Optimal Allocation with Ex-post Verification
and Limited Penalties

By TYMOFIY MYLOVANOV AND ANDRIY ZAPECHELNYUK*

Several agents with privately known social values compete for a
prize. The prize is allocated based on the claims of the agents,
and the winner is subject to a limited penalty if he makes a false
claim. If the number of agents is large, the optimal mechanism
places all agents above a threshold onto a shortlist along with a
fraction of agents below the threshold, and then allocates the prize
to a random agent on the shortlist. When the number of agents is
small, the optimal mechanism allocates the prize to the agent who
makes the highest claim, but restricts the range of claims above
and below.

A principal has an indivisible prize to give to one of several ex-ante identical
agents. The principal’s value from giving the prize to agent ¢ is privately known
by this agent. The principal asks the agents to report these values and allocates
the prize based on the reports. Ex post, the principal learns the true value from
allocating the prize and can penalize the winner by destroying a certain fraction
of his surplus. The principal can commit to an allocation rule that determines
how the prize is allocated as a function of the agents’ reports and under what
circumstances the prize recipient is penalized. Apart from the penalty, there are
no utility transfers.

There are multiple environments that correspond to our model. For example,
a development agency announces a grant competition among potential partners
to deliver aid to a disaster area. Each partner organization privately knows the
social value it will produce. Ex post, the agency can conduct a review of the
competition winner and decide whether to debar this organization from future
grant applications (or whether to try to recover some of the funds allocated to
the organization).! For another example, a college administration has to allocate
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LConsider, for example, the U.S. Agency for International Development. A typical report to the
Congress by the Office of the Inspector General of the Agency lists a number of organizations and
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an academic scholarship or a slot in a program to one of the applicants. The
students have private information about their abilities or their fit to the program.
The college will be able to withdraw the remainder of the scholarship from the
students with subpar performance. The last example is a firm that would like to
fill a position with a fixed salary. Applicants have private information about their
qualifications. The firm will eventually learn the qualification of the new hire and
can choose to let him or her go.

In all these examples, the principal can punish the agent for lying about her
private information by destroying a part of the prize. This penalty is limited
because the agent enjoys a share of the payoff until the prize is taken away, or
with some probability, the principal may fail to take the prize away because of
legal or political reasons (e.g., a court might side with the worker), or imperfect
monitoring. The agent has limited liability and cannot be punished beyond taking
the prize away.

We characterize allocation rules that maximize the expected payoff of the prin-
cipal. To understand the forces at play on the intuitive level, consider a naive
rule that allocates the prize to the agent with the highest reported value. In the
unique equilibrium, everyone reports the upper-bound value, and the rule de facto
allocates the prize at random. This is so even if the lies are penalized ex post.
An agent with a low value (values are continuously distributed) has only a slight
chance of winning by truthfully reporting his value, since it is nearly certain that
another agent has a higher value. Inflating the report to the upper-bound value
substantially increases the probability of winning the prize, albeit at the cost of
loosing a fraction of the surplus. The argument then unravels: once agents with
low values inflate their reports, then agents with medium and, in turn, high values
respond by inflating their reports as well.

The principal can do better than allocating the prize at random. Consider
a restricted-bid procedure that allows the agents to submit reports within some
interval between two thresholds and selects the agent with the highest report (ties
are broken randomly). Ex post, the winner is penalized whenever his report is
“inflated,” i.e., when it is above the lower threshold and exceeds the true value.
An agent’s benefit from an inflated report is bounded by the increment in the
probability of selection between submitting the upper threshold and the lower
threshold reports. When this probability increment is small enough and does not
compensate for the loss of the surplus caused by the penalty, reporting the value
closest to the true value within the permitted interval is optimal. This allocation
rule is superior to random allocation, as it only bunches types at the top, above
the upper threshold, and at the bottom, below the lower threshold, while fully

individuals that are debarred for product substitution and inadequate performance. For instance, the
Semiannual Report for the period from October 1, 2015 - March 31, 2016, states that “the implementing
partner identified discrepancies in food baskets purchased for distribution in Syria and determined that
the vendor fraudulently profited approximately $106,000 by manipulating the contents of more than
55,000 food baskets.” The vendor was debarred. The report for the same period a year earlier describes
a case of suspension of two US contractors who have built houses in Haiti using substandard materials
that failed to meet safety standards.
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separating types in the middle. We show that, for a small number of agents, the
optimal rule has the described two-threshold structure.

The optimal allocation rule is different when the number of agents is large. It
can be described as a shortlisting procedure. Agents report whether their values
are above or below a single threshold. The former are shortlisted with certainty,
while the latter are shortlisted with a probability of less than one. A winner
is chosen randomly from the shortlist. If the shortlist is empty, then a winner
is drawn at random from the full set. Ex post, the penalty is imposed if the
winner has an above-threshold report and a below-threshold value. Note that
there is no discontinuity between the restricted-bid and shortlisting procedures.
As the number of agents, n, increases, the optimal thresholds of the restricted-bid
procedure converge to a single threshold.

Of course, our model is a just a simplification intended to capture a relevant
tradeoff in settings with ex-post verification and limited penalties. The incentive
constraint bounds the ratio in probabilities of the selection of the highest and
lowest types. If the low types are not promised to be selected with a sufficiently
high probability, they will mimic the high types, so the principal may as well
select an agent at random. The cap on the highest probability means bunching
the types at the top, while the floor on the lowest probability means bunching
the types at the bottom. Keeping the difference in these probabilities fixed, the
principal faces the tradeoff between making the rule more competitive by selecting
higher types with higher probability and reducing rents that have to be given to
the low types.

In applications, bunching can take the form of categorization, quotas, or the
use of irrelevant and ad hoc criteria to rule out applicants. A grant agency
can sort applicants into, for example, three categories: “highly competitive,”
“competitive,” and “non-competitive”. After that, it can allot certain amounts
of funding for each category and randomly allocate the appropriated funding
within the categories.? An academic program can assign a quota for scholarships
that are need-based and automatically enter every applicant who did not qualify
for merit-based funding into a lottery for need-based scholarships. It can also
invoke irrelevant or vague qualifying criteria such as seniority, prior allocation of
scholarships, or some specific performance measure to disqualify applicants from
obtaining the scholarship. As long as the application of these criteria is random
and independent of merit from the perspective of the students, its effect on the
incentives of the students will be equivalent to bunching.

Our analysis shows that adding agents beyond some number does not benefit
the principal and that, for a large number of agents, the optimal allocation rule
is a binary shortlisting procedure. There is an alternative implementation of the
optimal rule for a large number of agents: The principal randomly excludes some

20ur model assumes a single indivisible good. This is for clarity of exposition. Extension to multiple
goods is mechanical, as long as we maintain the assumption that each agent demands the same amount
of good.
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agents, and categorizes the remaining agents as above or below the bar. If there
are agents above the bar, one of them is chosen at random. Otherwise, an agent
is randomly chosen among all agents. We see similar mechanisms in practice.
Job search forums are full of anecdotes of HR departments discarding every fifth
application or arbitrarily dividing applications into two piles and throwing away
an “unlucky” pile. If candidates apply over time, a company might keep the
search open for a fixed period of time or until a certain number of candidates
have applied. If the quality of the candidates does not correlate with their arrival
time, the optimal rule for the company is to hire the first candidate above the
bar and to hire at random from the pool of applicants if all candidates are below
the bar and the search is closed.

In our model, ex-post verification coupled with limited penalty is the only in-
centive tool available to the principal. Ben-Porath, Dekel, and Lipman (2014)
(henceforth, BDL) study a similar model. They differ in the verification tech-
nology of agents’ information: verification is costly and can be done prior to the
allocation decision. Thus, the principal faces a tradeoff between reducing the cost
of verification and improving incentives for the agents to report their information
truthfully. The optimal rule is a one-threshold mechanism. If all agents report
values below the threshold, their values are not verified and the good is allocated
to a “favored” agent. Otherwise, the highest report is verified. Thus, similar to
the optimal rules in our paper, there is distortion and bunching at the bottom.
The reason for this distortion is different: the expected value from allocating the
good to the highest-value agent if all agents have low valuations does not justify
paying the verification cost. In BDL, there is no distortion at the top because
the agents who report high values will be verified and denied the good if they lie.
The difference in the timing of verification between our models is not essential: if
in our model, the principal could recover the entire good with certainty and there
were verification costs, the model would become equivalent to BDL.

In our model, there are no transfers at the interim (allocation) stage and there
are restricted penalties at the ex-post stage. Optimal contracts with transfers that
can depend on ex-post information have been studied in, e.g., Mezzetti (2004),
DeMarzo, Kremer and Skrzypacz (2005), Eraslan, Mylovanov and Yimaz (2014),
Dang, Gorton and Holmstrém (2015), Deb and Mishra (2014), and Ekmekei, Kos
and Vohra (2016). This literature is surveyed in Skrzypacz (2013).% Burguet,
Ganuza and Hauk (2012) and Decarolis (2014) study allocation problems with
transfers in which the principal has a lack of commitment and can renege on
transfers ex post (e.g., because of bankruptcy). In these problems, similarly to
our model, agents with low values are given rents to stop them from bidding
too aggressively to win the contract.? For mechanism design with evidence at
the interim stage see Green and Laffont (1986); Bull and Watson (2007); De-

3See also Glazer and Rubinstein (2004, 2006).
4Similar forces are at play in Mookherjee and Png (1989), who solve for the optimal penalty schedule
for crimes when penalties are bounded.
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neckere and Severinov (2008); Ben-Porath and Lipman (2012); Kartik and Ter-
cieux (2012); Sher and Vohra (2015), and Koessler and Perez-Richet (2013). Fi-
nally, for the literature with costly state verification, monetary transfers, and one
agent, see Townsend (1979), Gale and Hellwig (1985), Border and Sobel (1987),
and Mookherjee and Png (1989).

There is a body of literature on mechanism design with partial transfers in which
the agents’ information is non-verifiable. In Chakravarty and Kaplan (2013) and
Condorelli (2012), a benevolent principal would like to allocate an object to the
agent with the highest valuation, and the agents signal their private types by
exerting socially wasteful effort. Condorelli (2012) studies a general model with
heterogeneous objects and agents and characterizes optimal allocation rules where
a socially wasteful cost is a part of mechanism design. Chakravarty and Kaplan
(2013) restrict their attention to homogeneous objects and agents, and consider
environments in which a socially wasteful cost has two components: an exoge-
nously given type and a component controlled by the principal. In particular,
they demonstrate conditions under which, surprisingly, the uniform lottery is op-
timal.> Che, Gale and Kim (2013) consider the problem of efficient allocation of a
resource to budget-constrained agents. They show that a random allocation with
resale can outperform competitive market allocation. In an allocation problem
in which the private and the social values of the agents’ are private information,
Condorelli (2013) characterizes the conditions under which the optimal mecha-
nism is stochastic and does not employ payments. Bar and Gordon (2014) study
an allocation problem with non-negative interim transfers (subsidies), in which
the allocation might be inefficient because of incentives to save on the subsidies
paid to the agents.

I. Model
A. Preliminaries

A principal allocates a single indivisible prize (e.g., a job, scholarship, or office
space) to one of n > 2 agents. The principal’s payoff from retaining the prize is
normalized to 0, while her payoff from choosing an agent i is z; € [a, b], where x;
is private information of agent i. We assume that b > 0 and we do not restrict a.
In particular, a can be negative. The values of x;’s are i.i.d. random draws, with
continuously differentiable c.d.f. F', whose density f is positive almost everywhere
on [a,b].

The value of the prize for every agent is v(x;) > 0. Each agent i makes a state-
ment y; € [a,b] about his type z;, and the principal allocates the prize to some
agent, or to none of them, according to a specified rule. After an allocation has
been made, the principal observes type x; of the selected agent and, contingent

5See also McAfee and McMillan (1992), Hartline and Roughgarden (2008), and Yoon (2011) for
environments without transfers and money burning. In addition, money burning is studied in Ambrus
and Egorov (2017) in the context of a delegation model.
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on this observation, can destroy a fraction ¢ € (0,1) of the agent’s payoff.® This
assumption has multiple interpretations. For example, in the case a grant com-
petition, the winner organization can be debarred from further grant applications
after the post-implementation review. Alternatively, the grant agency can try to
recover the funds in court and be successful with some probability. Finally, ¢ can
capture the expected penalty if the agency discovers the winner’s true type with
probability less than one.

Parameters a, b, ¢, and n, and functions F' and v are common knowledge. In
addition, we assume that F”~1(0) < 1 — ¢, so that the mass of negative agents is
not too large.”

The principal has full commitment power and can choose any stochastic allo-
cation rule conditional on the reports and any penalty rule conditional on the
reports and the ex-post verified type of the selected agent. By the revelation
principle, it is sufficient to consider allocation rules in which truthful reporting
constitutes a Bayesian Nash equilibrium.

We assume that allocating the prize to agent i yields payoff x; to the principal
if the agent is not penalized and at most z; if the agent is penalized. In other
words, the penalty is never beneficial for the principal and therefore can only be
used as an incentive tool.® The optimal penalty rule is thus trivial. Since type z;
of the selected agent is verifiable, it is optimal to penalize the agent whenever he
lies, y; # x;, and not to penalize him otherwise.

An allocation rule p associates with every profile of statements § = (y1, ..., Yn)
a probability distribution p(y) over {0,1,2,...,n}. We write p;(y) for the prob-
ability of selection of i € {1,...,n} and po(g) for the probability that the prize is
not allocated conditional on report profile .

Denote by F the product c.d.f. of all n agents and by F_; the product c.d.f. of
all agents except 7. Also denote by = (x1, ..., x,) the profile of truthful reports
and by (y;,T_;) the same profile, except that x; is replaced by y;. Let g;(y;) be
the expected probability that agent ¢ with report y; is selected, assuming that all
other agents make truthful reports,

9i (i) :/ pi(Yi, T—i)dF_;(T_;).
Z_;€la,bjn—1

The principal would like to design an allocation rule that maximizes her expected

SIn the Appendix, we consider an extension of this model where the penalty c is type-dependent.

"This assumption is useful for elegance of the exposition. We analyse a more general model in the
Appendix without relying on this assumption.

81f the principal can benefit from penalizing agents, then she might prefer to ex-post penalize the
agent whose value is negative to recover the lost payoff, even if that agent has been truthful. This is not
an issue if values are nonnegative, a > 0, or if the principal faces an additional constraint that truthful
reports cannot be penalized.
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payoff,

(Po) m}z}xx E [Z?:1 pz(f)%} ,

subject to the incentive constraint that truthful reporting is optimal (by the
revelation principle),

(C0)  wilw)gi(ms) > ma vifa) (1= oily) o € [a,b], Vi € {1},
Yyi<la,

and the feasibility constraint that the probabilities are nonnegative and add up
to one, (pi())ico,..ny = 0 and Y1 pi(z) = 1 for all T € [a,b]".

B.  Problem in reduced form

We will approach problem (Py) by formulating and solving its reduced form.
Recall that all n agents are ex-ante identical, with types distributed according to
F. This assumption is important for the reduced-form approach to be applicable.

Define the reduced-form allocation g : [a,b] — Ry by

n

(1) g(@) =) gi(z), « € a,b].

=1

We will now formulate the principal’s problem in terms of g:

g

b
(P) max/ xg(x)dF(x)
a
subject to the incentive constraint

(IC) v(z)g(x) = v(z)(1 - ) it[lpb]g(y) for all z € [a, 0],

and a generalization of the Matthews-Border feasibility criterion (Matthews 1984,
Border 1991, Mierendorff 2011, Hart and Reny 2015) that guarantees the existence
of an allocation rule p that induces a given g (see Lemma 1 below):

(F) /{x:g(@%} g(x)dF(z) <1-— (F({a: cg(x) < t})) for all t € R.

)

Variable g can be interpreted in two ways. First, Q(Tz is the probability of
an agent being chosen conditional on reporting x under a symmetric allocation
rule whose reduced form is g. Second, g(z)f(z) is the (improper) probability
density of selection of type z from the principal’s perspective. The reason for
defining variable g as in (1) (rather than, for instance, g(z) = 1" | g:(2)) is

~n
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convenience: the principal’s objective function (P) and the incentive constraint
(IC) are independent of n.

Proposition 1 A reduced-form allocation g is a solution of problem (P) if and
only if there exists a solution p of problem (Py) whose reduced form is g.

As p is reducible to g by definition, the only nontrivial part of the result is the
“only if” part. The feasibility condition (F) is the criterion for the existence of
a (symmetric) p that implements g. This condition is due to the lemma below,
which is a generalization of the Matthews-Border feasibility criterion (e.g., Border
1991, Proposition 3.1) for asymmetric mechanisms. In addition, for a symmetric
p, the incentive constraints (ICy) and (IC) are identical, even though (ICyp) is a
stronger condition for a general p.

Let (X, X, u) be a measure space with measure p. Let Q,, be the set of measur-
able functions ¢ : X™ — [0,1]" such that > " | ¢ < 1. We say that Q@ : X — R
is a reduced form of ¢ € Q, if Q(y) = > i, an,l qi(y, z_;)du" 1 (z_;) for all
ye X.

Lemma 1 Q: X — Ry is the reduced form of some q € Q, if and only if
@ [ Q@@ <1- (s Q@) <t))" forallte k.
{z:Q(x)>t}

Proof. Sufficiency is due to Proposition 3.1 in Border (1991), which implies that,
if @ satisfies (2), then there exists a symmetric ¢ whose reduced form is Q. To
prove necessity, consider ¢ € Q,, and let ) be its reduced form. For every t € R
denote Ey = {z € X : Q(z) > t}. Then

n

|, Qudut) = /y . [Z

/ . 1%(3/737—1')(1#”1(3:—1')] Liyerydu(y)
i=1 /@€ X"

n

= Z [/ Qi(xiﬂx—i)l{xiEEt}dﬂn(xi>$—i)]
i— (z,T_;)EX™

Z [/(x _)exn ql'(fiafi)luj{mjeEt}du”(xi,a‘ci)]

i—1
N / (Z qz(x)> L, {a;emydu” (@) S/ Ly, {z;eppdp” (7)
TEX™ \j=1 zEXT

=1 _/ X 1ﬂj{$j€X\Et}d:un(x) =1- (M(X\Et))n'
reX™

IN

|
Proof of Proposition 1. Observe that, for every p and its reduced form g,
objective functions in (Py) and (P) are identical. We now verify that the reduced
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form of every solution of (Pg) is admissible for (P), and that for every solution g
of (P) there is an admissible allocation p for (Pg) whose reduced form is g.

Let p be a solution of (Pp). Then its reduced form satisfies the feasibility
constraint (F) by Lemma 1. The incentive constraint (IC) is satisfied as well,
since (ICg) applies separately for each ¢ and thus, in general, is stronger than
(IC).

Conversely, let g be a solution of (P). Since g satisfies (F'), by Proposition 3.1
in Border (1991) there exists a symmetric p whose reduced form is g. This p will
satisfy incentive constraint (ICyp), since, for symmetric mechanisms, (IC) implies

(IC()). u
II. Optimal allocation rules

Problem (P) is interesting because of its constraints. First, the incentive con-
straints (IC) are global rather than local, as is often the case in mechanism design.
Second, the feasibility constraint (F) is substantive and will bind at the optimum
if and only if the incentive constraint (IC) slacks, which is not the case in the
classical mechanism design for allocation problems. Let us now discuss the im-
plications of these constraints on the design of optimal rules.

A.  Incentive compatibility.

There is tension between the ability of the principal to infer the agents’ in-
formation and the ability to use this information to the principal’s benefit by
selecting agents with higher types. Suppose that the principal selects an agent
with the highest positive report and selects no one if all reports are negative. In
the unique equilibrium under this rule, everybody reports the highest possible
type, b.? Thus, communication is uninformative and the outcome of this mech-
anism is identical to the one where the principal disregards the agents’ reports
and picks an agent at random, provided E[z] > 0, so that allocating the prize to
a random agent is better than not allocating it at all.

The following lemma shows that without loss of generality we can consider only
monotonic reduced-form allocation rules.

Lemma 2 An optimal reduced-form allocation g(x) is nondecreasing.

Intuitively, the optimality for the principal implies the monotonicity of g, as
the principal would like to select higher types with higher probability. If an
allocation g is nonmonotonic, by sorting g(F _1) in ascending order, we construct
a monotonic § that preserves the incentive and feasibility constraints but increases
the principal’s payoff. The proof of Lemma 2 is in the online appendix.

9This follows from the observation that, for low enough values of x, bidding truthfully is dominated
by paying penalty ¢ and outbidding everyone else by reporting the highest type, b, and then applying
this argument inductively for other values of z.
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Consider a nondecreasing reduced-form allocation rule g. By the assumption
that v(x) > 0, the incentive constraint (IC) can be simplified as

(3) g(x) > (1 —c)g(b),

The right-hand side is the maximal payoff that agent ¢ can obtain by lying. It is
equal to the probability of selection that agent i can obtain by lying, ¢(b), times
the fraction of the retained surplus after the lie is found out, 1 — ¢. Unlike in the
standard mechanism design problems, where typically the only binding incentive
constraints are local, constraint (4) is global.

By Lemma 2 and the assumption that v(xz) > 0, the incentive constraint (IC)
becomes

(4) g(x) > (1 —¢c)g(b), for all z € [a,b].

The incentive constraint (4) induces two properties of an optimal allocation
rule:

1. Give a chance to low types. The right-hand side of (4) provides a uniform lower
bound on g. That is, an optimal rule must select any type x, whether positive
or negative, whether low or high, with a probability of at least (1 — ¢)g(b). In
particular, the monotonicity of ¢ in an optimal rule then implies bunching at
the bottom: all agents with low enough types will be selected with the same
probability.

2. Cap the odds of the best. The incentive constraint (4) tightens as the probabil-
ity of selecting the highest type increases. Thus, a smaller value of g at the top
decreases the probability of selecting types bunched at the bottom. An optimal
rule caps g at some value below 1, leading to bunching at the top: all agents with
high enough types will be selected with the same probability.

The incentive constraint (4) dictates a different structure of an optimal allo-
cation than in Elchanan Ben-Porath, Eddie Dekel and Barton L. Lipman (2014)
(BDL). The feature of bunching the types at the bottom is similar, but the rea-
son behind it is not the same. In our model, the incentive constraint prevents
separation at the bottom, whereas in BDL, the separation of low-valued agents
is feasible but does not justify the verification cost. Unlike our model, in BDL,
there is no bunching at the top because, at the optimum, the agents who report
high values are verified with certainty.

B. Feasibility

By Lemma 2, optimality for the principal implies the monotonicity of g. Hence,
the feasibility constraint (F) can be simplified as follows.

Lemma 3 For every weakly increasing g, the feasibility constraint (F) is equiv-
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alent to
b

(5) / g(z)dF(z) <1— F(y), for all y € [a,1].
Y

Proof. Since g is weakly increasing, for every t € Ry, sets {z : g(z) < t} and
{z : g(x) >t} are intervals [a,y) and [y, b], respectively, where y = inf{z : g(z) >
t}. It is then immediate that (F) is identical to (5). m

The feasibility constraint (5) has a clear interpretation. Dividing both sides by
1— F"(y), we obtain

b
1_;%)/ (@) dF(z) < 1.

The left-hand side is a conditional probability expression. This is the probability
of choosing an agent with at least type y, conditional on the highest type among
all agents being at least y. Naturally, it cannot exceed 1.
There are two properties of an optimal rule that follow from (5).

3. Separation in the middle. On any interval (a’,2”) where the feasibility con-
straint is binding, the density of the selected type, g(x)f(x), must be equal to
the density of the highest type, nF™ !(z)f(x). This implies strictly increasing
g(z) = nF" !(z) on (2/,2"), and thus full type separation on that interval. An-
other implication is that, if the highest value, max{z1,...,x,}, is in that interval,
the agent with that value must be chosen with certainty.

4. Diminishing role of the feasibility constraint for large pools of agents. As
the number of agents n increases, the set of feasible reduced-form allocations
satisfying (5) expands, eventually permitting all allocations as n — co. However,
the incentive constraint (IC) is independent of n, so, as we will prove later, there
exists a finite m such that, for n > 7, the incentive constraint determines the
optimal allocation, while the feasibility constraint is not binding. Intuitively,
as n rises, the probability of a given low-type agent being chosen shrinks. To
preserve the incentives for truthtelling, the probability of the highest type of
being chosen must shrink at the same rate. Thus, a larger n does not allow
for better differentiation between types. As a consequence, increasing the pool
of agents over some finite size i does not confer any benefit to the principal.
This contrasts to standard auction environments with independent values and
monetary transfers, where the auctioneer can always benefit from more bidders,
albeit at a diminishing rate.

C. Optimal allocations

We now describe optimal allocation rules. Assume that

(6) if a < 0, then /0(1 —c)zdF(x) + /b zdF(x) > 0.
a 0
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Since we allow for negative types, it might be optimal for the principal to select
no agent. Assumption (6) is a necessary and sufficient condition for the principal
to prefer the selection of some agent over no agent. Intuitively, the least that
the principal can do is to differentiate between values above and below zero.
Specifically, consider an allocation rule which asks each agent to report whether
his value is positive or negative, and then assigns probability %(1 — ¢) to each
agent whose report is negative and probability % to each agent whose report is
positive. This rule is feasible and incentive compatible, and it yields a positive
payoff if (6) holds. The converse argument is more involved and requires to show
that, if (6) does not hold, the upper bound on what the principal can attain is
nonpositive. The argument uses the upper bound result of Section ITI.A and thus
is deferred to Section IILF.

When the number of agents is small, the optimal rule bunches the types at the

top and at the bottom and separates them in the middle. It can be implemented
by a restricted-bid auction.
Restricted-bid auction. The principal asks each agent to make a statement y;
in an interval [z, 7] C [a,b] and then selects an agent with the highest statement
(ties are broken uniformly at random). Ex post, the chosen agent is penalized if
his statement y; is “inflated”: y; > x and y; > ;.

Informally, a restricted-bid auction categorizes the agents into three groups:
“high” with types above Zz, “middle” with types between z and z, and “low”
with types below x. The principal then randomly chooses a candidate from the
high group (bunching at the top). If there are no candidates in that group, the
highest type among the middle group is chosen (separation at the middle). If
there are neither high nor middle candidates, a candidate is randomly selected
from the low group (bunching at the bottom). Provided that n is not too large,
one can always find z and T that guarantees the incentive compatibility of the
restricted-bid auction: the greater x and the lower T are, the less benefit there is
for a low-type agent to pretend to be a high type.

However, as we noted in Section I1.B, for a large enough number of agents, the

feasibility constraint is nowhere binding, so optimality only requires bunching at
the top and at the bottom, with the empty middle interval. This is implemented
by a different mechanism called a binary shortlisting procedure.
Binary shortlisting procedure. The principal asks each agent to make a
statement indicating whether his type is above or below some threshold z. Every
agent who reports z; > ¥ is shortlisted with certainty, while every agent who
reports x; < Z is shortlisted with a specified probability ¢, which is independent
of the reports. Then, an agent is chosen from the shortlist uniformly at random.
In the event that the shortlist is empty, a uniformly random agent is chosen from
the full list. Ex post, the chosen agent is penalized if his statement has been
inflated: a type x; < T has reported being above Z.

Note that there is no discontinuity between these procedures: a restricted-bid
auction with x = ¥ is identical to the binary shortlisting procedure with the
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threshold T and probability parameter ¢ = 0.
We say that two allocation rules p and p’ are equivalent if their reduced forms
g and ¢’ are identical up to a measure zero.

Theorem 1 There exists a number of agents n such that an allocation rule is
optimal if and only if it is equivalent to a restricted-bid auction when n < n and
to a binary shortlisting procedure when n > n.

We prove the theorem and solve for the parameters of the optimal allocation
rule in the next section.

III. Proof of Theorem 1

We proceed with the proof of Theorem 1 as follows. First, we solve the reduced-
form problem without imposing the feasibility constraint (5). The obtained so-
lution gives an upper bound on the principal’s optimal payoff, and it is optimal
whenever it satisfies (5). We identify the minimum number of agents n above
which (5) is not binding for this upper-bound solution, and show that this solu-
tion is a binary shortlisting procedure.

Then, we solve the problem for n < 7, where the feasibility constraint (5)
is binding and the upper bound is unattainable. We show that the solution
is a restricted-bid auction with suitably defined bounds z and Z. This is the
most technically interesting and novel part of the analysis, where we deal with
interaction of two non-standard constraints: global incentive compatibility and
the Matthews-Border feasibility constraint.

A. Upper bound on the principal’s payoff

To derive the upper bound on the principal’s payoff, we solve (P) subject to
the incentive constraint (4) while relaxing the feasibility constraint (5).
First, we simplify the incentive constraint.

Lemma 4 Reduced-form allocation g satisfies the incentive constraint (4) if and
only if there exists r € Ry such that

(7) (I—c)r <g(x) <r forallx € |a,b].

Proof. If (4) holds, then (7) also holds with r = sup,c(, 4 9(y). Conversely, if
(7) holds with some r € R, then it also holds with " = supc,4) 9(y) < r, which
implies (4). m

We now state the result.
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Proposition 2 Let (z*,7*) be the unique solution of

*

z* b

(8) / u—wxf—xMFww:/<x—fMme
z* b

() / (1 o)r*dF(z) + / r dF(z) = 1.

For any allocation rule, the principal’s payoff is at most z*. Moreover, if an
allocation rule attains the payoff of z* for the principal, then its reduced form
must be almost everywhere equal to

(10) gwmz{“‘””’m<zﬁ

r¥, T > z*.

One could interpret the allocation (10) as a mechanism that gives lottery tickets
to the agents. Everyone with a statement above z* gets r* tickets, and everyone
with a statement below z* gets (1 — ¢)r* tickets. The probability of winning the
lottery is proportional to the quantity of tickets held. Now, consider lowering z*
a little. Then, the marginal agent has a higher chance of winning. This lowers
the chance of winning of all the people above z* (weighed by 1) and all the people
below (weighed by 1 — ¢). The first effect is good for the principal, while the
second effect is bad. Since these effects are both monotone in z*, there is a
unique internal optimum given by (8). Equation (9) just says that the combined
value of all lottery tickets must add up to 1.

Proof. We solve max f; zg(z)dF(x) subject to the incentive constraint (7) and
g

the relaxed feasibility constraint that requires the total probability of allocation
not exceed the unity, fab g(x)dF(z) < 1. The Lagrangian of this problem is

max min / ’ zg(z)dF(z) + 2 (1 - / ’ g(x)dp(x)) , or
max min <z + / b(x - z)g(:c)dF(a:)) ,

subject to (7), where z > 0 is a Lagrange multiplier.

Observe that the incentive constraint (7) must be everywhere binding, since the
objective function is linear in g. The solution is a step function that, for some
constant 7 > 0, chooses the minimum incentive compatible value (1 — ¢)r below
z and the maximum incentive compatible value r above z,

o) = {(1—c)r, x < z,

T, T > z.
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Now substitute the obtained g(z) into the objective function and optimize over z
and 7,

(1) maxmin <z + /az(x _ (1 = ordF(x) + /Zb(x - z)rdF(x)) .

r>0 z2>0
To rule out boundary solutions, observe that, under assumption (6), this objective
function is linear and strictly increasing in r at z = 0. Hence, z > 0 at the
optimum. Furthermore, if » = 0, then the objective function is strictly increasing
in z and achieves the minimum at z = 0, which cannot be optimal, as noted

above. Hence, r > 0 at the optimum.
Consequently, if a solution exists, it must satisfy the first-order conditions

z b
(12) / (1-¢)(x — 2)dF(z) + / (- 2)dF(z) = 0,

z b
(13) 1- / (1 —-c)rdF(x) — / rdF(z) = 0.

Notice that these conditions are equivalent to (8) and (9).

The left-hand side of (12) is strictly decreasing in z, nonpositive at z = b, and,
under assumption (6), positive at z = 0, thus admitting a unique solution z*.
Moreover, z* € (0,b]. In addition, for a given z € (0, b], the left-hand side of (13)
is linearly decreasing in r and positive at r = 0, thus admitting a unique solution
r*>0. m

B. Attainment of the upper bound.

The reduced-form solution g* might not be feasible when the number of agents
is small. We now derive a condition on the number of agents that ensures the
feasibility of g*.

By Lemma 3, g* is feasible if and only if fzb* g*(x)dF(z) < 1— F™(z*), which
after substituting ¢* from (10) becomes:

(14) (1— F(z")r* < 1— F(z).

Note that this is a condition on the primitives, as z* and r* are determined by F'
and ¢ and independent of n.
Denote by 7 the smallest number of agents that satisfies (14). It follows that:

Corollary 1 There exists an allocation rule that attains the upper-bound payoff
of z* if and only if n > n.

Condition (14) is not particularly elegant. Instead, one can use a sufficient
condition, which is simple and independent of F', z*, and r*.
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Corollary 2 There exists an allocation rule that attains the upper-bound payoff
of z* if e < ”T_l

In other words, the principal’s upper-bound payoff can be achieved when the
penalty is not too large, leaving at least %—th of the value of the prize to the agent.

Proof. Using (9), rewrite (14) as (170);(;\{;%1},(2*) < 1— F"™(z*). Solving for
1 — ¢ yields

Fn_l(z*)
14+ F(z*) + F2(2*) + ...+ Fn71(z¥)

This inequality holds when ¢ < ”T_l, because:

<1l-c

Fr=1(z%) - 1 1
1+ F(z*)4...+ Frl(z*)  Fln(z) 4+ F2n(z)+...+1 " n

C. Shortlisting procedure.

An allocation rule that implements ¢* with bunching of types above and below
the threshold is a binary shortlisting procedure. The threshold type is z*, while
the probability ¢ of shortlisting low-type agents has to be calculated to give the
desired probabilities, g*(z) = (1 — ¢)r* for x < z* and ¢*(z) = r* for z > z*.

Corollary 3 Letn > n. Then the binary shortlisting procedure with the threshold
T = z* and the probability parameter

(15) qzl—g

attains the upper bound z*, where s is the unique solution of equation'®

(16) (1—s)s"1 = 1 <1 — l)nl, s e [=11].

T*
The proof is in the online appendix.
D. Small number of agents

When the number of agents is small, n < n, attainment of the upper-bound
payoff z* is prevented by the feasibility constraint. The problem becomes more
difficult, as we need to handle the interaction of the feasibility and incentive
constraints.

10Equation (16) has two solutions on [0,1]. One of them, s = 1 — T%, is outside the domain ["771, 1],
1

as n > 7 implies - > % (as shown in the proof).
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Our approach is to fix a number 7, find the maximal principal’s payoff on the set
of reduced-form allocations g with supremum r, and show that this is implemented
by a restricted-bid auction. Then the optimal allocation can be determined by
taking the maximum with respect to .11

For r € R, denote by G, the set of reduced-form allocations that are weakly
increasing and satisfy the incentive constraint (7) for r. Note that G, contains an
optimal allocation only if'?

r € R=[1l,min{n,1/(1 —¢)}].

Fix r € R. We would like to maximize the principal’s payoff on G, subject to
the feasibility constraint (5),

b
(P,) max/ xg(x)dF(x)

(17) st. (1—=¢or<gx)<r, z€]lalb,

b
(18) [ swarw) <1-F@), welai,

One can interpret g(x)f(x) as an improper probability density that has to

satisfy f:g(x)f(x)dx < 1 and treat (P,) as the problem of allocation of the
probability mass among the types on [a, b].

To solve problem (P,.), we allocate the probability mass among the types, start-
ing from the highest type b and proceeding to lower types, by setting the maximum
density permitted by the constraints (illustrated by Fig. 1). Formally, we solve

max / ’ ( / ' g(t)dF(t)) dz st. (17) and (18).

g

This problem is identical to (P,), by integration by parts of the objective function.
The solution of this problem is a pointwise maximal function that respects the
constraints, g,(x) = r for all z > Z,., and g.(z) = nF" () for * < Z,. The latter

is derived from the constraint (18) satisfied as equality, f; g(y) f(y)dy = 1-F"(x).
The threshold Z, is the point where these constraints meet (the colored areas on

1 This approach is analogous to Elchanan Ben-Porath, Eddie Dekel and Barton L. Lipman (2014),
who show that, without loss of optimality, one can restrict attention to favored-agent mechanisms
parametrized by agent i and threshold v*, and then find an optimal mechanism within this subclass.

121f » > 1/(1—c), then every allocation in G, must satisfy g(z) > (1—c)r > 1, so it violates feasibility,
f; g(z)dF(z) > 1. If r > n, then every allocation in G, is also in Gn, since g(z) < n by feasibility, and
reducing r weakens the left-hand side of (7). Finally, if 7 < 1, then every allocation in G, is inferior to

the uniformly random allocation, f; zg(z)dF(z) < f; zrdF(z) < E[z].
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nF"1(x)

\ 4

FiG. 1. A SOLUTION WITH A GIVEN SUPREMUM 7.

b

Fig. 1 have equal size): ij rdF(x) =1 — F™(z,), or simply'?

(19) r(1—F(zy)) =1—F"(z,).

To sum up, we allocate g.(z) = r on the interval [Z,, b] and g,(z) = nF"!(x) on
the interval [z,,Z,). All the types below the lower threshold z, are assigned the
minimum density permitted by the incentive constraint, (1 — ¢)r. The threshold
z, is the smallest number that satisfies two constraints, z, > 0 and the total mass
not exceeding unity:

[F-onirtors [ n oar) /b .

The latter constraint can be simplified. Using (19) and integrating out the con-
stant parts yields (1 — ¢)rF(z,) + (F™(Z,) — F"(z,)) + (1 — F*(Z,)) < 1, or,

1-F"(z) _
T_F(z) —
increasing and continuous, and by assumption, r € R C [1,n].

13Note that there is a unique solution of (19), as 1+ F(z)+...+ F*~1(x) € [1,n] is strictly
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equivalently,
Fiz,) > (1—o)r
It is apparent that either x, solves the above as an equality or z,, = 0, whichever

is greater. Note that z, > 0, since 7 > 1 and, by assumption, F"~1(0) < 1 —c.
Thus z, is the solution of!*

(20) F*l(z,) = (1 o).
The solution of problem (P,) is thus

(1-¢or, =z<gz,
(21) g""(x) = nFn_l(x)a Qr S r < f’r‘a
Ty x 2 T,

where Z, and z, are given by (19) and (20).

We have shown that g, maximizes the principal’s payoff, f; xg(x)dF (x), on the
set of functions G, for a given r € R. The next proposition summarizes this result
and characterizes the optimal value of r.

Proposition 3 Let n < n. Then, a reduced-form allocation g is optimal if and
only if g = g, where r is the solution of

L, b
(22) (1—¢) / (2, — 2)dF(z) = / (@ — 7,)dF(z)

Tr

and T, and z, are defined by (19) and (20).

The optimal value of r maximizes fab xgr(z)dF (x). Equation (22) is the first-
order condition for this maximization problem, which turns out to have a unique
solution. As in (8), the optimal thresholds equate the principal’s marginal utility
distortions at the top and at the bottom. The complete proof is in the online
appendix.

E. Restricted-bid auction.

The reduced-form allocation g, bunches the types above Z, and below z, and
fully separates types in the interval [z,,Z,]. This reduced-form allocation can
be implemented by the restricted-bid auction with the bid interval [z,.,Z,]. In
equilibrium, an agent bids his type truthfully if it belongs to the interval [z,., Z,],
bids 7, if his type is above Z,, and bids z, otherwise. If one or more agents
have types above T, the restricted bid auction selects one of these agents with

14Note that there is a unique z,. defined by (20), as r € R C [1,1/(1 — ¢)], so (1 — ¢)r € [0,1], and
Fn~1(z) is strictly increasing and continuous.
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equal probability (bunching above Z,). If the highest type belongs to [z,,Z;],
it is selected with probability one (separation). Otherwise, all bids are equal to
z,. and the restricted bid auction selects one of the agents at random (bunching
below z,.).

By the construction of Z,, as given in (19), an agent with type above Z, is
selected with the probability of r/n. By (20), an agent with type below z, is
selected with the probability of at least (1 — ¢)r/n, and thus has no incentive to
inflate his report.

Corollary 4 Let n < n. Then, the restricted-bid auction with the bid inter-
val [z,,T,| attains the optimal payoff for the principal, where z, and Z, are the
thresholds in the optimal reduced-form allocation g, in Proposition 3.

Proof. The payoff of the principal from the restricted-bid auction with bid
interval [z, Z,] is equal to
Zr
V* = P2, )Eftle < z,] +/ 2dF"(z) + (1 — F™(3))Efgle > ]
x

=r

_ @) [ ey [ e E e o dF ) o L@ [
- Flz,) / o )+/x PR G, / e

=r

b

_ /a V(1 = oraedF(x) + /x e E T (2)dF (x) + /x radF(z) = /a bgr(x)dF(:c),

where in the last line we used (19), (20), and (21). =

F. No allocation

Let us now prove that assumption (6) is necessary and sufficient for the principal
to select an agent with a positive probability and to receive a positive payoff.

Proposition 4 The optimal allocation rule chooses mo agent and attains zero
payoff if and only if

0 b
(23) / (1 —c)xdF(x) —I—/O xdF(z) <0.

Proof. By Proposition 2, the principal’s payoff cannot exceed z* given by the
first-order condition (8). Since (8) has a unique solution, the upper-bound payoff
z* is nonpositive if

z b
/ (1—-c¢)(z—2x)dF(x) > / (x —2)dF(x) at z=0,
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which is identical to (23). Conversely, if (23) does not hold, then the rule

o) = {(1—0)7", x <0,

T, x > 0.

is incentive compatible, is feasible for a small enough r > 0, and yields the payoff
0 b
r (/ (1 —c)zdF(x) +/ xdF(:r)) > 0.
a 0

IV. Discussion and comparative statics

There are two notable features of optimal allocation when the principal must
rely on reported information, which is in sharp contrast to the case of observable
agent types.

First, no matter how many agents participate, low types must be chosen with
a positive probability. Even agents with negative types, no matter how bad they
are for the principal, must be treated the same way since the principal cannot
distinguish between good and bad types and has to provide incentives for telling
the truth to everyone. Moreover, the probability of choosing the very top types
has to be capped to reduce the benefit of lying.

Second, in an environment with observable types, the probability of choosing
a type above any given threshold is strictly increasing in the number of agents.
This is not true in our model. In fact, in the restricted-bid auction, as n goes up,
there is more pooling at the top: the upper threshold = decreases. Eventually,
when n > n, the optimal reduced-form allocation is a binary categorization that
assigns only two values, high and low, to types above and below some threshold,
respectively.

We now present comparative statics results with respect to

(a) the payoff of the principal;

(b) the size of the pooling interval of high types;

(c) the size of the separating interval in the middle for the case of a small
number of agents, n < 7.

We denote the threshold of the high pooling interval by = and the lower thresh-
old of the separating interval by z.!5 The high pooling interval, [z, b], consists of
all types above the upper quality bar T that are treated identically in the allo-
cation mechanism. The larger the interval is, the less discriminatory the optimal
mechanism will be for high types. The separating interval, [z, Z], has a positive
length when n < n. The size of this interval is indicative of the allocation rule’s
ability to discriminate the types in the middle.

5For n < A, T = T, and z = z,. as defined by (19) and (20) at the optimal r. For n > 7, T = 2* as
defined by (8).
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The amount of ex-post penalty affects the agents’ incentives and is crucial for
the structure of the optimal mechanism. As the penalty ¢ decreases, the principal
is less able to discriminate between high and low types. As ¢ approaches zero, the
gap between the probabilities assigned to high and low types vanishes, leading to
the uniformly random allocation.

Proposition 5a Suppose that the penalty ¢ marginally increases. Then the prin-
cipal is better off. The size of the high pooling interval, [Z,b], decreases. Suppose

in addition that n < n and that % is decreasing.'® Then, the size of the sepa-

rating interval, [z, T], increases.

An increase in the number of applicants, n, has a non-obvious effect that we
have already discussed. A larger n relaxes the feasibility constraint (F) while
having no effect on the incentive constraint (IC) and the objective function (P).
The principal can thus implement the allocation closer to the upper bound.

Proposition 5b Let n < n. Then, as n goes up, the principal is better off. The
size of the high pooling interval, [T,b], increases, and the size of the separating
interval, [z, T, decreases. Any increase of n above i has no effect.

While keeping the allocation ratio between high and low types fixed to ensure
incentive compatibility, the principal has leeway in choosing the size of the pooling
intervals for high and low types. There is a trade-off: a better differentiation
of high types (smaller interval [z,b]) entails worse differentiation of low types
(larger interval [a,z]). This tradeoff depends on the distribution of types. An
f.o.s.d. improvement of the distribution increases the single optimal threshold
when n > n, and it has an ambiguous effect on the structure of the optimal
mechanism when n < n: both optimal thresholds can either increase or decrease.

Proposition 5¢ Suppose that F is replaced by F, where F f.o.s.d. F. Then the
principal is better off. If n > n under F', then the size of the high pooling interval,
[Z,b], decreases.

The effects of a mean-preserving spread or a rotation of the distribution (Johnson
and Myatt 2006) are ambiguous. When both low and high types are less numer-
ous, whether the principal benefits from it and whether more discrimination or
more pooling of high types is optimal depends on the exact change of the distri-
bution of types.

The proof of Propositions 5a, bb, and 5c is in the online appendix.

V. Conclusion

In this paper, we have analyzed the problem of allocating a prize to one of
several agents, where the social value of giving the prize to an agent is privately

16This is the well-known monotone hazard rate condition.
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known by this agent. The allocation rule chooses the winner of the prize based
on the agents’ reports about these values. After the prize is allocated, the social
value of giving the prize to the winner becomes commonly known, and the agent
can be penalized for lies about the value. We have shown that, if the number of
agents is low, the optimal allocation rule takes the form of a restricted-bid pro-
cedure; otherwise, it takes the form of a shortlisting procedure. In this problem,
the principal faces the tradeoff between making the choice more competitive by
selecting higher types with a higher probability and mainting the incentives for
truthtelling by selecting low types with a positive probability. There are multiple
applications that correspond to our model: a grant agency selecting an organiza-
tion to fund, a college administrator awarding a scholarship, or a firm recruiting
for a fixed-salary position.
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APPENDIX: TYPE-DEPENDENT PENALTIES

Here, we consider a more general model where the penalty ¢ depends on the
agent’s type. Formally, we assume that, ex post, the principal observes the se-
lected agent’s true type z; and can impose a penalty ¢(x;) > 0, which is subtracted
from the agent’s value v(z;). Our primary interpretation of ¢ is the upper bound
on the expected penalty that can be imposed on the agent after his type has been
verified.!” Functions v and ¢ are bounded and almost everywhere continuous on
X = [a,b].

As before, we formulate the principal’s problem in terms of the reduced-form
allocation:

(P) max /GX xg(x)dF (x),

subject to the incentive constraint,

(1C) v(z)g(x) > (v(z) — c(z)) sup g(y) forallz € X,

and the feasibility constraint,
(F) / 9(2)dF(x) < 1~ (P({a: g(x) < 1}))" forall t € 0,n].
{z:g(z) >t}

The idea of the solution is the same as in Section III.D. We fix a supremum
value of g, denoted by r, interpret g(z)f(x) as a probability density, and allocate
the maximum density to high types, starting from the top, b, and proceeding

17The assumption that x; is verified with certainty can be relaxed; if a(x;) is the probability that z;
is verified and L(z;) is the limit on ¢’s liability, then set c(x;) = a(x;)L(x;).
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down, subject to the constraints. However, two issues that arise because of a
type-dependent incentive constraint.

The first issue is that the feasibility constraint (F') is not tractable without mak-
ing more assumptions about the structure of admissible allocations g. To restore
tractability, we assume that the share of the after-penalty surplus is monotonic:

Assumption 1 (Monotonicity)

v(x) — c(x)
v(x)

That is, agents with higher types stand to lose less from lying to the principal.
This is a natural assumption for the applications we consider: agents who have
better values for the principal are likely to have better outside options.

Under the above assumption, using the same argument as in Lemma, 2, without
loss, we can consider weakly increasing allocations. By Lemma 3, for monotonic
allocations the feasibility constraint (F) is equivalent to

1s weakly increasing.

b
(Frax) / g(y)dF(y) <1— F"(x), forall z € X.

The second issue is that, even after simplifying the feasibility constraint, we
must still handle a non-trivial interaction between feasibility and type-dependent
incentive compatibility. To address this complexity, we separate the global in-
centive constraint (IC) into two simpler constraints. Let 7 = sup,cy g(y). Then,
(IC) can be expressed as (c.f. Lemma 4)

(ICmax) g(x) <r, reX,
(ICmin) g(x) > h(x)r, zeX,

where h(x) denotes the share of the after-penalty surplus truncated at zero:

h(z) = maX{W,O}, rEX.

For every r € R4, derivation of a solution of (Fiax) subject to (ICyax) and
(ICmin), denoted by g,, follows four steps.
Step 1. Existence. We identify the interval of r that ensures the existence of a
feasible and incentive compatible allocation that respects supg = r. Let 7 be the
greatest value of r that satisfies

b
/ rh(y)dF(y) <1— F"(z) forall z € X.

Observe that allocation g(z) = h(z)r, z € X, is feasible and incentive compatible
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for all » € [0,7]. Moreover, since this is the minimal allocation that satisfies
(ICmin) for every given r, every incentive compatible allocation is infeasible when
rT>T.

Step 2. Solution for negative types. The principal prefers to minimize the density
assigned to the negative types. Denote by ag the greatest point in [a,0] that
satisfies

(A1) /“0 rh(y)dF(y) > F"(ao).

There are two possibilities. First, ap = 0 and ff rh(y)dF(y) > F™(ap). That is,
the only binding constraint for below-zero types is (ICyin ), so these types can be
assigned the minimal incentive compatible density, g.(x) = h(x)r for all x < 0.
Moreover, the principal prefers to allocate all available probability mass to the
positive types. Thus, the total mass to types in [0, b] must be fully allocated at

the optimum, fob gr(y)dF(y) =1 — F"(0).

The second possibility is ag < 0 and ff rh(y)dF(y) = F™(ap). That is, the
assignment of the minimal incentive compatible density g,(z) = h(z)r is feasible
only for types in [0, ap]. Incentive and feasibility constraints meet at ag, and for
type ag, the feasibility constraint is binding, fabo gr(y)dF(y) = 1 — F™(ap). The

feasibility constraint (Fp,ax) then implies f;’o gr(y)dF(y) =1 — F™(ap).

To sum up, in either case, we set g,(x) = h(z)r for all x < ag, and the feasibility
constraint must be binding at ao,

b
(A2) / 6 (y)AF(y) = 1 — F"(ap),

0

so the total mass to types in [ag, b] must be fully allocated at the optimum. This
constraint means that an agent should be selected unless all agents have types
below ag. Conditions (Fmax) and (A2) imply the following constraint:

(Finin) /x g(y)dF(y) > F"(x) — F"(ap) for all z € [0,b].

0

In what follows, we disregard the types below ag and solve the problem on [ag, b]
subject to constraint (A2).

Step 3. Concatenation of the mazximal and the minimal solutions. To find an
optimal allocation for the types above ag, we consider two auxiliary problems,
(Pmax) and (P ), whose solutions are the pointwise maximal and minimal func-
tions subject to, respectively, (ICpax)-(Fmax) and (ICyin)-(Fmin). Allocation g,
is constructed by concatenating the two solutions.
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Let G(z) := ffg(t)dF(t) and consider the following problem:

b
(Pmax) max/ G(z)dz s.t. (IChax) and (Fax)-
9 Jag

Similarly, let G(x) := fo g(y)dF (y) and consider the following problem:

b
(Pmin) min/ G(z)dx s.t. (ICwyin) and (Fiin)-
9 Jag

Problems (Ppax) and (Ppin) are the same as (P), but with relaxed incentive
compatibility, subject to only (ICpax) and (ICpy), respectively. Indeed, notice
that the objective functions are the same up to a constant (by integration by
parts). In addition, with a constant mass to be allocated, (A2), constraint (Fpn)
is equivalent to (Fyax), but is expressed in terms of the complement sets. Thus,
for any given r, (Ppax) is the problem where the original incentive constraint
(IC) is replaced by the constraint in which the probability of allocation to all
types is capped by 7. Similarly, (Ppin) is the problem where the original incentive
constraint (IC) is replaced by the constraint in which the probability of allocation
to each type x is at least rh(zx).

A concatenation is an allocation g, that satisfies for some z € (ag, b]:

rh(z), = € |a,ap),
(A3) gr(x) =49, (x), =€ lao,2),
9-(z), =€z,

where g (z) and g,(x) denote the solutions of (Pmin) and (Pmax). We say that
gr is an incentive-feasible concatenation if it satisfies (ICpax), (ICmin), (F), and

(A2).

Theorem 2 A reduced-form allocation rule g* is a solution of (P) if and only if

g* is an incentive-feasible concatenation g, where r solves

max/mgT(x)dF(x).
rel0,7] J x

Before proving the theorem, let us discuss what the solutions of the auxiliary
problems (Ppax) and (Pin) look like. The solution g, of (Pyax) is the pointwise
maximal function subject to the constraints, as the following lemma shows.

Lemma 5 For every r € [0,7], the solution of (Pmax) is equal to

nF"(z x € |ag, X
gr($):{F (2), € lao, 7).

T, x € [T, b],
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\ 4

F1G. Al. EXAMPLES OF SOLUTIONS OF Pyax (LEFT) AND Pyyy (RIGHT).

where T, < b is implicitly defined by
b
(A4) / rdF(z) =1— F"(Z,).

Proof. Asr < 7 < nF"1(b) = n, there exists Z, such that the feasibility
constraint (F,ax) does not bind, while the incentive constraint (ICnax) binds for
x > Ty, and the opposite is true for z < Z,. Consequently, g,(z) = r for x > z,,
while g, (z) = nF" !(z) for < Z,. The value of Z, is the unique solution of
(A4). i.e., the feasibility constraint binds at all z < z, and slacks at all x > Z,.
[ ]

The solution g, is illustrated by Fig. A1 (left). The blue curve is nF"~!(z) and
the red curve is r; the black curve depicts g, (x). Starting from the right (z = b),
the black line follows 7 so long as constraint (Fy,ax) slacks. Down from point Z,
constraint (Fpax) is binding, and the highest g.(x) that satisfies this constraint
is exactly nF"~!(z) for x < Z,.

Concerning the solution g, of (Pmin), it is the pointwise minimal function sub-
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ject to the constraints. It is more complex, as it involves function h(z) in the
constraints. Fig. Al (right) depicts an example of g . The blue curve is nF" 1 (x)
and the red curve is rh(z); the black curve depicts g (z). Starting from the left
(x = a), the black line follows rh(x) up to the point where the blue area is equal
to the red area (so the feasibility constraint starts binding), and then jumps to
nF"~1(z). Then, the black curve follows nF"~!(x) so long as it is above rh(z).
After the crossing point, the incentive constraint is binding again, and the black
curve again follows rh(z).

A more specific result can be obtained if we make an assumption of “single-
crossing” of incentive and feasibility conditions. Recall that the feasibility con-
straint means that the probability of choosing a type above a certain level, x,
cannot exceed the probability that such a type realizes, 1 — F"(x), for a given
distribution F' and a given number of agents n. When the incentive constraint
is absent, h = 0, all that matters is the feasibility constraint. As we increase
h uniformly for all x (constant h), in (Ppi,) (where the constraint g(z) < r
is ignored), the incentive constraint g(x) > rh(xz) will be binding for all types
below some threshold, but the feasibility constraint is still binding for all types
above the threshold. The “single-crossing” assumption is a sufficient condition
that yields this structure for type-dependent h. It precludes multiple alternating
intervals where one of the constraints, incentive or feasibility, binds and the other
slacks. Formally, for every r, there exists a threshold z, such that, for function
g(z) = rh(x), the feasibility constraint (Fy,) is satisfied (possibly, with slack)
on interval [ag, z| for any x below the threshold and is violated for any x above
the threshold.

Assumption 2 (Single-crossing property) For every r € R, there exists
z, € [0,b] such that

(A5) / " rh(y)dF(y) > F"(x) — F™(ag) if and only if x < z,.

0

Assumption 2 is clearly satisfied under constant h. The concavity of h(F~1(-)) is
also sufficient.

Lemma 6 Assumption 2 holds if h(F~1(t)) is weakly concave.

Proof. By the concavity of h(F~1(t)), for every n > 1, h(F~1(t)) — nt" ! is
concave. Hence, by the monotonicity of F', for all r > 0,

rh(y) — nF" (y) is quasiconcave.

It is immediate that the subset of (ag, b] where expression faxo (rh(y)—nEF"1(y))dF(y)
is negative is a (possibly, empty) interval (z,,b]. If that expression is nowhere
negative, then z, = b; if it is everywhere negative, then x, = ag. Then, (A5) is
immediate. m
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An example that satisfies Assumption 2 is a linear value of the prize, v(z) =
ar + 3, and constant penalty, c(z) = ¢, B > ¢ > 0, provided that F"~!(z) is
weakly convex.

Lemma 7 Let Assumption 2 hold. Then, for every r € [0,7], the solution of
problem (Pin) is equal to

(A6) g, () = {’”h(z)’ z € [ao, 2],

nFn(z), x¢€ (z,,b].

Proof. By Assumption 2, we have (ICy,i,) binding on [ag, z,] and (Fy,,) binding
on (z,,b]. Consequently, g (x) = rh(z) on [ag,z,], while g (z) = nF"1(z) on
(z,,b. m

Proof of Theorem 2. Because of the condition (A2), we can interpret %
as the probability density on [ag, b]. A necessary condition for allocation g to be

optimal is that
1 xT
Gla) = Ty . 9P

ao
is maximal w.r.t. the first-order stochastic dominance order (f.o.s.d.) on the set
of c.d.f.s that satisfy (IC) and (F). We will prove that the set of f.o.s.d. maximal
functions is the set of incentive-feasible concatenations {g, },¢[o,7. Optimization
on the set of these functions yields the solutions of (P).

Indeed, consider an arbitrary ¢ that satisfies (IC), (F), and(A2), where r =
supy g(x). Let us compare

~ 1 v 1 *
va:/~ dF and G,,ac:/~ dF(y),
(2) T F(ag) o, 9(y)dF(y) (z) = F(a) ), gr(y)dF (y)
where g, is an incentive-feasible concatenation (A3), where g, and g, are con-
catenated at some z. Because g, is the solution of (Ppy), we have for all x < z

6r0) = 1= rrgany [ 50 < s [ dwar) = G,

Furthermore, because g, is the solution for (Pax), for all > z, we have

1

1=G@) = 1=y

b 1 b B
[ sware = T [ aar@ =1 -G,
Hence, G, f.o.s.d. G.

It remains to show that for every r € [0,7] there exists a unique incentive-
feasible concatenation g,. For g, to be feasible, it must satisfy (A2) or, equiva-
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lently,

z b
(AT) / g ()dF(z) + / G, (2)dF(z) = 1 — F"(ap).

0

Let z be the greatest solution of (A7). Such a solution exists, because the value
of fazo g, (x)dF(z) + fzb g, (x)dF(x) is continuous in z (recall that F' is assumed to
be continuously differentiable), and by (Fin) and (Fax),

b b
/ g, (x)dF(z) <1— F"(ag) < / g (z)dF(z) forall r € [0,7].

0 ag

First, we show that z > Z,, and consequently, g,(x) = r for all x > z by Lemma
5. By definition, (Fy,ax) is satisfied with equality by g, at = Z,. If (Fp;y) is also
satisfied with equality by g at = z;, then (AT) is satisfied with z = Z,. Hence,
the greatest solution of (A7) is weakly higher than z,. If, in contrast, (Fmyin) is
satisfied with strict inequality at © = Z,, then the left-hand side of (A7) is less
than 1 — F"(ag) at Z,, is increasing in z, and has a solution on (Z,,b]. Thus,
z 2 Tp.

Furthermore, consider any solution 2’ of (A7) such that 2’ < Z,. Then, either
(ICmin) is violated at some x > 2z/; in which case concatenation obtained at 2’
is not incentive compatible, or (Fp;,) is satisfied with equality for all x > 2/,
so g () = nF"1(x) on [¢/,Z,]. In addition, by Lemma 5, g,(x) = nF" ()
on [2/,Z,]. Hence, concatenation at any z € [/, Z,] produces the same g and,
furthermore, z = Z, is the greatest solution of (A7). Hence, an incentive-feasible
concatenation is unique.

Next, we show that, for every r € [0, 7], g, satisfies (IC), (A2), and (F). Note
that g, satisfies (A2) and (F) by construction. To prove that g, satisfies (IC), we
need to verify that g (z) satisfies (ICmax) for < z and g,(z) satisfies (ICmin)
for z > z. We have shown above that g,(x) = r for all x > z, which trivially
satisfies (ICuin). To verify (ICpax), observe that, for z < z, it must be that
g (z) < r, as otherwise z is not a solution of (A7). Assume by contradiction
that g (2) > r for some 2’ < z. Since rh(z’) < r, the constraint (Fuin) must be
binding at 2/, implying g (2') = nt’ n=1(2') > r. However, we have shown above
that either z = Z, or (Fin) is not binding at z. We obtain the contradiction in
the former case because nF"~1(2') < nF"~(z,) < r, where the last inequality is
by construction of Z,.. In the latter case, gr(z) <, implying that g is decreasing
somewhere on [2/, 2], which is impossible by (Fuin) since (Fp,) is satisfied with
equality at /. m
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ONLINE APPENDIX: OMITTED PROOFS

Proof of Lemma 2. Consider an allocation g(x) that satisfies (IC) and (F). We
construct a monotonic g(z) that preserves constraints (IC) and (F), but increases
the principal’s payoff.

We have assumed that F' has almost everywhere positive density, so F'~! exists.
Define

St =[{y:9(F(y) <t}], teRs.
Note that S is weakly increasing and satisfies S(t) € [0, 1] for all t. Define

g(z) = S~ (F())

for all z where S™1(F(z)) exists, and extend g to [a, b] by right continuity. Observe
that g satisfies (F) by construction. In addition,

sup g(z) = sup g(F () =5"(1)= sup G(F '(y)) = sup §(a),
z€[a,b) y€[0,1] y€[0,1] z€[a,b]

thus g satisfies (IC). Finally, we show that g yields a weakly greater payoff to the
principal. By construction,

/Z g(x)dF(z) < /Zg(m)dF(a:) for all z € [a, ],

and it holds with equality for z = b. Hence, using integration by parts, the
expression

/a " #(5(z) — g(a))dF(@) = b / () — 9N @) / b ( / Z(g(x)—g(a:))dF(x)) a-

is nonnegative. m

Proof of Corollary 3. Let Q = f:* qdF(x) + le> dF(z) be the ex-ante prob-
ability to be short-listed, and let A and B be the expected probabilities to be
chosen conditional on being shortlisted and conditional on not being short-listed,
respectively:

_ - l n—1 k—1/1 _ n—k _l o n—1
A_kzlk<k‘1>Q (1-Q) and B =—(1-Q)"".

The associated reduced-form rule is as follows. An agent’s probability g;(x) to
be chosen conditional on z; > z* and x; < z* is given by A and ¢A + (1 — q)B,
respectively. Hence,

(B1) g(z) = Zz gi(x) = {n(qA+ (1-¢)B), x<z",

nA, x>z
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We now prove that g is identical to g* whenever ¢ satisfies (15). We have

(B2) Q:/:* qu(:n)+/:dF(x):/:* (1—7) dF(z) + /:dF(:v)
_ (/:*<1;c—1;8>dF(:IZ)+/:<i—1;S>dF($)>
:2(/(lz*(l—c)dF(a;)—i—/Zde(a:)) _ 1;8

I/r* 1—s 1—7"+7r%s

s s r*s ’

where we used (9). Hence, 1 — Q = T:,:gl

A= Zk n—l )Qk 1(1_ ankln_ 1_Q)n—k
=le<1—<1—Q>”>.

Substituting (B2) into the above yields

A=1a _7;8+ ) (1 - (T(r_s)ln)n> '

By (16), after some algebraic transformations,

A r*s - (r*—=1) _r
n(l —r* +r*s) (res)» n

Also, using (B2) and (16) we obtain

YO B Gl (i Gk

1
n n (res)»1 n

Substitute A and B into (B1):

n(gA+ (1 — q)B) = (s —c)nA+cnB _ (s—co)r* +c(1—s)r* — (1o

S S

and nA = r*. Hence, g(x) = ¢*(z) for all x € X.

It remains to show that, whenever n > n, this shortlisting procedure is feasible
and well defined, i.e., h > s and the solution of (16) exists and is unique.

Let n > n. Observe that F(z*) < 1, as evident from (8) and the assumption
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that ¢ > 0. Using the definition of r*, we can rewrite (14) as

1_F’n *
“ﬁ1_Fg¥=1+F@ﬂ+ﬁ@w+nw4m*uﬁ<w

In addition, 1/r* = (1 — ¢)F(z*) + 1 — F(2*) < 1. Consequently, + < -L < 1.
Observe that (1 — s)s”~! unimodal on [0, 1] with zero at the endpoints and the
maximum at s = 2. Moreover, it is strictly decreasing on [”T_l, 1]. Since the
right-hand side of (16) is strictly between zero and the maximum, there exists a
unique solution of (16) on [, 1].
Now we prove that ¢ < s. It is immediate if ¢ < 2L (since s € [%=1,1]).
Assume now that ¢ > ”T_ln Because n > 7, condition (14) must hold, which can

be written as
Folzf) < (1= o).

Thus, the right-hand side of (16) satisfies:

= (1 = )nl = W <(1—c)"

r* r*

That is, n > 7 and (16) entail

(1— sl = L (1 - 1>n_1 <(1-c) L.

T r*

As (1 —s)s" ! is decreasing on [%=1,1] and we have assumed ¢ > (n — 1)/n, it

follows that ¢ < 5. m

Proof of Proposition 3. We have already established that the solution g must
satisfy (21) for some r € R = [1,min{n, 1/(1 — ¢)}]. It remains to show that the
optimal r is the unique solution of (22).

Let us first derive how 7z, and z, change w.r.t. r. From (19) we have

(1 - F(fr))dr - Tf(fr)dfr = _nFn_l(fr)f(jr)dfr-

Hence,
dz, 1— F(z,)
dr— (r—nFr(3,)) (@)’
and thus
(B3) B nF" A ) — ) () S = (1 F(z,).

Next, if z, = 0, then dc%f = 0. Suppose that z, > 0. By (20) it satisfies
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(1—-¢)rF(z,)+1— F"(z,) = 1. Hence,

(1—0o)F(z,)dr + (1 —o)rf(z,)dz, —nF"'(z,)f(z,)dz, = 0.

Hence,
F(z,) .
dz, — { Pz, )-(1=c)r)f(z,)’ if 2, >0,
dT‘ 07 lf @T = 0
Thus we obtain
n—1 dfr
(B £ (L= e = nF M) fle) G = 2 F ().

Finally, with g = g,, the principal’s objective function is

b

W(r) = /T (1 — ¢)rdF(zx) +/ ' aenF" Y z)dF (x) +/ xrdF(x).
Taking the derivative w.r.t. r and using (B3) and (B4) we obtain

dW (r)
dr

Z,. b z,
= [ e - 0dP@) + [ sdP@) + o (1= O - nF ) fe)

Tr

L E @) — 1) (@) nyj‘

Z,. b
= / z(1 —c)dF(z) + / xdF(z) —z,F(z,) —Z,(1 — F(Z,))
b

_ /x (@ —z,)(1 - )dF(z) + / (¢ — 7,)dF(x).

Tr

The equation d‘gy) = 0 is exactly (22). To show that it has a unique solution,
observe that dd%’" > 0 and ddg[ > 0 (since g (z,) = nF" Yz,) > (1 —¢)r and

gr(T,) = nF"}(z,) < r by (IC)). Consequently, dvgﬁr) is strictly decreasing in

r. Moreover, for r sufficiently close to 0, we have both z, and Z, close to a, in
which case W (r) > 0, and similarly, for r = 1/(1 — ¢), we have T, = z, = b, in
which case W(r) < 0. =

Proof of Propositions 5a, 5b, 5c. The points of interest are the optimal
principal’s payoff z* and the structure of the optimal allocation mechanism.

First, let us deal with the optimal principal’s payoff z*.

ba: Increasing c affects only the incentive constraint (IC) by making it looser.
Optimization on a larger set yields a weakly higher optimal payoff.

5b: Increasing n affects only the feasibility constraint (F) by making it looser.
Optimization on a larger set yields a weakly higher optimal payoff. When n > n,
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the feasibility constraint is not binding and hence has no effect on the optimal
payoff.

5¢: Let F(z) < F(z) for all . This affects the feasibility constraint (F) by
making it looser for all . Optimization on a larger set yields a weakly higher
optimal payoff.

Next, we deal with the structure of the optimal allocation mechanism: threshold
Z of the high pooling interval and threshold z of the low pooling interval for the
case of n < . The interval [z, 7| is the separating interval. There are three cases
to consider.

Case 1: n > n. By Proposition 2, the optimal allocation has to satisfy the
equation

(1-0) /(z — 2)dF(z) = /Zb@: _NdF ().

*

Integrating by parts, we obtain

z* b
(B5) (1-— C)/ F(z)dx = / (1 - F(x))da.
a z*
In this case, the threshold of the high pooling interval and the principal’s payoff
are the same, T = z*. The separating interval is empty.
5a: From (B5) it is immediate that 92 > 0. That is, the size of the high
pooling interval is decreasing in c.
5b: Equation (B5) is independent of n, so a change in n has no effect (so long
asn>n).
5¢: Let F(z) < F(x) for all z. From (B5) it is immediate that replacing F' with
F yields a greater solution z*. That is, the high pooling interval shrinks.
Case 2: n < n and z = 0. By Proposition 3, the optimal allocation has to
satisfy equation (22) where we use z = 0:

/ao(—x)(l — )dF(z) = /b(g; — 7)dF ().

xT

Integrating by parts, we obtain

0 b
(B6) (1- c)/ F(z)dx = / (1 - F(x))dz.

Note that (19) is satisfied, as it has a free variable r that does not appear in (B6).
Assuming that variations of the parameters are marginal and z remains equal
to zero, the value of interest is the threshold T of the high pooling interval. The
change in the length of the separating interval t = T — x is the same as the change
in 7.
ba: From (B6) it is immediate that % > (. That is, the high pooling interval
is decreasing and the separating interval is increasing in c.
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5b: Equation (B6) is independent of n. Hence, a change in n has no effect, so
long as x = 0.

_5c: Let F(x) < F(z) for all z. From (B6) it is immediate that replacing F' by
F yields a greater solution z. That is, the high pooling interval shrinks and the
separating interval expands.

Case 3: n < nand z > 0. By Proposition 3, the optimal allocation is described
by thee variables, Z, z, and r, that must satisfy (19), (20), and (22). Combining
(19) and (20) to eliminate r, we obtain

(B7) (- = P @),
Also, integrating (22) by parts, we obtain

x b
(B8) (1- c)/ F(z)dx = / (1 - F(x))dz.

Thus, the structure of the optimal allocation is characterized by  and z that
satisfy (B7) and (B8).

Let us now evaluate 4 I gz, ‘é‘i, and @. After taking the full differential of
(B7) and (B8) w.r.t. z, z, ¢, and n, we obtain

0 = Lzdz — L,dz — L.dc + Lydn,

(B9) )
0 = Mzdz + Mydz — M.dc,

where
Lo = (1= ¢) (14 P(@) + FX(@) + ..+ F"'(®)) > 0
L= S F (@) >0

F( )+ F2(Z) + ..+ F"1(z) > 0,

L, = <(1—c)1fjlg())1 F(z) + F"l(x)lnF(x)> >0,

Mz =1-F(z) > 0,
My = (1-c)F(z) >0,

M, = / (x)dz > 0,

where we used ¢ > 0, z > a and & < b (i.e., the best payoff is better than random
allocation) and that f(z) is everywhere positive.
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To evaluate g— and , we set de = 0 and solve the system of equations (B9),
dz LM
dn ~  LzMy + Ly M;
dz L, Mz -0,

dn — LyM, + Ly M;

and hence d(fl;@ < 0.

To evaluate g and %, we set dn = 0 and solve the system of equations (B9),

dzr o LgMc + LCMQ
de — LyM, + Ly M;
dz  LiM.— L.M;
de  LyM, + L,M;

> 0,

To prove d( ) > 0, it is sufficient to check that (le )L > (0. By (B7) we have

1

1-c¢

Le=14+F(@)+F*z)+..+ F"Yz) = —F" '(2).

Thus,

Lr—L; +F"'z) {LO+F@Ez )+F2(a?>+ .+ F"Y(z))

(1-c¢)L.  Fr1(z) 1+ F(z) + F2(7) +
_(=Df@) (A +2F( ) + +
F(z) z

> (=) (F(:n) (@)

where we use

(1422 +3z%.. + (n — 1)z"2) _n-1
1+z4+22+ .. 4L T

, x€(0,1),

and the hazard rate condition, F'(z)/f(x) is increasing.

Lastly, we cannot conclude anything from (B7)-(B8) about how the thresholds
change if F' is f.0.s.d. improved.

To summarize:

5a: The high pooling interval decreases and, under the hazard rate condition,
the separating interval increases in c;

5b: The high pooling interval increases and the separating interval decreases in
n.

5¢: The result is ambiguous. If F(z) < F(x) for all , we are unable to make
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any conclusions about how thresholds Z and z change if F' is replaced by F. m



