasons that might make utility only partially transferable, such as risk-aversion, legal restrictions on

payments, and limited liability. The environments with and without transferable utility, thus, represent

the two polar benchmark cases.
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and international trade disputes over quotas, their private information can describe their

understanding of the original agreement upon wage or quota, while in a dispute about

child custody the private information might reflect the parents’ opinion about the relative

allocation of custody rights that would be optimal for the well-being of the child.

Formally, each agent observes a private signal xi ∈ Xi ⊆ Y . The signals are distributed

according to a joint cumulative probability distribution F with the support on a subset

of X1 × X2 ⊆ X = [0, 1]2. Let Fi(·) denote the marginal of xi and F−i(·|xi) denote

the posterior cdf of x−i conditional on xi. We will also consider an environment with

complete information in which the agents’ signals are perfectly correlated, x1 = x2 for all

(x1, x2) ∈ supp(F ).

The agents’ payoffs are quasilinear functions

u1(x1, x2, y)− t, u2(x1, x2, y) + t.

The arbitrator is benevolent and maximizes the utility function u0(x1, x2, y). The utility

function u0 captures the preferences over the state-dependent socially optimal action and

can include interests of the third parties and the society at large. For instance, it might

reflect the welfare of the child, ignoring the preferences of the parents, or it may be

equal to a weighted sum of the functions ui, where i = 1, 2, of the disputing parties.

Note the assumption that the arbitrator is impartial about the allocation of transfers.

This assumption is innocuous if there are no transfers, if the arbitrator is unconcerned

about the payoffs of the disputing parties, or if their payoffs are given equal weight in the

consideration of the arbitrator (e.g., u0(x1, x2, y) = u1(x1, x2, y) − t + u2(x1, x2, y) + t).
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If, however, the arbitrator were to care disproportionally about the utility of one of the

parties, the assumption would impose a restriction.13

For the environments with complete information, we denote the payoff functions, with

some abuse of notation, by ui(x, y). We assume that ui(x1, x2, y) is continuously differen-

tiable on X × Y , strictly concave in y, i = 0, 1, 2, and that the agent’s payoff satisfies the

single-crossing condition

∂2ui(x1, x2, y)

∂xi∂y
≥ 0, i = 1, 2.

In addition, for each i function ui has a unique maximizer y∗i (x1, x2) that is continuous

and non-decreasing in its arguments.

Finally, the agents have opposing biases relative to the arbitrator,14

y∗1(x1, x2) < y∗0(x1, x2) < y∗2(x1, x2), for almost all (x1, x2) ∈ X (OP1)

For example, in the labor dispute one party may prefer the lowest possible wage while

the other may prefer the highest possible wage, whereas in the child custody setting the

parents may be biased in the direction of having more access to the child than would be

in the interest of the child.

13With unequal weights, the arbitrator effectively has redistribution concerns and the optimal outcome

is simply to assign an infinite transfer from one party to another, trivializing the role of choice of y.
14The standard assumption in the arbitration literature is that conflict of preferences is extreme: in

each state, one party prefers the lowest action, whereas the other party prefers the highest action. Our

model is more general and allows for non-trivial state-dependent preferences.
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For some results we will also assume that the agents have a sufficient conflict of

preferences in the sense that their preferences over extreme actions are opposite for all

signal realizations,

u1(x1, x2, 0) ≥ u1(x1, x2, 1) and u2(x1, x2, 0) ≤ u2(x1, x2, 1) for all (x1, x2) ∈ X (OP2)

Let Y denote the set of distributions on Y (randomized actions). A direct arbitration

rule with transfers is a pair (µ, τ), where µ : X → Y is an action rule and τ : X → R

is a transfer rule. A direct arbitration rule induces a game, in which after observing x1

and x2 the agents simultaneously make reports x̂i ∈ Xi and action µ(x̂1, x̂2) and transfer

τ(x̂1, x̂2) are implemented.

Denote by Uµ
i (xi, x̂i) the expected utility of agent i under action rule µ if her signal is

xi and her report is x̂i, provided the other agent reports the truth, x̂−i = x−i,

Uµ
i (xi, x̂i) =

∫
x−i∈Y

ui(xi, x−i, µ(x̂i, x−i))dF−i(x−i|xi).

Similarly, let τi(x̂i) be the expected transfer from agent i to her opponent under transfer

rule τ if she reports x̂i and the other agent reports the truth,

τ1(x̂1) =

∫
x2∈Y

τ(x̂1, x2)dF2(x2|x̂1) and τ2(x̂2) = −
∫
x1∈Y

τ(x1, x̂2)dF1(x1|x̂2)

We consider Bayesian incentive compatible arbitration rules in which truthtelling, x̂i = xi,

is optimal for all realizations of signals, provided the opponent’s reports are also truthful,

i.e., for all x, x̂ ∈ Xi and i = 1, 2,

Uµ
i (x, x)− τi(x) ≥ Uµ

i (x, x̂)− τi(x̂). (IC)
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By the revelation principle, any equilibrium outcome of the agents’ interaction in a

game whose space of outcomes is a space of probability distributions over Y and transfers

can be represented by the truthtelling equilibrium outcome in some incentive compatible

arbitration rule.

A direct arbitration rule µ is optimal if it maximizes the expected payoff of the arbi-

trator,

vµ = Eu0(x, µ(x1, x2)),

among all incentive compatible direct arbitration rules. Since the set of incentive com-

patible direct arbitration rules is compact in weak topology and vµ is continuous in µ, an

optimal direct arbitration rule exists.

The revelation principle justifies our focus on truthtelling equilibria. Nevertheless,

optimal arbitration rules could permit multiple equilibria.

3 Arbitration with Transfers

We start with an environment in which transfers are allowed, τ(x1, x2) ∈ R. Consider the

following example with complete information environment, x1 = x2 = x ∈ X1 = X2 = X̄,

in which the arbitrator’s payoff function is a weighted sum of the agents’ payoffs net of

transfers,

u0(x, y) ≡ γu1(x, y) + (1− γ)u2(x, y), γ ∈ (0, 1). (1)

In this environment we can implement the arbitrator’s most preferred action y∗0(x) =
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y∗0(x, x) for each x ∈ X̄. To see the intuition, imagine that we pick some action ŷ and

assign it after any disagreement between the agents. We can now provide incentives to one

of the agents to report his information truthfully by paying him the difference in his payoff

from the arbitrator’s optimal action y∗0(x) and what he can obtain by the deviation to ŷ.

This payment must be charged to the other agent, making him the residual claimant and

implying that this agent prefers to report the truth if and only if the sum of the agents’

payoffs u1(x, y) + u2(x, y) is greater under y∗0(x) rather than ŷ. If γ = 1/2, the result

follows. For other values of γ, we need to find an appropriate ŷ. This can be done, as the

following argument shows.

Let µ(x, x) = y∗0(x) and µ(x1, x2) = ŷ whenever x1 6= x2. The transfer is such

that agent 2 is always indifferent whether to report the truth or not, specifically, we

set τ(x, x) = u2(x, ŷ) − u2(x, y∗0(x)) and τ(x1, x2) = 0 whenever x1 6= x2. The only

relevant incentive constraint is that of agent 1,

u1(x, µ(x, x))− τ(x, x) ≥ u1(x, µ(x̂1, x))− τ(x̂1, x), x, x1 ∈ X̄, x̂1 6= x.

Under this rule it is equivalent to

u1(x, y∗0(x)) + u2(x, y∗0(x)) ≥ u1(x, ŷ) + u2(x, ŷ), x ∈ X̄. (2)

Note that all this constraint requires is that the surplus from implementing the arbitrator’s

optimal action exceeds the surplus from threat action ŷ in each state. By choosing ŷ

sufficiently extreme, we ensure that (2) is satisfied. Let γ ≤ 1/2. Choose ŷ = max
x∈X̄

y∗0(x)

and denote by ȳ(x) the maximizer of u1(x, y) + u2(x, y). Observe that y∗0(x) coincides
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with ȳ(x) for γ = 1/2 and with y∗2(x) = arg maxu2(x, y) for γ = 0. Then, by (OP1) and

continuity of u0 w.r.t. y and γ and by the Maximum Theorem,

ȳ(x) ≤ y∗0(x) ≤ y∗2(x) for all x ∈ X̄.

But then (2) is satisfied, since u1(x, y) + u2(x, y) is concave in y and is maximized at

ȳ(x) ≤ y∗0(x) ≤ ŷ = max
x∈X̄

y∗0(x). For the case of γ > 1/2, we set the threat action to be

ŷ = min
x∈X̄

y∗0(x) and repeat the argument.

We now consider environments with imperfectly correlated signals and more general

arbitrator’s preferences. Let µ∗(x1, x2) = y∗0(x1, x2) and

τ ∗(x1, x2) = τ̄1(x1)− τ̄2(x2),

where

τ̄i(x) = Uµ
i (x, x)−

x∫
0

∂Uµ
i (s, z)

∂s

∣∣∣∣
z=s

ds−
∫
x̃∈Y

Uµ
i (x̃, x̃)−

x̃∫
0

∂Uµ
i (s, z)

∂s

∣∣∣∣
z=s

ds

 dFi(x̃).

Note that the expected transfer is normalized to be equal to 0,

E [τ̄i(x)] ≡
∫
x∈Y

τ̄i(x)dFi(x) = 0.

Proposition 1 In the environments with transferable utility, there exists an incentive

compatible arbitration rule that implements the arbitrator’s preferred outcome, y∗0(x1, x2)

for all (x1, x2) ∈ X.

Proof. Substituting

Uµ
i (x, x̂) = Uµ

i (x̂, x̂) +

x∫
x̂

∂Uµ
i (s, x̂)

∂s
ds
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and the expressions for transfers in (IC), we get that (IC) holds if and only if for all

x, x̂ ∈ Xi, i = 1, 2,

x∫
x̂

(
∂Uµ

i (s, z)

∂s

∣∣∣∣
z=s

− ∂Uµ
i (s, x̂)

∂s

)
ds ≥ 0.

Expanding this condition, we get

x∫
x̂

∫
x−i∈Y

 s∫
x̂

∂2ui(s, x−i, y
∗
0(z, x−i))

∂s∂y

∂y∗0(z, x−i)

∂z
dz

 dF−i(x−i|xi)ds ≥ 0,

which holds by the single-crossing property of the agents’ utility functions and monotonic-

ity of y∗0.

The arbitration rule (µ∗, τ ∗) that implements the arbitrator’s most preferred action

for each realization of signals can be implemented via conventional arbitration. We define

conventional arbitration as a game in which both parties simultaneously and publicly

make negotiation proposals yi ∈ Y . If the parties agree on some action y, y1 = y2 = y,

then that action is implemented. Otherwise, the arbitrator chooses an action y and a

transfer τ ; this choice should be sequentially rational given her equilibrium beliefs. For

simplicity, we assume that the arbitrator does not observe the proposals made in the first

stage; this assumption is not essential.15

In equilibrium of conventional arbitration game, the agents communicate their signals

truthfully by proposing yi = xi, i = 1, 2. The arbitrator believes that the state is given

by the agents’ reports, implements action µ∗(y1, y2), and sets transfer τ ∗(y1, y2). Truthful

reporting is optimal by incentive compatibility of (µ∗, τ ∗). Thus:

15The solution concept for this and other games considered in this paper is perfect Bayesian equilibrium.
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Proposition 2 In the environments with transferable utility, conventional arbitration can

implement the arbitrator’s preferred outcome, y∗0(x1, x2) for all (x1, x2) ∈ X.

4 Arbitration without transfers

We now consider environments in which transfers are not allowed, τ(x1, x2) ≡ 0 for all

(x1, x2) ∈ X. We first present the results for the environment with complete informa-

tion, x1 = x2 = x ∈ X1 = X2 = X̄ and then consider environments with incomplete

information. Throughout this section we assume that conditions (OP1) and (OP2) hold.

Condition (OP1) imposes structure on the direction of the biases of the disputing parties

and is important for the results. Condition (OP2) requires that the interests of the par-

ties are not too aligned. It simplifies the characterization of the optimal arbitration rules

in Section 4.1; the results, however, extend to the environments in which this condition

does not hold. The condition is important for the results on the superiority of the final

offer arbitration in Section 4.2. It is used to ensure optimality of the parties’ “spiteful”

behavior at the arbitration stage.

4.1 Constant-Threat Arbitration

Absent transfers, we need a different means to provide incentives for the agents to be

truthful. In complete information environments, the agents have the same information

about the state, and the truthful reports must be identical. In order to motivate each
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agent to agree with the other agent in a truthtelling equilibrium under an arbitration

rule, the rule must punish disagreements. The difficulty here is that if a disagreement is

observed, it is unclear which agent, if any, tells the truth. As a result, a punishment after

a disagreement may depend non-trivially on the agents’ reports.

Consider the following arbitration procedure called constant-threat arbitration. The

agents learn the state and then simultaneously propose actions (y1, y2). If the agents

agree on an action, y = y1 = y2, then y is implemented; if the agents disagree, then

the arbitrator implements a constant threat lottery with support on extreme actions 0

and 1 which is independent of the proposed actions. We show that any optimal direct

arbitration rule without transfers can be implemented through constant-threat arbitration

with a properly chosen threat lottery.

Proposition 3 Consider the environment with complete information and no transfers.

Then, an optimal arbitration rule can be implemented via constant-threat arbitration.

To see why this is true, consider an optimal direct arbitration rule µ. Recall that

µ is incentive compatible, that is, for every state x ∈ X̄, reporting the truth is a Nash

equilibrium, x̂1 = x̂2 = x. First, observe that concavity of the agents’ payoff functions

implies that any lottery over actions implemented after a disagreement, µ(x1, x2), x1 6= x2,

can be replaced by some lottery pµ(x1,x2) with support on {0, 1} without affecting incentive

compatibility.

If it so happens that the same replacement lottery p∗ can be used for all lotteries
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µ(x1, x2), the construction of the equivalent constant-threat arbitration rule is straight-

forward: We assign lottery p∗ to any disagreement and ask the agents to propose the

action y1(x) = y2(x) = µ(x, x). Then, incentive compatibility of µ implies that proposed

strategies constitute an equilibrium in the constructed constant-threat arbitration rule.

We now prove that such a p∗ exists. We have just argued that without loss of generality

we can assume that any disagreeing reports x1 and x2 result in a lottery with support on

{0, 1}. Let P (x1, x2) denote the probability this lottery assigns on action 1. By (OP2),

agent 1’s utility from a lottery on {0, 1} that assigns probability p on 1 is decreasing

in p, whereas agent 2’s utility is increasing in p. Let p = supx infx1 P (x1, x) and p =

infx supx2 P (x, x2). For any state x the minimal value of P (x1, x) that can be secured by

agent 1’s deviation in µ is weakly greater than p, and by incentive compatibility of µ, agent

1 prefers action µ(x, x) to that lottery. Hence agent 1 prefers µ(x, x) to any constant-

threat lottery that assigns probability p∗ ≥ p on action 1. The symmetric argument holds

for agent 2 with p∗ ≤ p. Finally, since maximin does not exceed minimax, there exists p∗

such that p ≤ p∗ ≤ p. The full proof is deferred to the Appendix.

Unlike in the environments with transferable utility, optimal arbitration rules might

be unable to implement the arbitrator’s most preferred action in each of the states. Nev-

ertheless, optimal arbitration rules share some qualitative properties.

Let us normalize the arbitrator’s bliss point to satisfy

y∗0(x, x) = x, x ∈ X̄.

Consider an optimal constant-threat rule in which after a disagreement action 1 is imple-
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mented with probability p. By concavity of payoff functions, in state x = p, both agents

prefer action y = p to the threat lottery,

ui(p, p) > pui(p, 1) + (1− p)ui(p, 0).

This implies that an optimal rule implements the most preferred alternative for the arbi-

trator, µ(x, x) = x, at least in state x = p. In addition, since the agents’ payoff functions

are strictly concave, we obtain µ(x, x) = x whenever x belongs to a proper interval con-

taining p ∈ (0, 1).

Observation 1 An optimal arbitration rule implements the socially optimal alternative

of the arbitrator on an interval in Y .

We now describe the structure of an optimal arbitration rule in states where the

outcome differs from the arbitrator’s most preferred action. For a given probability p of

action 1, let X̃p
i be the set of states in which agent i strictly prefers the threat lottery to

the socially optimal action,

X̃p
i = {x ∈ [0, 1] : ui(x, x) < ūi(x, p)},

where ūi(x, p) is agent i’s expected payoff from the threat lottery p,

ūi(x, p) = (1− p)ui(x, 0) + pui(x, 1).

Hence, X̃p
1 ∪ X̃

p
2 is the set of states where implementing arbitrator’s most preferred action

is not incentive compatible.
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Observation 2 For any state x in X̃p
1 ∪ X̃

p
2 , the incentive constraint of only one of the

agents is violated, i.e., X̃p
1 ∩ X̃

p
2 = ∅.

Proof. By (OP1), y∗1(x, x) < y∗0(x, x) ≡ x < y∗2(x, x) for almost all x ∈ Y . If p > x, then

agent 1 prefers action x to action y = p and hence to the threat lottery. Otherwise, agent

2 prefers x to the threat lottery. Hence, at least one agent prefers x to the threat lottery.

Thus, an optimal constant-threat rule stipulates to choose action µ(x, x) that is the

“closest” point to x (from the perspective of the arbitrator) subject to the incentive

constraints for the agents. Since at every state x ∈ X̃p
i only agent i’s incentive constraint

is relevant, we obtain

µ(x, x) ∈ arg max
y :ui(x,y)≥ūi(x,p)

u0(x, y).

That is to say, the arbitrator will distort the implemented action, µ(x, x) in favor of the

agent whose incentive constraint is binding, such that this agent is indifferent between

µ(x, x) and the threat lottery.

4.2 Final Offer Arbitration

We now show that in the environment without transfers the optimal arbitration rule can

be implemented via final offer arbitration. Let the agents simultaneously propose actions

(y1, y2). If the agents agree, y1 = y2, then the agreed action is implemented. Otherwise,

they enter arbitration by proposing actions (z1, z2) to the arbitrator who then chooses the
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one of these two actions that maximizes her utility w.r.t. her ex-post beliefs about the

state. We assume that the original proposals (y1, y2) are not observed by the arbitrator.16

Final offer arbitration replicates the optimal constant-threat arbitration rule as fol-

lows. At every state x, in equilibrium the agents propose y1 = y2 = µ(x, x). After a

disagreement agents behave spitefully and propose extreme actions, z1, z2 ∈ {0, 1} that

are least preferred by their opponent: agent 1 proposes action 0 and agent 2 proposes

action 1 to the arbitrator. Then, if (z1, z2) = (0, 1), the arbitrator implements the optimal

threat lottery p∗ on {0, 1}; otherwise she chooses the more extreme of the two proposed

decisions with probability one. By Proposition 3, this strategy makes truthful reports at

the settlement stage incentive compatible. Disagreement is out of equilibrium, hence we

choose the beliefs of the arbitrator such that the above strategy is sequentially rational.

Proposition 4 Consider the environment with complete information and no transfers.

Then, an optimal arbitration rule can be implemented via final offer arbitration.

Proof. Let µ be an optimal constant-threat arbitration rule, where p∗ denotes the threat

lottery with support on {0, 1} that puts probability p∗ on action 1. For every pair of

arbitration proposals (z1, z2), let z∗ = max{z1, z2} and z∗ = min{z1, z2}. Consider the

16This assumption makes the game and analysis simpler by restricting the structure of the arbitrator’s

information sets. The restriction is relevant for the environment with noise in which arbitration occurs

on the equilibrium path. We expect that the results continue to hold in the environment in which the

arbitrator observes the first stage proposals at the cost of the increased complexity of the agents’ mixing

strategy after observing extreme states (see Section 4.4).
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following strategies. If z∗ 6= z∗, the arbitrator chooses action z∗ with probability

πp(z∗, z
∗) =



0, if z∗ < 1− z∗,

1, if z∗ > 1− z∗,

p, if z∗ = 1− z∗.

In the negotiation stage, the parties propose y1 = y2 = µ(x, x). In the arbitration stage,

the parties propose z1 = 0 and z2 = 1. By Proposition 3, these strategies implement the

outcome of the optimal arbitration rule.

Furthermore, since arbitration is off the equilibrium path, there is freedom in assigning

beliefs about x after a disagreement. To make the arbitrator’s behavior a best response,

we construct her beliefs by assigning probability q on 1 and probability 1−q on 0, in such

a way that z∗ is preferred to z∗ (e.g., q = 0) if z∗ < 1− z∗ and z∗ is preferred to z∗ (e.g.,

q = 1) if z∗ > 1− z∗. Furthermore, if z∗ = 1− z∗, the concavity of the arbitrator’s payoff

function implies that there exists q such that

(1− q)u0(0, z∗) + qu0(1, z∗) = (1− q)u0(0, z∗) + qu0(1, z∗),

in which case the arbitrator is indifferent between choosing z∗ and z∗, and hence any

lottery is a best response.

To establish optimality of the agents’ behavior, note that at the arbitration stage a

deviation to any non-extreme action in (0, 1) is ignored, and a deviation to the opposite

extreme will lead to implementation of that extreme action with certainty, making the

deviant weakly worse off by (OP2) (say, if agent 1 deviates to action z′1 = 1, then (z′1, z2) =
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(1, 1), so the arbitrator must implement 1, the least preferred outcome of agent 1). Finally,

note that in the constant-threat arbitration rule each agent prefers y = µ(x, x) to the

lottery outcome.

The key difference between this model and those in Farber (1980) and Gibbons (1988)

is that we explicitly introduce the negotiation stage. Hence, the negotiation and the

arbitration proposals become separated, which allows final offer arbitration to implement

the outcome of the optimal arbitration rule.

4.3 Conventional Arbitration

We now consider conventional arbitration, in which both parties simultaneously and pub-

licly make negotiation proposals yi ∈ Y and the arbitrator chooses an action y if and

only if their proposals disagree. Note that conventional arbitration can implement any

equilibrium of cheap talk game in which two parties simultaneously send messages to

the arbitrator about their information, who then chooses an action that is sequentially

rational given his posterior beliefs (Krishna and Morgan (2001b), Battaglini (2002)). The

converse need not be true because the arbitrator cannot overrule an outcome if the parties’

proposals agree.

We say that conventional arbitration is (weakly) inferior to final offer arbitration if

the arbitrator’s maximal expected payoff is (weakly) lower under conventional arbitration

than under final offer arbitration. By Proposition 4:
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Proposition 5 Consider the environment with complete information and no transfers.

Then, conventional arbitration is weakly inferior to final offer arbitration.

Under conventional arbitration, only deterministic actions can be sequentially rational

for the arbitrator, since her utility function is strictly concave. That is, punishment by

randomized actions is impossible. So the ability of the arbitrator to provide incentives

is substantially limited as compared to final offer arbitration, where the incentives are

provided by a lottery over extreme actions.

We now consider a class of environments where conventional arbitration is strictly

inferior. Suppose that

u1(x, y) is strictly decreasing and u2(x, y) is strictly increasing in y for all x ∈ X̄. (M)

That is, irrespective of the state, the most preferred actions of the agents are the opposite

extremes. Then:

Observation 3 In complete information environment without transfers, where (M) holds,

conventional arbitration implements a constant action in Y .

Proof. W.l.o.g. we can consider equilibria in pure strategies in which the agents agree

with probability one. Indeed, let ỹ be a stochastic outcome of some equilibrium at some

state x. Modify the strategies in state x by making the agents propose the expected value

of ỹ and keeping the rest of the strategies intact. Then, by concavity of payoff functions,

the modified profile of strategies constitutes an equilibrium.
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We now show that in every equilibrium the implemented action is state-independent.

Consider an equilibrium where y(z1, z2) denotes the arbitrator’s action after disagreeing

proposals (z1, z2). We now construct an auxiliary zero-sum game. The payoffs of agents 1

and 2 in this game are given by −y(z1, z2) and y(z1, z2), respectively. By (M), these payoffs

represent the same ordinal preferences of the agents as their real payoffs at every state.

Let yp be the value of this game; its existence is implied by the existence of equilibrium

in conventional arbitration. Then, yp is the best action that can be secured by each agent

i. Agent 1 can agree only on actions y ≥ yp and agent 2 can agree only on actions y ≤ yp.

Consequently, the only implementable action is yp.
17

Corollary 1 Consider the environment with complete information and no transfers and

let (M) hold. Then, conventional arbitration is strictly inferior to final offer arbitration.

Proof. The proof follows from Observation 1 and Observation 3.

4.4 The Environment with Noisy Signals

We now return to the model in which the agents’ information is incomplete. We assume

that X1 = X2 is the discrete grid with step 1/K for some integer K:

X1 = X2 = X̄ = {x0, x1, . . . , xK−1, xK} (G)

17Note that every yp ∈ Y can be supported in equilibrium. As disagreement is out of equilibrium, we

can set the arbitrator’s posterior beliefs such that the agents’ messages are ignored and yp is the optimal

action conditional on disagreement, so y(z1, z2) = yp for all (z1, z2).
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where x0 = 0, xK = 1, xk − xk−1 = 1/K for all k = 1, . . . , K, and K ≥ 1.

We consider the case where the agents’ signals are correlated and study the limit to

complete information environment. The amount of noise in the agents’ signals is measured

by

δ = inf {ε > 0 : Pr [|x1 − x2| > ε] < ε} .

The following notations are in order. Let fδ(x1, x2) be the joint probability distribution

over X̄2, where δ indicates the amount of noise. We study the limit fδ(x1, x2)→ f0(x1, x2)

as δ → 0.18 Let f̄i,δ(xi) =
∑

xj∈X̄ fδ(xi, xj) be the marginal probability that i receives

signal xi, and let fi,δ(xi|xj) = fδ(xi, xj)/f̄j,δ(xj) be the probability that signal of i is xi

conditional on j having received xj.

Denote by Uδ(µ) the ex ante expected payoff of the arbitrator under rule µ in the envi-

ronment with the amount of noise δ ≥ 0 assuming that the agents report their information

truthfully,

Uδ(µ) =
∑

x1,x2∈X̄

u0(x1, x2, µ(x1, x2))fδ(x1, x2).

The next proposition asserts that there is no discontinuity in the performance of

constant-threat arbitration rules in noiseless environment and noisy environment with

small noise.

Proposition 6 For every K, there exists a sequence of incentive compatible constant-

threat rules µ̂δ such that Uδ(µ̂δ)→ U0(µ0) as δ → 0.

18That is, we consider a convergent sequence of joint probability distributions {fδn} such that δn → 0

and fδn → f0 pointwise as n→∞.
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Proof. Let µ0 be an optimal constant threat rule for the environment with zero noise,

δ = 0, and let p be the probability of action 1 in the constant threat lottery in this rule.

Next, let µ̂δ be an incentive compatible constant-threat rule in the environment with noise

that has the same constant threat lottery, p, and

µ̂δ ∈ arg min
µ

∑
x∈X̄

(µ0(x, x)− µ(x, x))2.

Such a rule exists since the feasible set of rules satisfying the constraints of the problem

is not empty and contains, in particular, the constant threat rule that µδ(x, x) = p.

The incentive constraints for µ̂δ are

fi,δ(xi|xi)ui(xi, xi, µ̂δ(xi, xi)) +
∑
xj 6=xi

fi,δ(xj|xi)ūi(xi, xj, p) (3)

≥ fi,δ(x
′
i|xi)ui(xi, x′i, µ̂δ(x′i, x′i)) +

∑
xj 6=x′i

fi,δ(xj|xi)ūi(xi, xj, p), xi, x
′
i ∈ X̄, i = 1, 2,

where ūi(x1, x2, p) denotes agent i’s expected payoff from the threat lottery,

ūi(x1, x2, p) = (1− p)ui(x1, x2, 0) + pui(x1, x2, 1).

They can be, equivalently, rewritten as

ui(xi, xi, µ̂δ(xi, xi))− ūi(xi, xi, p) ≥
fi,δ(x

′
i|xi)

fi,δ(xi|xi)
(ui(xi, x

′
i, µ̂δ(x

′
i, x
′
i))− ūi(xi, x′i, p))

for all xi, x
′
i ∈ X̄.

Recall that µ0 satisfies ui(x, x, µ0(x, x))− ūi(x, x, p) ≥ 0; furthermore, by Observation

2, this constraint is satisfied with slack for at least one agent. Therefore, since
fi,δ(x

′
i|xi)

fi,δ(xi|xi)
≤

δ
1−δ → 0 as δ → 0, we have µ̂δ → µ0 uniformly.

29



The result now follows from the continuity of u0 in y, since the expected payoff of the

arbitrator under rule µ̂δ is equal to

Uδ(µ̂δ) =
∑
x∈X̄

fδ(x, x)u0(x, x, µ̂δ(x, x)) +
∑
x1 6=x2

fδ(x1, x2)ū0(x1, x2, p).

In complete information environments, an optimal constant-threat arbitration rule

µ0 can be implemented via final offer arbitration. The difficulty of implementing the

analogous incentive compatible rule µ̂δ in the environment with noise δ > 0 is that the

arbitration stage is reached with a strictly positive probability, hence the arbitrator’s

beliefs cannot be arbitrary. Yet we can adjust strategies of the agents by letting them

randomize their proposals in case of receiving extreme signals, xi ∈ {0, 1}, that alter

the posterior beliefs of the arbitrator such that she is indifferent between the two extreme

proposals. The reason why at least one agent finds it optimal to randomize after receiving

an extreme signal is that this agent’s incentive compatibility constraint is binding and he

is indifferent between the action after an agreement and the stochastic threat action after

a disagreement.

Proposition 7 For every K, there exists a sequence of equilibrium outcomes ρδ in final

offer arbitration with the arbitrator’s payoff Uδ(ρδ) such that Uδ(ρδ)→ U0(µ0) as δ → 0.

Proof. We replicate the final offer arbitration equilibrium construction of the constant-

threat rules µ̂δ in the proof of Proposition 6, with one modification. In the first stage,

the agents make proposals yi = µ̂δ(xi, xi), except for i = 1 when x1 = 1, or i = 2 when
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x2 = 0. We will describe the remainder of the agents’ strategies in the first stage below.

At the second stage, on the equilibrium path, agents 1 and 2 propose z1 = 0 and

z2 = 1, and the arbitrator randomizes between 0 and 1 with probabilities (1 − p, p). If

either agent deviates at the second stage, this is out-of-equilibrium behavior, so the beliefs

of the arbitrator are exactly as in the proof of Proposition 4. Otherwise, the beliefs of the

arbitrator are given by the Bayes rule.

To construct the agents’ behavior at the settlement stage for the extreme signals,

consider the hypothetical environment in which the agents propose yi(xi) = µ̂δ(xi, xi) for

all xi ∈ Xi, including the extreme signals. Let Hδ be the probability of disagreement,

y1 6= y2,

Hδ = 1−
∑

x1,x2∈X̄

1{µ̂δ(x1,x1)=µ̂δ(x2,x2)}fδ(x1, x2) ≤ 1−
∑
x∈X̄

fδ(x, x) ≤ δ.

The posterior beliefs of the arbitrator conditional on a disagreement in this environment

are given by the joint probability distribution hδ:

hδ(x1, x2) =


fδ(x1,x2)

Hδ
, µ̂δ(x1, x1) 6= µ̂δ(x2, x2)

0, otherwise.

There is no a priori reason for the arbitrator to be indifferent between actions 0 and 1

given these beliefs. Suppose that given hδ the arbitrator prefers action 1 to action 0. (The

construction for the other case is symmetric.)

Case 1. Assume that in µ̂δ satisfies agent 2’s incentive compatibility constraint with

equality for x2 = 0. Then, if x2 = 0, in the first stage the agent proposes y2 = µ̂δ(0, 0) with
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probability 1 − t and randomizes uniformly among all actions in Y \µ̂δ(0, 0) with proba-

bility t. Otherwise, if x2 > 0, the agent proposes y2(x2) = µ̂δ(x2, x2). Agent 1’s proposal

strategy is y1(x1) = µ̂δ(x1, x1) for all x1 ∈ X1, including the extreme signals. The opti-

mality of the agent 2’s behavior given signal x2 = 0 follows from incentive compatibility

of µ̂δ and our assumption that agent 2’s incentive constraint is binding at x2 = 0.

Now, we construct the value of t that makes it optimal for the arbitrator to randomize

after a disagreement on the equilibrium path. The arbitrator’s beliefs after disagreement

that are induced by these strategies are given by

ĥδ,t(x1, x2) =



fδ(x1,x2)

Ĥδ,t
, µ̂δ(x1, x1) 6= µ̂δ(x2, x2)

tfδ(0,0)

Ĥδ,t
, x1 = x2 = 0,

0, otherwise,

where the probability of disagreement, Ĥδ,t, is equal to

Ĥδ,t = 1−
∑

x1,x2∈X̄

1{µ̂δ(x1,x1)=µ̂δ(x2,x2)}fδ(x1, x2) + tfδ(0, 0) ≤ δ + tfδ(0, 0).

Observe that for any given t > 0, tfδ(0,0)

Ĥδ,t
→ 1 as δ → 0. Thus, for any fixed and sufficiently

small δ > 0 the arbitrator prefers action 0 if t = 1, whereas, by assumption, she prefers

action 1 if t = 0. Consequently, there exists t∗(δ) ∈ (0, 1) such that the arbitrator is

indifferent about actions 0 and 1 if we set t = t∗(δ). Furthermore, t∗(δ) → 0 as δ → 0

since the probability of disagreement because of noise converges to 0 as noise vanishes.

Case 2. Assume that µ̂δ satisfies agent 2’s incentive compatibility constraint with strict

inequality for x2 = 0. By y∗0(x, x) = x and (OP1), it must be that µ̂δ(0, 0) = 0. Then, by
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(OP2) agent 2 cannot strictly prefer y2 = µ̂δ(0, 0) to the threat lottery, a contradiction.

In reference to conventional arbitration, by the same argument as in Section 4.3, we

have:

Proposition 8 If (M) holds, conventional arbitration is strictly inferior to final offer

arbitration for every positive amount of noise δ > 0.
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Appendix: Proof of constant-threat optimality

Proof of Proposition 3. Let µ be an optimal arbitration rule. Observe that by

concavity of ui(x, y) in y, i = 1, 2, for any measure λ,∫
ui(x, y)λ(dy) ≥

(
1−

∫
yλ(dy)

)
ui(x, 0) +

(∫
yλ(dy)

)
ui(x, 1), x ∈ X̄.

Hence, replacing µ(x1, x2), x1 6= x2, by a lottery that puts probability
∫
yµ(x1, x2)(dy)

on action 1 and the complementary probability on action 0 will not violate the incentive

constraints of the agents. Therefore, there exists an equivalent arbitration rule µ′ in which

every threat lottery implemented after a disagreement has support on {0, 1}.

We now show that there exists a constant-threat arbitration rule µc equivalent to µ′.

For every pair of different reports, x1, x2 ∈ X̄, x1 6= x2, let P (x1, x2) be the probability

that µ′(x1, x2) assigns to 1 after a disagreement. We extend the definition of P (·, ·) to X̄2

by setting P (x, x) =
∫
yµ′(x, x)(dy) for all x ∈ X̄. Define

P1(x) = {P (x′, x)|x′ ∈ X̄} and P2(x) = {P (x, x′)|x′ ∈ X̄}.

For all x ∈ X̄, p ∈ [0, 1], and i = 1, 2 let

Di(x, p) = max{0, pui(x, 1) + (1− p)ui(x, 0)− ui(x, µ(x, x))}.

By construction, a deviation by agent i in state x leading to a lottery in Y∗ that assigns

probability p ∈ [0, 1] to action 1 is non-profitable iff Di(x, p) = 0. Furthermore, by

definition of P (x, x),

Di(x, P (x, x)) = 0, x ∈ X̄, i = 1, 2.
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Thus, incentive constraints (IC) can be written as

Di(x, p) = 0, x ∈ X̄, p ∈ Pi(x), i = 1, 2. (IC′)

Observe that by (OP2)

D1(x, p) is non-increasing in p for every x ∈ X̄;

D2(x, p) is non-decreasing in p for every x ∈ X̄.
(4)

Let

a1(x) = inf P1(x), x ∈ X̄;

a2(x) = supP2(x), x ∈ X̄.

By (IC) and continuity of Di(x, p) w.r.t. p, we have Di(x, ai(x)) = 0 for x ∈ X̄. By (4),

D1(x, p) = 0, p ≥ a1(x), x ∈ X̄;

D2(x, p) = 0, p ≤ a2(x), x ∈ X̄.
(5)

Define

p = sup
x∈X̄

a1(x) = sup
x∈X̄

inf P1(x) = sup
x∈X̄

inf
x′∈X̄

P (x′, x);

p = inf
x∈X̄

a2(x) = inf
x∈X̄

supP2(x) = inf
x′∈X̄

sup
x∈X̄

P (x′, x).

Then, there exists pc such that p ≤ pc ≤ p. By (5),

Di(x, p
c) = 0, x ∈ X̄, i = 1, 2.

The result now follows from (IC′).

35



References

Ambrus, Atilla and Shih-En Lu, “Robust fully revealing equilibria in multi-sender cheap

talk,” mimeo, Harvard University, 2010.

Ambrus, Attila and Satoru Takahashi, “The multi-sender cheap talk with restricted state

spaces,” Theoretical Economics 3 (2008), 1–27.

Armstrong, Michael J. and W. J. Hurley, “Arbitration using the closest offer principle of

arbitrator behavior,” Mathematical Social Sciences 43 (2002), 19–26.

Ashenfelter, Orley, Janet Currie, Henry S. Farber, and Matthew Spiegel, “An Experimen-

tal Comparison of Dispute Rates in Alternative Arbitration Systems,” Econometrica

60 (1992), 1407–1433.

Austen-Smith, David, “Interested Experts and Policy Advice: Multiple Referrals under

Open Rule,” Games and Economic Behavior 5 (1993), 3–43.

Battaglini, Marco, “Multiple Referrals and Multidimensional Cheap Talk,” Econometrica

70 (2002), 1379–1401.

Battaglini, Marco, “Policy Advice with Imperfectly Informed Experts,” Advances in The-

oretical Economics 4 (2004), Article 1.

Brams, Steven J. and Samuel III Merrill, “Equilibrium Strategies for Final-Offer Arbitra-

tion: There is no Median Convergence,” Management Science 29 (1983), 927–941.

36



Brams, Steven J. and Samuel III Merrill, “Binding Versus Final-Offer Arbitration: A

Combination is Best,” Management Science 32 (1986), 1346–1355.

Brams, Steven J. and Samuel III Merrill, “Final-offer arbitration with a bonus,” European

Journal of Political Economy 7 (1991), 79–92.

Crawford, Vincent P, “On Compulsory-Arbitration Schemes,” Journal of Political Econ-

omy 87 (1979), 131–159.

Crawford, Vincent P. and Joel Sobel, “Strategic Information Transmission,” Econometrica

50 (1982), 1431–1451.
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