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ABSTRACT. A decision maker acquires and processes information about an uncer-
tain state of nature by an inquiry: a contingent sequence of questions to be asked
before a decision is reached. Inquiry is a costly activity, with the cost proportional
to its length. We characterize optimal inquiries and uncover two behavioral implica-
tions associated with costly inquiry: attention span reduction (i.e., favoring shorter
inquiries by focusing on a subset of decisions and assigning them different priori-
ties) and confirmation bias (i.e., seeking evidence through inquiry to confirm a prior
guess of which decisions are optimal). This framework can be used to understand
prominent cognitive biases, such as framing and search satisficing in healthcare and

tunnel vision in criminal investigation.
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1. INTRODUCTION

Inquiry is one of the most frequent and important modes of information processing
in our daily life. Examples are abundant. A doctor visit usually consists of a series of
questions from reception to actual consultation of the patient’s conditions. A crime
investigation typically consists of a series of queries and processing the responses.
Inquiry about product characteristics and payment schemes is an important aspect
of shopping experiences. In all these examples, information to be gathered can be po-
tentially overwhelming, whereas cognitive resources available to process it are limited
and precious. In this paper, we propose a theory of optimal inquiry that incorpo-
rates a dynamic procedure of costly information processing, with novel behavioral
implications on attention span and confirmation bias.

We formalize an inquiry as the decision maker’s strategy of asking questions about
the relevant state of nature. It starts with an initial question and a contingent plan
that decides which question to ask depending on the answers to the previous ones.
As in the standard Bayesian paradigm, the answers to the inquiry determine the
posterior information that guides the decision maker’s final decision. Unlike the
standard framework, however, our model explicitly postulates a cost associated with
the length of the inquiry.

Our framework provides an explicit and intuitive procedure for information process-
ing. It has the same backbone motivation as what gave rise to the rational-inattention
literature (surveyed in Mackowiak et al., 2023). The main departure of our approach
from this literature is that we focus on the dynamic process of inquiry with an endoge-
nous choice of the optimal procedure. This allows us to obtain behavioral implications
that are of dynamic nature, such as an endogenous preference for a shorter attention
span and a prioritization of certain salient decisions before considering others.

Moreover, our cost of inquiry is directly associated with the acts of asking questions
and processing their answers, and hence the cost is independent of the decision maker’s
beliefs. This cost reflects the burden of the decision maker’s cognitive activity or the
value of physical resources (such as gathering evidence) needed for the inquiry. For
example, the cost of performing a blood-sugar test and processing its result (in terms
of physical or cognitive resources) is independent of the patient’s medical history. In

contrast, in the standard rational inattention model, the cost is an entropy-based
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function of the decision maker’s prior beliefs, which can be unrealistic in certain
applications and has a conceptual problem if applied to game situations (Denti et al.,
2022)."

Our main result is a characterization of optimal inquiry in terms of its dynamic out-
comes: the likelihood of different decisions to be made and the sequence of questions
that are used to arrive at different decisions. It relies on the following two principles
for optimality of an inquiry.

The first principle is dynamic consistency. Consider a decision maker who processes
information according to an inquiry and suppose that she has asked a few questions
but not yet ready for a final decision. At this point, she could stop and reconsider
her inquiry strategy, taking all the information she already acquired so far as given.
Dynamic consistency requires it to be optimal to stick to the original plan. We prove
this property for any optimal inquiry.

Our second principle utilizes two well-known results from the information theory—
the Kraft inequality (Kraft, 1949) and the Huffman coding (Huffman, 1952)—to char-
acterize the set of payoff-relevant outcomes implementable by an optimal inquiry. Any
such outcome consists of two components—form and content. The form includes a
consideration set, which is a subset of feasible decisions that are used with a positive
probability in that outcome, and a length profile, which specifies how many questions
are asked to reach each decision in the consideration set. The content consists of an
information partition, which describes the posterior information about the state upon
reaching each decision in the consideration set. We show that the form determines
the content: given an optimal consideration set and an associated length profile, the
optimal information partition is determined by simple indifference conditions. The
content is also informative about the form: given an information partition, the op-
timal length profile is determined by the Huffman coding. This implies a negative
correlation between the ex ante likelihood of choosing a decision and the inquiry
length that leads to that decision. That is, more likely decisions are prioritized and

considered before other decisions.

ICaplin et al. (2022) also point out that the entropy-based cost function has implications that are
empirically counterfactual. Several recent papers, such as Bloedel and Zhong (2024), also consider
more general cost structures. We defer the discussion of those papers to the Related Literature.
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The two principles uncover the key trade-off that an optimal inquiry balances: the
accuracy of information processed, expressed as the fineness of the resulting informa-
tion partition, against the number of questions needed to achieve it. We draw two
behavioral implications from this trade-off.

First we consider implications related to the form of optimal inquiry, and define
attention span as the expected number of questions the decision maker asks before
reaching a decision. We show that the decision maker optimally reduces her attention
span as the cost of each question rises. This is achieved either by dropping some
decisions out of the consideration set, or by prioritising some decisions over others, or
both. At the extreme, when the cost is very low, all feasible options are considered,
and it takes as many questions as needed to distinguish them all. On the other hand,
when the cost is very high, no information is processed, and the decision is chosen
according to the prior belief.

Second, we consider implications to the content of the optimal inquiry. We show
that optimal inquiry always exhibits confirmation bias: the decision maker optimally
seeks information to confirm her prevalent hypothesis of which decisions are optimal.
This formalizes the informal definition of confirmation bias in psychology such as
Nickerson (1998): “It refers usually to unwitting selectivity in the acquisition and
use of evidence.” We uncover an economic mechanism for the confirmation bias to
occur optimally. Because asking questions is costly, the decision maker is willing to
make suboptimal choices that are associated with fewer questions. At the same time,
ex ante more likely choices are optimally prioritized with fewer questions to confirm
them. These two forces together lead to an endogenous confirmation bias.

Finally, we apply our model to understand the phenomena of framing and search
satisficing, leading to misdiagnosis in primary healthcare, and tunnel vision, leading
to wrongful convictions in criminal investigation, where the literature has argued
that such cognitive biases can have dire consequences (e.g., Gould and Leo, 2010;
Singh et al., 2017). Through the lens of our model, we show that the pressure to
end inquiry early can lead to a biased process. In the case of health care, we show
features such as “premature diagnosis” and “search satisficing” can be explained by
our confirmation bias, whereas “framing” can be understood as how a doctor’s prior

beliefs can magnify this bias or determine its direction. In the case of criminal justice,
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we show that a “tunnel vision” that leads to higher rate of wrongful conviction can be

linked to higher cognitive cost associated with a stronger pressure to solve the case.

Related Literature. This paper makes a conceptual and methodological contribution
to three strands of literature.

The first strand includes papers that formulate and study decision making with
cognitive limitations. A popular approach in this literature is rational inattention
initiated by Sims (2003). It treats limited cognition as costly information acquisi-
tion. The cost of acquiring information is postulated as an ex-ante cost function,
typically modelled as entropy reduction relative to the prior belief, as in Matéjka
and McKay (2015) and Jung et al. (2019). More recent papers consider other cost
functions. Morris and Strack (2019) introduce an alternative ex-ante cost function
motivated by the classic sequential sampling problem of Wald (1945). Hébert and
Woodford (2021) propose neighborhood-based cost functions that capture notions of
perceptual distance. Pomatto et al. (2023) characterize ex-ante cost functions that
satisfy several economically interpretable axioms. Bloedel and Zhong (2024) provide
general conditions for ex-ante cost functions to arise from dynamic models of informa-
tion acquisition. Unlike this literature, we focus on a concrete but intuitive dynamic
model where the cost of information is directly associated with asking questions. The
dynamic nature of the process and the sequencing of questions matters and has be-
havioral implications. This approach allows us to capture certain behavioral concepts
in a meaningful way with novel insights.

Cognitive limitations of a decision maker have also been modeled without reducing
them to an ex-ante cost function. Wilson (2014), following the approach of Cover and
Thomas (2006), formulates the decision-making process as a finite automaton. The
main result in Wilson (2014) is a dynamic-consistency type of result called multi-self
consistency. The cognitive constraint is modelled via an exogenously given number
of memory states that capture the decision-maker’s memory capacity. In contrast,
we prove the dynamic consistency in the conventional sense and endogenize the size
of the optimal inquiry via a cognitive cost. Cremer et al. (2007) propose a model
of organizational language using codes, with the main trade-off between the use of
broader codes, which are easier to process and the precision of such codes. While

our model shares a similar trade-off, our model of inquiry is dynamic in nature with
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implications on the timing of information processing. Mandler (2024) also proposes
a model in which the decision-maker acquires information by asking questions, mod-
elled as a partition of states, addressing a question that is complementary to our
paper. The focus of Mandler (2024) is on the implementation of an exogenously
given decision rule at minimum cost, with implications on how the inquiries should
be structured. In contrast, our model features an endogenous decision rule that is
jointly determined with the inquiry tree and information structure, which allows us
to show the connection between cognitive costs and behavioral biases.

The second strand of literature includes papers that study behavioral biases with
cognitive frictions. These papers range from axiomatic to constrained optimization
approaches, the former including Masatlioglu et al. (2012) and Manzini and Mariotti
(2014) and the latter including Caplin et al. (2019). While our approach is closer
to the latter, we connect the two approaches by showing that our optimal inquiry
satisfies certain desirable axioms, such as dynamic consistency and the attention-
filter property of Masatlioglu et al. (2012).

The third strand rationalizes confirmation bias. The wisdom from the literature
is that frictions in information processing tend to cause the decision-maker to favor
signals that confirm the prior belief. Wilson’s (2014) model generates this form of
confirmation bias based on limited memory. However, in her model the decision-maker
does not seek evidence but passively processes it. In contrast, our decision-maker
actively seeks evidence to confirm her more likely options.

Steiner et al. (2017) obtain a “status quo bias” in a dynamic rational-inattention
model where the decision-maker tend to stick to prior decisions. Nimark and Sun-
daresan (2019) also obtain a “confirmation effect,” meaning that the decision-maker
adopts signal structures in favor of the prior belief. All these papers argue that cer-
tain implications from the proposed models can be interpreted as confirmation bias
and emphasize the importance of the prior belief. Jehiel and Steiner (2020) obtain
confirmation bias in a model where the decision maker chooses whether or not to
continue to receive more signals, but can only remember the last one received. Con-
firmation bias here means that the agent is more likely to stop when seeing a signal in
favor of the prior. In contrast, we define confirmation bias formally as the decision-
maker seeking evidence to confirm ex ante most likely guesses about which decision

is optimal, a definition that is based not on priors but on observable choices.
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The paper is organized as follows. Section 2 introduces the model. Section 3
establishes the key principles of optimality and characterizes optimal inquiries. Two
behavioral implications, attention span and confirmation bias, are studied in Sections
4 and 5. Section 6 presents two case studies that illustrate potential applications of
our model. The proofs of the theorems and Lemma 3.4 are relegated to Appendix A,
and the rest of the proofs to the Online Appendix.

2. MODEL

2.1. Primitives. A decision-maker (DM) needs to process information about an un-
certain state of nature before taking an action. The DM’s utility u(a, ) depends on
her action, a € A, and an uncertain state, z € X.? The set of actions A is finite and
contains at least two actions. The set of states X is a convex subset of RY, L € N.
State x is distributed according to a probability distribution G' that is absolutely
continuous and has full support on X. We will use notation P[-] and E[-] to denote
the probability and expectation under G, respectively.

We say that action a dominates another action o’ if u(a,z) > u(d’, x) for all z € X
and strictly so for some x € X. Throughout the paper, we assume:

(Ay) For all a € A, u(a,z) is continuous in z, and E[u(a, x)] is finite.

(Ag) For all a,a’ € A, a does not dominate o’

(A3) For all d’,a” € A and all ¢ € R, the set {z € X :u(d',z) —u(a”,z) = ¢} has

empty interior.

Assumption (A;) is needed for the DM’s optimization problem to be well defined.
Assumption (Aj) is introduced to simplify exposition and it precludes existence of
dominated actions. Assumption (Aj) is a generalization of the condition of “thin”
indifference curves between each pair of actions. It means that the utility curves of
any two actions are almost never parallel to each other. Many usual utility functions
satisfy this assumption. For example, (A3) is satisfied for the following two classes of

utility functions.

(U;) The Lancaster model of product characteristics: X C R¥ and, for each a € A,
there is (ag, 3,) € R x R such that u(a,x) = B, - © + ag.
2Variable z can be interpreted as a profile of observables or signals with quantitative information

about the true underlying state of nature (which may be ultimately unobservable) that the DM can
ask questions about.
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(Uy) A tracking problem: A C R and X C RY, and u(a, z) is the negative distance
between a and x, that is, u(a, ) = —||a— ||, + a4, where ||-||, is the L,-norm

on R and a, € R for each a € A.

There are two special cases of (U;) that we will use for illustrations. The first
case has L = 1 and hence the utilities depend only on a one-dimensional state. The
second case has A = {ay,...,ar} and u(z,q;) = x; for | = 1,..., L, where the values
x; are distributed independently. This is the case where the DM chooses between L

independently valued options.

2.2. Inquiries. When confronted with a state x, the DM does not observe = directly.
Instead, she relies on a series of questions to obtain information about x. Formally,
we consider an inquiry as a series of true/false questions formulated as propositions.
A proposition is a statement about x in the form “x € Y” that can be either true
or false. We denote the collections of Borel subsets of X by B(X), and identify a
proposition with a set Y € B(X). We say that proposition Y is true at x if z € Y
and it is false if € Y.

An inquiry @ = (N, T,0,x,d) is a finite binary tree. Non-terminal nodes of the
tree are associated with propositions, and terminal nodes are associated with actions.
Specifically:

e a finite set N of nodes contains a root n° and a nonempty set 7" of terminal
nodes (note that the tree may consist of a single terminal node, i.e., N =T =
{n°});

e cach non-terminal node n € N — T is followed by exactly two edges labelled
true and false;

e successor function o for the tree assigns to each non-terminal noden € N —T
and each edge e = {true, false} a child o(n,e) € N of node n following edge e;

e proposition mapping x assigns to each non-terminal node n € N —T" a propo-
sition x(n) € B(X);

e decision rule d assigns to each terminal node t € T" an action d; € A.

We denote by Qx the set of all possible inquiries given a set of states X.

Given a state of nature € X, an inquiry @ = (N,T,0,x,d) begins with the

proposition x(n°) at the root of the inquiry tree, and it ends whenever a terminal

node is reached. It proceeds by following the inquiry tree. At a non-terminal node
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n € N — T, the inquiry asks whether it is true that x € x(n). If true, then the
inquiry proceeds to the node o(n, true); otherwise, the inquiry proceeds to the node
o(n, false). When a terminal node ¢t € T' is reached, the DM takes action d;.

2.3. Information. The inquiry transforms a quantitative statement, say, “x > r”,
into a qualitative one, say, “yes” or “no”, eventually leading to a qualitative recom-
mendation of which action to choose. The underlying assumption is that the DM
cannot directly digest quantitative information. Knowing that his blood sugar level
is 6 mmol/L means little to a medical lay person, but knowing that it is below the
level that would be labelled as “normal” is very useful as it suggests a decision of not
going to a physician. Indeed, our theory is aimed at the optimal thresholds for what it
means by “normal” (do nothing), “concerning” (see the doctor soon), or “emergency”
(call an ambulance).

Formally, the inquiry categorizes states of nature into subsets through a series of
questions. When arriving at any (terminal or non-terminal) node n € N, the DM’s
information about the state is summarized by a subset of states, denoted by I,,(Q).
That is, given the answers to the questions in the previous nodes, the DM can infer
that the true state belongs to I,(Q), recursively defined as follows. Clearly, at the
root, all states are possible, and hence I,.(Q)) = X. Given a non-terminal node
n € N—T, let n'"¢ and n%*¢ be the successors of n after “true” and “false” answers

to the proposition y(n), respectively. Then we define

Lyrae (Q) = L(Q) N x(n) and Ly (Q) = L(Q) N (X —x(m). (1)

Now, for each x € X, the DM will reach some terminal node ¢ at the end of the
inquiry. Thus, the set I,(Q)) consists of all states under which terminal node t is
reached, and we call it a category of states induced by ). Note that the collection of
categories {[;(Q) : t € T} forms a partition of X. It is the information partition at
the end of the inquiry.

As zero probability events do not matter for payoffs, we adopt and use throughout
the paper a measure-based notion of partition that disregards sets of measure zero

under . Specifically:

Definition 2.1. A collection of disjoined sets { X1, Xa, ..., Xk} is a partition of X if
P(Xy) > 0 for each k, and ), P(X;) =P(X) = 1.
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Note that a partition according to the above definition does not have to be ex-
haustive; it is sufficient for the partition to cover a measure-one set. We adopt this
definition to avoid discussions about measure-zero sets that have no rendering on the

DM’s expected payofts.

2.4. Payoffs. We assume that asking questions is costly. Let the DM’s cost of any
single question be A > 0. Given an inquiry @, let £;(Q) be the length of the path from
n° to t in the tree, that is, ¢,(Q)) is the number of questions asked to reach terminal
node ¢t. Then, the cost of inquiry at terminal node ¢ is equal to A;(Q).

We can now formulate the DM’s optimization problem. Given an inquiry () and a
state x, if the inquiry reaches the terminal node ¢ for the given x, the DM’s ex-post

payoff net of the cost is
u(ds, v) — M(Q).
Because each terminal node ¢ € T is reached whenever the state = is in [;(Q), the

DM’s ex ante expected utility from inquiry @ is

WE@N =Y [ (udr) - 2(@)) ) )

teT

We are interested in the optimal inquiry that solves
Zoax W(Q; A). (3)
The maximization problem (3) resembles the problem studied in the rational inat-
tention literature (e.g., Matéjka and McKay 2015, Jung et al. 2019, and Caplin et al.
2019). But this resemblance is more in formality than in substance. The standard
approach measures the cost of information in terms of entropy reduction relative to
the prior belief. In contrast, in our model the primitive cost does not depend on the
prior—it is simply the asking (and the implied act of processing the answer) itself is
costly. Moreover, in contrast to the usual setup in which the model is silent about
the corresponding procedure that the DM uses to arrive at her decision, in our model
there is an explicit connection between the solution to (3) and the procedure used.
In particular, we may say that the realized process is simpler for a decision if fewer

questions are needed to arrive at that decision, that is, ¢ is smaller.
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u(ay, x) u(as, x)

u(ag, )

0 0 1-0 1

FIGURE 1. The doctor’s utility from actions ag, ar, and a;.

2.5. Example. We illustrate our setting and, later, the results by the following ex-
ample. The example is based on the case study in Croskerry et al. (2013), which
illustrates how cognitive factors affect misdiagnosis in healthcare. A detailed descrip-
tion and the implications from our theory to misdiagnosis will be given in Section
6.1. This example is based on the following stylized situation of a doctor visit. A
patient comes to a family doctor about a common symptom but may in fact have a
rare condition that requires further investigation to avoid serious health implications.
The severity of the issue is summarized by a state x € [0,1]. The doctor has three
possible actions: to send the patient home to rest (labeled as action ay), to prescribe
the usual medication for the common symptom (labeled as action as), or to refer the
patient for further investigation (labeled as action ag). Depending on the severity of
the issue, x, the doctor’s gross payoffs from these actions are given by the quadratic

loss relative to the respective ideal states 0, 1/2, and 1:

Ulay,v) = —2*, Ulag,z) = (2 —0) - (L —2)* Ulaz,z) = —(1 —2)%

1
2
where 6 € (0,1/2) is a parameter capturing the importance of the extreme actions
a1 and ag relative to the middle action a,. In other words, a; would be ideal for
rather healthy patients (z < ), ay for 2’s around the middle (# < z < 1 — #), and
az for severe conditions (r > 1 — 6). For convenience, fix a default action, say, as,
and consider the utility u(z,a) from each action a € {ay, as, a3} as compared to the

default action, u(x,a) = U(z,a) — U(z, az). Thus, as shown in Figure 1,

u(ay,z) =0 —z, u(ag,x) =0, wu(as,z)=60—(1—x).
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Isz>0/2?
try \@se
Is z <07 Isz>1-67 ay
tru/ \@se tru/ \lee
Is x> 1/27 ay [sz>1-07 as Is z < 67
tr% \@se tly wse tru/ \lee
as aq as ) aq az
A. B. C.

FiGURE 2. Examples of inquiries

The doctor is initially uninformed about x. Note that the doctor does not need
to discover z precisely, and she only needs to find out enough to choose a treatment.
To learn about z, the doctor asks several yes/no questions according to an inquiry
that starts with an initial question, specifies follow-up questions depending on earlier
answers, and prescribes actions. Examples of inquiries are shown in Figure 2.

A cost A of a question is interpreted as the opportunity cost of time and cognitive
effort spent on a patient that could have been spent to diagnose and treat other
patients. Indeed, in Croskerry et al. (2013) this cost is regarded as an important
factor that affects the doctor’s investigation and the resulting decision. If the doctor
reaches a decision a after asking ¢ questions, the resulting payoff is u(a, x) — A\l. For
example, in the inquiry B (Figure 2), the cost is A if a; is reached, and it is 2\ if either
as or ag are reached. The doctor would like to choose an inquiry that maximizes her
expected utility net of the cost of inquiry, given her prior knowledge, modeled as a
prior distribution over .

As a benchmark, suppose that there is no cost of asking questions, A = 0. Then,
as apparent from Figure 1, it is optimal to choose a; when x is below 6, to choose
as when x is between 0 and 1 — #, and to choose a3 when x is above 1 — 6. Inquires
B and C (Figure 2) both achieve this outcome. However, when questions are costly,
A > 0, the two inquiries differ significantly in terms of the cost: when action a; is
taken, it takes only one question in inquiry B but it may take three in inquiry C;

when action as is taken, it takes two questions in B but three in C. Moreover, once we
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take the cost into account, the doctor may find it optimal to trade off some accuracy
of information about z to reduce the cost of inquiry; in other words, the optimal
information partition would be endogenously determined by the cost. As we shall
see later, because of these considerations, inquiries B and C in Figure 2 are neither

equivalent to each other, nor optimal.

3. OPTIMAL INQUIRIES

We establish two principles of optimality of inquiries. We show that optimal inquiry
is dynamically consistent. We also show that an inquiry can be summarized by its
payoff-relevant outcome, and we then characterize the outcomes of optimal inquiries.
Based on these principles, we will express the task of finding an optimal inquiry as a

simple finite optimization problem, and analyze the properties of its solution.

3.1. Dynamic Consistency. We show that it makes no difference whether the DM
commits to an optimal inquiry ex ante or she is free to update her strategy at any
interim stage, and hence, the inquiry is not only ex ante, but also sequentially optimal.

We use the following notion of dynamic consistency. Let Q@ = (N, T, 0, x,d) € Qx
be an inquiry. Consider a node n € N. At that node, the DM infers that the state is
in 1,,(Q). Note that the DM’s plan of questions after reaching n is itself an inquiry,
whose initial set of states is I,(Q). Let us refer to it as a sub-inquiry at node n € N.
The set of all possible sub-inquiries at n given information 1,,(Q) is Qy,(g). Denote
by @, the specific sub-inquiry at n that prescribes to play according to the original
inquiry Q.

Suppose that the DM initially follows inquiry ¢) but, upon reaching node n, she
reevaluates her strategy: whether to follow the original plan @, or to deviate to an-
other sub-inquiry Q € Qr,.(Q)- Let WH(Q, A) be the DM’s expected payoff conditional
on reaching node n if she chooses sub-inquiry Q upon arrival to n. We say that the

original inquiry () is dynamically consistent if no deviation is beneficial at any node.

Definition 3.1. An inquiry @ = (N, T, 0, x,d) is dynamically consistent if, for each
node n € N,

Wi (Qns \) = o Wi (Q; V). (4)
€Lr.(Q)

Note that dynamic consistency implies that the DM behaves in a sequentially op-

timal way at each terminal node as well. Specifically, the DM chooses an action that
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maximizes her expected payoff given the information at that node. That is, if @ is
dynamically consistent, then, for each terminal node ¢t € T, the action d; must be a

solution of

acA

max/ u(a, )G (dz|1(Q)). (5)
z€l(Q)

We have the following theorem.
Theorem 3.1. Every optimal inquiry is dynamically consistent.

The theorem is proved by the usual argument for dynamic consistency. At any
node n, if there were a sub-inquiry that would be superior to the original one, then
one could modify the original inquiry by plugging in the superior sub-inquiry after
node n and obtain a strictly higher ex ante payoff. Crucial to this argument, however,
is the fact that at any node n, the cost paid for the questions asked to arrive at n is
sunk because of the additive-cost structure. For example, dynamic consistency would
not hold if the ex-ante cost of inquiry were proportional to the longest path in the
tree, since at any interim node n the cost would not be sunk.

Theorem 3.1 demonstrates the procedural rationality of the optimal inquiry, a
property that cannot be discussed without an explicit formulation of the decision-
making process. Moreover, as we shall see later, although the optimal inquiry features
certain “biases” from the perspective of a model without cost, these biases are not
driven by inconsistent behavior between different stages of the decision process, they

are an inevitable part of the optimal response to the cost of inquiry.

3.2. Outcomes. Here we show that it suffices to describe an optimal inquiry by its
payoff-relevant outcome. The outcome consists of two parts: the form and the con-
tent. The form consists of a consideration set—which is a subset of decisions that can
be implemented in that outcome—and a length profile—which specifies how many
questions are asked to reach each decision in the consideration set. The content
consists of a collection of categories that forms an information partition, which de-
scribes the posterior information about the state upon reaching each decision in the
consideration set.

We begin by observing that if an inquiry is optimal, then every node must be
reached with positive probability. Indeed, if there was a node n that is only reached

with probability zero, then, in some predecessor node n’, the proposition y(n’) or its
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complement would have had measure zero, so the associated costly question would

have been redundant.

Lemma 3.1. If an inquiry Q = (N, T, 0, x,d) is optimal, then every node n € N is
reached with positive probability.

Next, we observe that an optimal inquiry cannot induce the same action in two or
more terminal nodes. Indeed, if it was the case, there would be no need to distinguish
between these terminal nodes, so the number of costly questions in the inquiry could
be reduced. For example, in inquiry C (Figure 2), action a; is chosen after a single
question when x € [0,6/2] and after three questions when x € (0/2,0). Let us merge
these conditions into a single proposition, z < 6. Asking whether z < 6 first, and
choosing a, if true, and otherwise asking the remaining question, whether x > 1 — 6,
leads us to inquiry B. Inquiry B chooses each action on the same subset of states
as inquiry C, but asks fewer questions. This observation leads us to the following

property of optimal inquiry.

Lemma 3.2. If an inquiry Q = (N, T,0,x,d) is optimal, then d; # dy for all pairs

of distinct terminal nodes t,t' € T.

An immediate implication of Lemma 3.2 is that each terminal node corresponds to
a unique action in A. In what follows, we will identify terminal nodes with actions
they induce. Specifically, let D(Q) be the set of actions induced in inquiry Q). We will
refer to D(Q) as the consideration set, and to actions in D(Q) as decisions. The set
D(Q) can be a proper subset of A, with the interpretation that the DM will process
information in a way that would lead her only to consider a strict subset of all feasible
actions.

For each decision d € D(Q), let £4(Q)) denote the length of inquiry leading to
the terminal node where a is chosen, and let I;(Q)) denote the information set or
the category induced by @ in that terminal node. As indicated by Definition 2.1,
we do not distinguish information sets that differ by measure-zero sets. Let £(Q) =
{€a(Q)}aep(o) and 1(Q) = {14(Q) }acp(g)- The lengths in £(Q)) are ordered according
to the order of actions in D. For example, if D = (dy,dy, d3), then £ = (g,,a,, Las)-
The same applies to 1(Q).

We will refer to the triple (D(Q), £(Q), 1(Q)) as the outcome profile induced by @,
and hence (D(Q),¢(Q)) describes the form of the inquiry @ and I(Q) describes the
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content. Note that the form of an inquiry is discrete in nature while the content is
continuous.

Since under the inquiry @), a decision a with a shorter inquiry length grasps the
DM’s attention first before another @’ with a longer length, we may say that the DM
prioritizes decision a over a’ if £,(Q) < £,(Q). For illustration, consider inquiries A
and B in Figure 2:

Inquiry A’s outcome: D = {ay,as}, (= (1,1), I={[0,1/2],(1/2,1]}.
Inquiry B’s outcome: D = {ay,a9,a3}, ¢ =(1,2,2), I =1{[0,0),[0,1—46],(1—0,1]}.

In inquiry A, the DM treats actions a; and a3 equally, but does not consider action
as, since ay € D. In inquiry B, the DM prioritizes a; over a, and ag, since a; is
reached after one question, while ay and ag are reached after two questions.

Note that inquiry C in Figure 2 has the same action a; in two different terminal
nodes, and thus cannot be represented by an outcome. Moreover, by Lemma 3.2,
inquiry C cannot be optimal. To show that the inquiry C is suboptimal, we construct
another inquiry (namely, inquiry B) which leads to the same information partition
but with the categories for the two terminal nodes with action a; combined into one
single category, and all the branches weakly shorter than the corresponding ones in
inquiry C. This construction is based on a more general principle that leads to the
following characterization of inquiry outcomes.

Let D C A be a nonempty consideration set, let £ = (£4)qep € NPl be a length
profile, and let I = {I;}4ep be a partition of X. Denote by Z the set of such
triples (D, ¢,I). We say that an outcome profile (D,¢,I) € Z is implementable if
there exists an inquiry @) € Qx that induces this outcome profile, that is, (D, ¢, ) =
(D(Q),4(Q),1(Q)). The following lemma characterizes implementable outcomes.

Lemma 3.3. An outcome profile (D, ¢, I) € Z is implementable if and only if

» o<1, (6)

deD
Equality (6) follows from the Kraft inequality in information theory that charac-
terizes the path lengths of binary trees. Here we have equality instead of inequal-
ity because in our inquiry trees each non-terminal node has precisely two outgoing

branches.
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Lemma 3.3 implies that the set of feasible outcomes only depends on the form
(D, ?), but it does not depend on the content /. In other words, the lemma shows
that for any given form (D, /) that satisfies (6) and any given content I with |D|
categories, we can construct an inquiry with the corresponding outcome.

To illustrate this lemma, suppose that D = {a;,as,as}. Then, only three length
profiles satisfy equality (6), namely, ¢ = (1,2,2), { = (2,1,2), and £ = (2,2,1). If we
increase the number of actions to four, so D = {ay, as, as, as}, then there will be 13
length profiles that satisfy (6), namely, the uniform profile, (2,2,2,2), and 12 distinct
permutations of the extreme profile (1,2,3,3). The set of length profiles increases
exponentially with the size of D. However, we later establish optimal conditions with
which we can identify a smaller candidate set.

Lemmas 3.1-3.2 lead us to a key observation. An outcome (D, ¢, I) captures all we
need to know to evaluate the DM’s expected payoff of an inquiry that leads to that
outcome. Indeed, suppose that two different inquiries Q and )’ implement the same
outcome (D, ¢, I). Then, by (2), we have

W@ = W@ =3 [ (ufd.a) = M) Gla) @

deD
Moreover, Lemma 3.3 implies that for any outcome (D, ¢, I) that satisfies (6) there
exists an inquiry with that outcome.
Thus, without loss of generality, an inquiry can be equivalently represented by its

outcome (D, ¢, I). An outcome of an optimal inquiry will be called optimal outcome.

3.3. Optimal Inquiries. We have shown that an inquiry can be summarized by its
outcome (D, ¢, I). Moreover, Lemma 3.3 shows that the information partition I does
not affect whether or not an outcome profile if implementable. This characterization
allows us to solve the optimal inquiry problem in two stages. We first fix an arbitrary
form (D, {) that satisfies (6), and solve for the optimal content I = I*(D, ¢). Then,
we maximize over all possible forms (D, /).

In the first stage, taking (D, ¢) as given, we find an information partition I*(D,¢)
that maximizes the DM’s expected utility. Specifically, let I*(D, () = {I}(D,?)}acp,
where

I;(D,¢) = {x € X :u(d,x) — My > max u(a,x) — )\fa}. (8)

aeD—{d}
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u(al,x) — A
(a1, 2) u(asz, z) — 2)

u(az, ) — 2\
—2x (02,7)

0 0+ A 1-46 1

FIGURE 3. Determination of I* from ¢ = (1,2,2)

That is, for each decision d € D, I;(D,{) is the set of states where d is the unique
best-response action among all actions in D when the DM takes into account the
cost of inquiry associated with each action. Note that [*(D, /) is a partition of X
according to Definition 2.1, because, by assumption (As), the set (X — Uycp 13(D, ()
has measure zero. Consequently, I*(D, ¢) is an essentially unique optimal information
partition given the form, (D, (), as the DM chooses the unique best-response action
(when taking the cost into account) for each state x € X, except for a measure zero

of states. This leads us to the following lemma.

Lemma 3.4. If (D, ¢, I) is an optimal outcome, then I is identical to I*(D, () up to

a measure zero Set.

Lemma 3.4 is essential to solving the optimal inquiry. As mentioned earlier, the
outcomes of an inquiry include both a continuous element I and discrete element
(D,?). Lemma 3.4 shows that of the optimal content I is determined by the form
(D, ¢) through I*(D, ). It also generates candidate optimal inquiries effectively. For
example, it immediately implies that Inquiry B in Figure 2 is suboptimal. Indeed,

Inquiry B has the partition
I, =10,0), I,,=1[0,1-46], I,,=(1-6,1],

as shown in Figure 1. But, given the length profile is £ = (1,2, 2) with the associated
cost \ of each question, the DM can do strictly better by using the partition

Lo, =(0,0+X), I;, =(0+XA1-0), I, =(1-0,1), (9)
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as shown in Figure 3. Indeed, on the interval (0,0 + X), the DM optimally chooses
decision a;, even though as would have been a better decision absent the cost. This is
because a; needs one less question to ask and, thus, saves A, while u(z, as) —u(x,a;) <
A for any state x in that interval.

As a consequence of Lemma 3.4, the maximization problem (3) can now be re-
duced to the choice of the form, (D,¢). Let F* be the set of all forms (D, ¢) with
nonempty D C A and ¢ satisfying (6). The DM chooses a form (D, f) € F*, and
the outcome is determined by (D, ¢, I*(D,()).> By Lemmas 3.2-3.4, we obtain the

following characterization of optimal inquiries.

Theorem 3.2. An inquiry Q is a solution of (3) if and only if the pair (D(Q),¢(Q))

s a solution of

max / . <max<u(d, v) — Aed>> G(d). (10)

(D)eF* deD

Because F* is a finite set, and the expected utility is bounded for each d € D by

assumption (A;), we establish the existence of optimal inquiry.
Corollary 3.1. An optimal inquiry exists.

Another straightforward implication of Theorem 3.2 is that the optimal inquiry
satisfies a minimal rationality property: the independence of irrelevant alternatives
principle. This property is also known in the literature as “attention filter” (Masatli-
oglu et al., 2012). It is defined as follows. Suppose that DM’s consideration set D
is a strict subset of A. Then, the attention filter property requires that, for any a
smaller action set A’ C A that contains D, the optimal consideration set is still D.
This property holds under optimal inquiry since the set of feasible pairs (D, ¢) under
A’ is contained in the set of feasible pairs (D, ¢) under A.

Corollary 3.2. If (D, ¢, 1) is an optimal outcome for action set A, then it is also an
optimal outcome for each action set A’ such that D C A" C A.

3Following Bloedel and Zhong (2024), it is possible to solve (3) by first calculating the cost of
an induced information partition (by determining the optimal tree leading to this partition using
Huffman coding and then calculating the expected cost for this inquiry tree), and then optimizing
over all information partitions. However, this approach would be impractical since, unlike Bloedel
and Zhong (2024), we have a continuum of states and thus a continuum of information partitions
with discontinuous cost structures resulted from Huffman coding. In contrast, our approach allows
us to reduce (3) to a finite optimization problem.
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separate {{luy, Ia, }, I, } from I,

7N

separate {I4,, Iy, } from I separate {Ig,, Iy, } from {I,, I}
separate I, from I, separate Iy, from I, separate I, from I,
Ig, I, 14, I4, I,
(a) £=(2,3,1,3) (b) ¢ = (2,2,2,2)

FIGURE 4. Huffman coding with |D| = 4 and P(Iz) > P(1y) >
P(Idz) > P(Idzl)

Although F* is a finite set, as mentioned earlier, it can be a relatively large set.
However, there is an additional optimality condition that helps determine the optimal
length profile more efficiently, and it also helps characterize its behavior. Indeed, while
Lemma 3.4 characterizes the optimal categories for a given length profile, one can also
look for optimality conditions for the length profile for given categories. Specifically,
given a partition {I;}4ep, the optimal £ must minimize the average length with respect
to the probability distribution (P(1;))4ep subject to the constraint (6). This is a well-
known problem in information theory, and the solution is described by the algorithm
called Huffman coding. Here we show how the algorithm works for |D| = 4. The
generalization to arbitrary D is straightforward. We refer to Cover and Thomas

(2006, Section 5.6) for formal details.

Related Literature. Consider D = {dy, ds,d3,d,} with the following probability rank-
ing of the decisions:

]P)(]dg) > ]P)(Idl) > ]P)(-[dz) > P([d4). (11)

Specifically, let
P(14) =0.25, P(1;,) = 0.2, P(Iy,) =04, P(I,,) = 0.15.

In stage t = 0, let us define p = P(I;) for each d € D, and order the decisions
according to their probabilities: p23 =04 > p21 =0.25 > p?b =02 > p34 = 0.15.
We then merge the last two, {dy,ds}, and treat the pair as a single decision whose

probability is p% dods} = 0.2+ 0.15 = 0.35. The other decisions and their probabilities
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stay the same: py = p§ and pj, = pj,. In stage t = 1, we reorder the decisions of
stage t = 0 according to their probabilities: p}ds} =04 > p}d%dzl} =0.35 > p%dl} =
0.25. We then merge the last two, {{d2,ds},{d1}}, and treat the set as a single
decision with probability p%{dg,d4},{d1}} =0.35+0.25 = 0.6. In stage t = 2, again, we
reorder the decisions of stage t = 1: p%{dg,d4},{d1}} =0.6 > pfds} = 0.4. We then merge
the remaining decisions to obtain {{{dy,ds}, {d1}},{ds}}. Finally, we construct the
inquiry tree by unraveling the nested set {{{ds,ds},{d1}},{ds}} from the top layer
down, as shown in Figure 4(a). The length profile for this tree is ¢ = (2,3, 1, 3).

If we consider the same ranking as in (11) but different probabilities,
P(I,,) = 0.25, P(I,,) = 0.2, P(I,) = 0.37, P(I,,) = 0.18,

then the Huffman coding procedure yields a different inquiry tree, with length profile
¢ = (2,2,2,2), as shown in Figure 4(b). In fact, as follows from the next theorem,
¢ =(2,3,1,3) and ¢ = (2,2,2,2) are the only length profiles that can be obtained
given the probability ranking (11).

We now show that for any candidate consideration set D, the optimal length profile
¢ is determined by the partition I. Moreover, decisions that take longer to reach are

less likely to be chosen.

Theorem 3.3. If (D, /¢, 1) is an optimal outcome, then:

(a) { is obtained from the Huffman coding w.r.t. the distribution (P(14))aen;
(b) for all d,d' € D, if P(13) > P(Iy), then lqy < ly.

Theorem 3.3(b) highlights a negative correlation between the ex ante probability
of a decision and the inquiry length to reach that decision. It allows us to simplify
problem (10), by reducing the set of candidate forms (D, ¢). Indeed, as illustrated
by the above example with D = {d;, ds, ds3,ds} and probability ranking of decisions
according to (11), out of 13 feasible length profiles that satisfy (6), only two are
consistent with (11), namely, ¢ = (2,3,1,3) and ¢ = (2,2,2,2).

Theorem 3.3(a) is particularly useful to determine optimal ¢ for small cost A. In-
deed, for X sufficiently small, the optimal length profile is determined by the infor-
mation partition I1° = {I°},c 4 that is optimal under standard Bayesian analysis with

zero cost, A = 0. Specifically, when the DM learns the state x for free, she simply
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I;lkl o I;lkz 0~ I;S D:{al,ag,ag} D:{ah(lg} D:{az}
i T Ty = Zg
I — . I £=(1,2,2) t=(1,1) | £=(0)
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0 0.35 + A Lo 0.036 0.1
(a) Optimal information partitions (b) Optimal (D, ¥¢) as X increases

F1GURE 5. Optimal inquiry for 6 = 0.35 as X increases

chooses the best action for each x € X. That is, for each a € A,
I? = {x € X :u(x,d) > max u(:z:,a')}.
a'eA—{a}
As ) increases, the information partition is continuously adjusted according to I*(D, ¢)
given by (8). However, as long as A is small enough, the optimal consideration set re-
mains D = A, and the optimal length profile remains the same as the one determined
by the Huffman coding for A = 0.

For illustration, we return to the example in Section 2.5 with A = {a1, as, a3z} and
utility functions given by Figure 1. Let 6 = 0.35, and suppose that x is uniformly
distributed on [0, 1]. When A = 0, we have D = {a1, as, a3}, and the optimal partition
I° = {(0,0.35), (0.35,0.65), (0.65, 1)} is shown in Figure 5(a), where 7 = 0.35 and
z9 = 0.65 denote the thresholds between the partition elements. Thus, P(IJ) =
P(I2,) = 0.35 and P(I2,) = 0.3. Using the Huffman coding, we obtain length profiles
(1,2,2) and, by symmetry, (2,2,1). Let us fix £ = (2,2, 1).

When A € (0,0.036), the same (D, ) remain optimal, but optimal information
partition I*(D, /) is adjusted to take into account the cost, namely, it is given by
(9). The optimal information partition for such A is shown in Figure 5(a), where z;
and Ty denote the thresholds between the partition elements. It can be seen that
the category I; where a; is chosen expands as A increases. This expansion reflects
the general principle to resolve the key trade-off in our setting. On the one hand,
the DM likes the categories to match with the benchmark partition I° to achieve
higher utilities. On the other hand, the DM likes to have shorter inquiry lengths in
expected terms. As )\ increases, the latter becomes more important, and the DM
optimally adjusts her categories to shorten the average inquiry length. Indeed, as 17,
is associated with length 1 and others with length 2, expanding I leads to shorter
expected inquiry length.
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I:lkl z1 I;Q T2 I;B Igjl T 122 T2 I:;S
| | | ] | | |
(l) 0.335 + A 0.665 1 é 0.335 — A\ 0.665 + A\ 1
(a) A < 0.01 and £ = (1,2,2) (b) A > 0.01 and £ = (2,1,2)

FIGURE 6. Optimal information partitions for D = {ay, as, as} and 6 = 0.335.

For A > 0.036 we have a similar effect but at the extensive margin. Specifically, for
A € (0.036,0.1), the optimal D becomes {ay, a3}, and as is no longer considered. As
a result, at A = 0.036, the category I} expands discontinuously, from (0,0.35+ A) to
(0,0.5), with a discrete drop of the average inquiry length, because of the change of
the optimal consideration set. Lastly, for A > 0.1, it is optimal for the DM not to ask
any questions, and simply choose the ex-ante optimal decision as. Figure 5(b) shows
how the optimal pair (D, ¢) changes as \ increases.

Curiously, there can also be changes to optimal information partition due to changes
in the optimal length profile alone, while the optimal consideration set D remains the
same. To illustrate this, consider the same example, but now with ¢ = 0.335. In this
case, for A < 0.043, optimal D = A. As before, for A very small, an optimal length
profile is (1,2,2), and the optimal information partition is shown in Figure 6(a).
However, in this case for A > 0.01, the optimal length profile changes to (2,1,2),
and the optimal information partition becomes as shown in Figure 6(b). This curious
switch illustrates the aforementioned principle that the DM likes to shorten average
inquiry as the cost rises. Indeed, as A increases, the expected inquiry length of the
length profile (2,1,2) with the associated category I* decreases faster than that of
(1,2,2), because with (2, 1,2) the expansion of I} happens on both sides while with
(1,2,2) it only happens on one side. As a result, the increasing importance of shorter
inquiry length prompts the DM to switch to (2,1,2) when A > 0.01.

These two examples show that, as the cost rises, the DM responds by either expand-
ing the category with the shortest inquiry length (as in Figure 5(a)), or by dropping
some decisions out of consideration altogether (as in Figure 5(b) for higher \’s). Note
that, consistent with Theorem 3.3, in the former case the expanded category is also
the one having a higher probability, and hence this expansion leads to a lower average

inquiry length; this negative correlation between probability of decision and inquiry
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length also holds in the latter case. In the next section we discuss this effect more

generally.

4. ATTENTION SPAN

Our model of inquiry can be interpreted as an attention strategy, whereby the DM
focuses on various decisions during her inquiry process. With this interpretation, a
natural question is then how the cost A affects the DM’s attention span, defined as
how long she would concentrate on the task of gathering information before making
a decision. Formally, we measure attention span in our framework as the expected
inquiry length given by

(D, 0,1) =Y LaP(Iy). (12)

deD
Importantly for our purpose, it captures whether there is a lot of probability weight

on a few decisions with short inquiry length, or whether this weight is more spread
out among many decisions. A smaller /(D, ¢, I) means a shorter attention span.

In the extreme, the DM has no attention span at all when she chooses a single
decision without asking any questions, in which case we have ¢(D,¢, 1) = 0. The
opposite extreme occurs when the lengths are all equal and the probabilities spread
out. Given an outcome (D,{,I), we say that the length profile ¢ is uniform if it
assigns the same length to all decisions in D, so {4 = {y for all d,d’ € D. In other
words, the inquiry outcome is uniform if the same number of questions is asked for all
states of nature. Note that this can only happen if |D| = 2% for some k € {0,1,...}.
Since under |D| = 2% it is always feasible to set all lengths equal to k, k is also an
upper bound for the expected inquiry length for an optimal inquiry. In other words,
in any optimal inquiry with |D| = 2%, we have ¢(D, ¢, ) < k, and this upper bound
is achieved if and only if the length profile is uniform.

Our key result in this section is that, under optimal inquiry, a higher cost shortens
the DM’s attention span. Specifically, we show that the expected inquiry length

decreases with A, and strictly so when the optimal inquiry is non-uniform.

Theorem 4.1. Let 0 < \; < Xy and let (DX 0% 1%) be an optimal outcome under
Ni, § = 1,2. Then, (DM 2 ™) > ((D* (* [*2). Moreover, this inequality is
strict except for the case where (DM, () = (D*2, 022 with a uniform length profile.
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Theorem 4.1 shows that higher cost always shortens the attention span, and strictly
so as long as the optimal inquiry length is not uniform. The intuition for Theorem 4.1
is based on the following trade-off that the optimal inquiry resolves. On the one hand,
to achieve a high (expected) utility from actions, it needs to minimize the mismatch
between its category for the action and the set of states for which the action is ex
post optimal; on the other hand, it needs to minimize the expected length of inquiry.
As the cost increases, the latter motive becomes more important, and optimal inquiry
shifts probabilities toward categories with shorter inquiries at the expense of more
mismatches.

This preference for shorter inquiries generates a “bias” if we compare the informa-
tion partition thus generated to the ones that would be used by a Bayesian DM under
zero cost. We call this effect confirmation bias. The bias is endogenously determined
by the cost and the utility function. As shown in Figure 6, in case of A < 0.01 the bias
favors action a; by expanding the set of states where a; is chosen (at the detriment
of ay), but for A > 0.01 it favors action ay (at the detriment of both a; and a3).

As mentioned earlier, this bias is generated by the motive to decrease the expected
inquiry length, and this can be achieved by adjusting the inquiry either through the
form or through the content. The content affects the intensive margin, and the DM
can increase the probability of choosing decisions with shorter inquiry length. The
form affects the extensive margin, and the DM can simply drop certain actions from
the consideration set and in this way the overall inquiry length may be reduced.
The intensive margin factor is addressed in detail in Section 5. Here we analyze the

extensive margin, namely how optimal consideration set is determined.

4.1. Optimal Consideration Sets. In our setting, a consideration set can be re-
garded as a set of actions that the DM deems “viable”, and any action outside this
set is simply ignored in the decision-making process, even though it might be ex post
optimal. One important factor that determines which actions are viable is the un-
derlying preferences. Specifically, it is useful to distinguish two actions only if they
produce sufficiently different payoffs in different states of nature. In contrast, if two

actions are similar, it will not be worthwhile to differentiate them. Formally, let
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A
0.0625 + D = {ax} D = {a1,a3}
D= {(11, a, a3}
: >0
0 0.33 0.5

FiGUurE 7. Optimal consideration sets with utilities given by Figure 1

d(a’,a") measure how close actions a’ and a” are in the payoff space:
8(a’,a") = sup |u(d',x) — u(a”, z)|.
zeX
The following result shows that a consideration set will optimally drop one of the two

similar actions when the cost exceeds d6(a’, a”).

Proposition 4.1. If actions a and o' are such that 6(a’,a"”) < X, then at most one

of them will be in the optimal consideration set.

Next, we show that when the cost is small enough, then all actions are optimally
considered, and when the cost is large enough, then the DM asks no questions and

chooses the same action in all states of nature.

Proposition 4.2. There exist two thresholds Ay > A1 > 0 such that for all A < A,
the optimal consideration set is D = A; and for all X > Xy, the optimal consideration

set is a singleton, |D| = 1.

It is tempting to generalize Proposition 4.2 by conjecturing that, as A increases, the
optimal consideration set monotonically shrinks in the set inclusion order. However,
this is not true in general. To illustrate this, consider the example in Section 2.5 with
A = {ay,a9,a3}, parameter § € (0,1/2) that captures the preference for extreme
actions a; and ag relative to middle action aq, and utilities given by Figure 1.

Figure 7 shows how the optimal consideration set depends on the cost A and the
preference parameter #. We point out three features of the optimal inquiry that

may be of interest. First, the optimal consideration sets can be disjoint: for a fixed
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A > 0.0625, as 6 increases, the optimal D changes from {as} to {a;,as}. In words,
preferences can affect the “viability” of actions, which can change in a discontinuous
way. Second, the optimal consideration sets can change by multiple actions at a time:
for a fixed # < 0.3, as A increases, the optimal D changes from {a,as, a3} to {as}.
Thus, for two DM’s with exactly the same preference, a small difference in the cost
can make one DM to consider all actions while making the other to consider only one.
Third, an action can be phased out and then phased back in. For a given # that is
close to 1/3, say, for § = 0.335, the optimal consideration set changes from {a1, as, as}

to {a1,as} to {az} as A increases, so action as is dropped, but then reintroduced.

4.2. Example with Independent Values. In the above example where the state
is of one-dimensional, there is no natural sense of how to rank the actions under
assumption (As). However, there is a natural ranking in environments where the
values of the actions are independently distributed. Here we study how this ranking
affects the optimal consideration set.

Consider the model where X = RY and A = {a4, ..., ar}, with

u(a, ) =z, foralll=1,.., L. (13)

Assume that the values 1, ..., x; are independently distributed. Specifically, each x;
has a distribution Gj, and G(x) = I, G(x;). We have the following result.

Proposition 4.3. Suppose that G1 =rosp G2 =rosp -+ =rosp Gr. Then there
exists K € {1,..., L} such that D = {ay,...,ax} is the optimal consideration set.

According to Proposition 4.3, when the actions are ranked by the first-order sto-
chastic dominance, an action can be in the optimal consideration set only if all the
higher-ranked actions are in there. Moreover, if an action a; is not in the considera-
tion set, the DM will ask no questions about its value x;, nor about values of all the
lower-ranked actions. That is, the DM will only spend resources on the dimensions
that she deems most likely to be optimal from the ex ante perspective.

To illustrate Proposition 4.3, consider the following example. Let L = 4 and
A = {ay,a9,as3,a4}, and the utility is given by (13). Let 7 € [0,0.15] be a parameter.
Suppose that the values z; and x5 are each uniformly distributed on [0, 1], while x3
and x4 are each uniformly distributed on [—7,1 — 7]. Clearly, x; and x5 first-order

stochastically dominate x3 and 4.
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D = {a:}

0.167

D = {a;, a2}

0.14
0.126

0 0.033 0.07 0.14 ¢ 15

F1GURE 8. Optimal consideration set and length profile for L = 4 and
utilities given by (13)

Figure 8 shows the optimal consideration sets and length profiles (up to the sym-
metry between a; and as and between az and ay) for different values of 7 and A. Note
that when |D| = 1 and |D| = 2 are optimal (the white and the red areas, respec-
tively), the expected values do not vary with 7, and hence the boundary between the
white and the red areas is a horizontal line. The area where |D| = 3 is optimal (the
green area) appears only if 7 < 0.07, and the corresponding optimal length profile is
(1,2,2). In all those areas, as A increases, the adjustment comes from the extensive
margin, where the number of actions considered decreases from 3 to 2, to 1. This
may be regarded as “tunnel vision”: the DM only asks questions about the first two
or three values and decides based on this evidence, but ignores any potential evidence
from other dimensions (e.g., x4).

In contrast, in the area where |D| = 4 is optimal (the blue area), there is a shift
in the length profile. For small 7 (to the left of the dotted line), the optimal length
profile is the uniform one, (2,2,2,2), as the probabilities of each action being the
optimal one are not too different from one another. However, for large 7 (to the
right of the dotted line), the optimal length profile will switch from the uniform one
to the extreme one, (1,2,3,3). Thus, although the optimal inquiry does not adjust
the consideration set D = {ay,as,as,a4} as A increases, it does change the inquiry

strategy discontinuously: for higher \’s, the action a; has the shortest length, and
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that set of states where a; is chosen will expand with A. The latter may be interpreted
as a confirmation bias in terms of the content of the inquiry: among those actions
the DM is willing to consider, she is happy to expand the evidence to admit a certain
action as acceptable (in this case, a;), which would be her most likely action ex ante.

In the next section we show that this is a prevalent feature of the optimal inquiry.

5. CONFIRMATION BIAS

We have seen from the previous section that, under optimal inquiry, the DM often
prioritizes some actions by asking questions that lead to these decisions first, and
turning to other actions only if the initial answers are negative. Moreover, some ac-
tions may not be considered at all. This may be interpreted as a form of confirmation
bias in the extensive margin, as the DM searches for evidence to support higher-
priority actions, and does not attempt to find evidence in support of actions outside
the chosen consideration set. This is mainly related to the form of the inquiry.

In this section, we turn to confirmation bias in terms of the content, taking the
form of the inquiry as given. We will show that, given the form, (D,¢), the DM
optimally expands the categories associated with the more likely actions, relative to
the zero-cost benchmark. This can be interpreted as the DM searching for evidence
to confirm the desirability of the actions in D that are most likely to be optimal.

To define confirmation bias, let us consider the zero-cost case as a benchmark,
and compare the set of states under which the most likely actions are taken under
the optimal inquiry with and without the cost. To do so, we first rank the actions
according to their likelihood under the optimal inquiry. For a fixed A > 0, let (D, ¢, 1)
be an optimal outcome, and let K = |D|. We order the actions in D according to
how likely they are chosen under optimal inquiry, so D = {d;}+_,, such that

P(ly) > P(lg,) > ... > P(ly,), »

with a tie-breaking rule P(lg, ) =P(l4,.,) = lg, < la,,,- 4

Let E; be the event that an action in {dy, ...,dx} (i.e., one of k most likely actions)
is preferred to all other actions when the cost A is taken into account:

E) = {x € X: max u(dy,r)— Mg, > max u(dp,r)— )\Kdm} : (15)

k=1,..k m=k+1,... K
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It can be easily seen that Ej coincides with J,. p, Li(D,{) except, possibly, on a
measure zero set. In words, conditional on event EP, the optimal inquiry almost
surely leads to an action in {dy, ..., d;}. Similarly, let E} be the event of choosing an

action in {dy, ..., d;} in the zero-cost benchmark.

Definition 5.1. An inquiry @ with outcome (D, ¥, I) has confirmation bias if for
every order {d;}=_, that satisfies (14),

E)CE)forallk=1,2,..,K — 1. (16)

It has strict confirmation bias if (16) holds, and there exists k € {1,..., K — 1} such
that

E} — E} has a non-empty interior. (17)

In words, the DM has confirmation bias if, for each £ = 1, ..., K — 1, she confirms
to k most likely actions: she chooses one of these actions on a larger set of states, as
compared to what she would have done without the cost. The difference £} — E} is
the set of states where an error relative to the zero-cost benchmark occurs. In any
state that belongs to Ej — EY, the DM is biased, as she chooses an action that is
suboptimal from the perspective of the Bayesian DM who knows the state.

This definition formalizes the notion of confirmation bias usually adopted in psy-
chology. According to Nickerson (1998), “it refers usually to unwitting selectivity
in the acquisition and use of evidence,” which he believes is also the definition used
by general psychologists. Our definition has the advantage of formally defining both
confirming sets and biases: the actions the DM confirms to are the most likely ones

in her optimal strategy, and the errors are defined against the zero-cost benchmark.

Theorem 5.1. Every optimal inquiry has confirmation bias. Moreover, an optimal

wnquiry has strict confirmation bias if and only if its length profile is not uniform.

An immediate implication of Theorem 5.1 is that the probability distribution over
D = {dy}#*_, induced by the optimal inquiry first order stochastically dominates that

induced by the zero-cost benchmark:
P(E)) > P(EY), foreachk=1,...,K —1, (18)

and the inequality is strict for some k if the confirmation bias is strict.
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Theorem 5.1 shows that the optimal inquiry always features confirmation bias, and
it has strict confirmation bias when its length profile is not uniform. From Theorem
3.3(b) we know that the most likely actions are associated with shorter inquiry lengths.
At the same time, given the optimal length profile, the optimal information partition
given by (8) has the feature that decisions associated with shorter inquiry lengths
will be chosen on a larger set of states relative to the zero-cost benchmark. These
two factors reinforce each other and give rise to the confirmation bias in our setting.

We have define confirmation bias as a comparison against the benchmark case with
zero cost. Now we show that, this bias grows as the cost increases, in the sense that
categories for the k ex ante most likely actions under optimal inquiry expand as A

increases. As before, in doing so we keep an optimal form (D, ) constant.

Definition 5.2. Suppose that an optimal form (D,¢) remains constant for some
interval of costs, A € [\, Ag]. We say that confirmation bias is increasing over [A1, Ao
if B C E,;V forall k =1,..., K — 1 and all \, N with \; < XA < X < Xy. Moreover,
confirmation bias is strictly increasing over [A1, \o] if it is increasing and E,’c\/ - E}

has a non-empty interior for some k& and all A\, X" with A\; < A < X < \,.

Note that an immediate implication of increasing confirmation bias is that P(E})
increases with A, that is, the likelihood of choosing one of the k most likely actions
increases with A\, and this increase becomes strict under strict increase of confirmation

bias. We have the following result.

Proposition 5.1. Let A > 0. Then, there is a form (D,{) that is optimal over an
interval [A1, Ao] that contains A, and the confirmation bias is increasing over [\, As).

Moreover, it is strictly increasing if and only if £ is not uniform.

Proposition 5.1 shows that as the cost rises, the DM would optimally make more
“errors” and is biased more toward the most likely actions. This result is closely
related to Theorem 4.1, which states that as the cost rises, the DM optimally shortens
the average inquiry length. Proposition 5.1 shows that the way to optimally achieve
that is by decreasing the accuracy of her categories in favor of most likely actions,
which are also actions associated with the shortest inquiry lengths.

This endogenous emergence of confirmation bias in our model gives novel impli-

cations to behavior as a result of costly information. Here we give an example that
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D = {a1,az,0a3,a4}
| £=(2,2,2,2) ¢=(1,2,3,3) D = {a;} .
0 0.516 0.543

FIGURE 9. Optimal consideration set and length profile under i.i.d.
exponential distribution

illustrates this novelty and the difference from the standard rational-inattention ap-
proach. Matéjka and McKay (2015) show that symmetric actions will be treated
symmetrically in the rational inattention model. In contrast, in our model the DM
may optimally treat symmetric actions asymmetrically to save the cost. Consider the
model of independent values, as in Section 4.2, with A = {a1,as,a3, a4}, X = R%,
and each z; has the same exponential distribution G;(x;) = 1 —e™*. Figure 9 depicts
the optimal consideration set and the optimal length profile as a function of A\, up to
the symmetry between the actions. As can be seen from the figure, once A increases
above 0.516 so it becomes too costly to treat all actions equally, the DM prioritizes
an arbitrary action (in our illustration, a;) and increases the set of states where this
action is chosen, eventually choosing this action alone as A increases above 0.543.
This leads to an endogenous bias: the DM is biased towards a; because it is ex ante
more likely under optimal inquiry. But the reason it is ex ante more likely is that the

DM is biased towards it, even though this choice may be suboptimal ex post.

6. CASE STUDIES

To illustrate potential applications of our model, we offer two case studies of im-
portant social institutions where information processing primarily takes the form of
explicit inquiries: doctor visits and criminal investigations. In recent years, research
has indicated that misdiagnosis and wrongful convictions, which significantly impact

the life of affected people, are in fact closely linked to cognitive factors in the inquiries.

6.1. Medical Misdiagnosis. Singh et al. (2017) argue that “...diagnosis in primary
care (i.e., first-contact, accessible, continued, comprehensive and coordinated care)
represents a high-risk area for errors. PCPs typically face high patient volumes and
make decisions amid uncertainty.” They claim that the amount of errors is significant:
“_..arecent study estimated that about 5% of US adult patients experience diagnostic

errors (defined as missed opportunities to make a correct or timely diagnosis) |...]
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FIGURE 10. Optimal doctor inquiry tree (left) and optimal categories (right)

every year.” They point out that diagnostic reasoning is an important factor: “Several
experimental studies have highlighted reasoning biases, in relation to both hypothesis
generation and information interpretation in PCP’s.” Croskerry et al. (2013) discuss
the mode of diagnostic reasoning (which they call “type 1), which is the more typical
one and is subject to “biases”: “Our systematic errors are termed biases and there
are many of them—biases over a hundred cognitive and approximately one dozen or
so affective biases (ways in which our feelings influence our judgment).”

Croskerry et al. (2013) also describe a case study, in which a patient complained
about constipation but was actually suffering from Cauda Equina Syndrome. We
use our one-dimensional example with three actions to consider this situation. The
doctor has three possible actions: send the patient home to rest, prescribe a laxative,
or refer the patient for an extensive investigation. The value of each action depends
on the true condition (the state z) of the patient. Suppose that the utility function
is as in Figure 1 (interpreting a; as “rest”, ag as “laxative”, and a3 as “extensive
investigation” ), the state x is uniformly distributed, and 6 < 1/3, so that “laxative”
is the most likely correct action ex ante.

For a moderate value of A\, the optimal inquiry would assign the category associated
with prescribing laxative with inquiry length of one. That is, the doctor should
prioritize to enquire about whether or not it is best just to prescribe laxative. We
depict the optimal inquiry tree and the optimal categories in Figure 10, where z; and
Ty are thresholds between the categories under optimal inquiry, and z9 and 79 are
thresholds under zero-cost benchmark. Theorem 5.1 predicts that the doctor would
prescribe laxative on a larger set of states (the interval [Z7,Z5]), as compared to the
benchmark where the state of the patient can be discovered at zero cost (the interval
[0, 79]). Thus, for states in the intervals (71, 7}) and (z9,7,), the doctor makes an

error.
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This is consistent with the argument in Croskerry et al. (2013) that the error is due
to the following: “The principle biases for the physician who saw him in the clinic
were framing, search satisficing and premature diagnostic closure.” In our model,
“search satisficing” and “premature closure” can be explained by a reduction of the
attention span and the confirmation bias when inquiry is costly. The doctor identifies
a most likely solution to the problem (laxative) and searches for evidence to confirm
that. This is done by prioritizing the confirmation of this solution over other options,
expanding the set of states where this solution is chosen (as compared to zero-cost
benchmark), and closing the inquiry prematurely if the confirming evidence is found.
For example, when = € (79,Z,), the optimal inquiry dictates to stop prematurely
and prescribe laxative, whereas ideally the doctor should have continued the inquiry
to reach the conclusion that extensive investigation is needed. The error happens
because the doctor sets a wider range of evidence to be satisfied with his initial guess.

In our model, “framing” is captured by how a prior belief affects the structure
and the outcome of optimal inquiry. For example, if the doctor’s prior over x was
not uniform but concentrated in the middle, so that the doctor would have been
sufficiently convinced that “laxative” was optimal, then it could be optimal not to
consider one of both alternative decisions at all, thus exhibiting even larger bias
towards “laxative”. Alternatively, if the doctor’s prior over x was right-heavy, so that
the doctor would have been sufficiently convinced that “extensive investigation” is
optimal, then the doctor’s bias would have had a different direction, namely, towards
“extensive investigation”.

An advantage of our model is that we can define “bias” rigorously. In our example,
when the doctor prescribes “laxative” instead of “extensive investigation” for x €
(79, Z2), we may call it an “error” against the zero-cost benchmark. However, it is
the process that is biased but not the decision per se. Moreover, relative to other
models of imperfect information processing, our model is able to make prediction
about the inquiry process, for example, linking framing with search satisficing and

premature diagnosis endogenously.

6.2. Wrongful Conviction. Gould and Leo (2010) review the literature on the ex-

tent and factors leading into wrongful convictions and believe that it is the process
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FiGUrRE 11. Optimal categories for the police inquiry

and factors affecting the process that are important. In their words, “...it is bet-
ter to understand the sources of wrongful convictions not so much as dichotomous
causes—a witness correctly or incorrectly identified the defendant and the identifica-
tion directly led the jury to convict—but as contributing factors in a path analysis
that might have been broken at some point before conviction.” Among the leading
factors the article identifies, we are interested in “tunnel vision”, which is described in
Gould and Leo (2010) as “the more law enforcement practitioners become convinced
of a conclusion—in this case, a suspect’s guilt—the less likely they are to consider
alternative scenarios that conflict with this conclusion.”

We illustrate this tunnel vision with the following example. Suppose that there
are two suspects, A and B, and one of them is surely guilty. Given all the possible
observables the police can investigate, suppose that state = € [0, 1] represents the
posterior belief that A is guilty. There are three actions: charge A, B, or neither,
denoted by a4, ag, and ag, respectively. Suppose that the police obtains utility 64
if they charge A when A is guilty, 6p if charge B when B is guilty, —1 if a wrong
suspect (either A or B) is charged, and 0 if neither. Thus,

w(aq, ) =0sx + (=1)(1 —z), ulag,z) =051 —2z)+ (—D)z, ul(ag,z)=0.

Assume that z is uniformly distributed on [0, 1] and that 1 > 64 > 65 > 0.52, so
that ex ante the most likely suspect is A, and no action is dominated. We depict the
optimal categories in Figure 11, where z; and zy are thresholds between the categories
under optimal inquiry, and 7% and z9 are thresholds under zero-cost benchmark. As
indicated in the figure, a positive A leads to an expansion of the category for charging
A, who is the prime suspect. In other words, the confirmation bias leads the police to
lower the threshold of evidence needed to charge suspect A relative to the benchmark
case without cost. Specifically, on the interval of states (Z2,79), the police makes

an error by charging A when they should have let them go. Moreover, this interval
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expands with A. This may be an explanation of the tunnel vision: the police under
pressure to end the investigation optimally focuses on the prime suspect and is willing
to charge the prime suspect even with relatively weak evidence.

Furthermore, if the cost were to rise even higher, the police would have found it
optimal to drop the no-charge option out of the consideration set altogether. Thus,
if we define “type-I" error as the situation where the police does not charge anyone,
and “type-II” error as the situation where police charges the wrong suspect, then
the optimal inquiry is always biased toward the type-II error. That is, it always has
higher type-II error than the no-cost benchmark. This may be an explanation of the
tunnel vision: the police under pressure to end the investigation optimally focuses on

fewer options that what they would have considered with no such pressure.

APPENDIX A. PROOFS

Here we give the proofs of all the theorems and Lemma 3.4. The rest of the proofs

are in the Online Appendix.

A.1. Proof of Theorem 3.1. Let Q* = (N, T, 0, x,d) be an optimal inquiry, and let
Z* = (D*, ¢*, I*) be the outcome implemented by Q*. By Lemma 3.2, D* = {d; }er
and each d; is distinct. To simplify notation, let X,, = I,,(Q*) for each n € N. By

Lemma 3.1,
P(X,) >0 foralln e N. (19)

Fix a node n € N. Let T,, C T be the set of terminal nodes that can be reached
from n under Q*. Note that if n is terminal (that is, if n € T), then T,, = {n}.
Let £,(Q*) be the length of the path from n° to n. Let @ be the sub-inquiry at n
induced by the optimal inquiry @*. Conditional on reaching n, the DM’s expected
payoff from a sub-inquiry Q = (N, T.6,%, cz> € Qy, is given by

R 1 R R
Wn(Q;)\):P(Xn) > / EIt(Q)u(dt,x)—)\Et(Q) G(dz] X,,), (20)

where {It<Q>}teT is a partition of X,, induced by Q, and ¢,(Q) is the length of inquiry
beginning from node n and terminating at node t € T. Recall that Q@ is the sub-
inquiry at n that prescribes to follow the optimal inquiry Q*, so the DM’s expected
payoff from Q* conditional on reaching n is given by (20) with Q= Q.
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Let us prove (4). Clearly, W, (Qr;\) < maxycg, Wn(Q;)\). Suppose by contra-
diction that this inequality is strict. That is, there is a deviation Q € Qx, at the
node n such that W,(Q*; \) < W,(Q; ), or equivalently, by (20),

ET: ( / o u(dy, ) — )\Et(Q:‘L)) G(dz|X,)

<> (/melt@ w(dy, ) — Aet(@)) G(dz|X,). (21)

teT

Let T = (T — T,,) UT, and construct an outcome Z = (I, by, dy) o as follows:

(1e(Q7), 6:(Q7), du), for each t € T — T,

(ft,gt,Czt) = . o )
(1(Q), 6,(Q*) + 4,(Q),d;), foreachteT.

By construction, Z is an implementable outcome by an inquiry in Qy. Namely,
inquiry () that implements Z is obtained from Q* by replacing the branch that follows

node n with Q Then, we have

W(Q; ) =W(QA) = P(X,) (Wa(Q; A) = Wa(Q;: V)

—P00) | ([ uld) - M@+ (@) ) Gaslx,)

teT €l (Q)

- XT: ( / o u(dy, ) — WQ*)) G(dx!Xn)] > 0.

The first equality is by definition of W and that Q and Q* differ only in the branch at
node n. The second equality is by definition of W,, and the fact that the total length
of path from n° to ¢ under Q is the sum of the length from n° to n under Q* and the
length from n to ¢t under Q. The inequality is by (19) and (20). Thus, we reached a

contradiction to the assumption that QQ* is optimal. 0

A.2. Proof of Lemma 3.4. Let (D, ?) be given. For any partition I = {I;:d € D},
let
W(I;D,0) =" / [u(d, z) — M4)G(dz).

deD 7 1a
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Now, by (8), for any I and any d € D, if x € I;(D,{) N Iy with d # d’ then
[u(d, ) — Mg > [u(d, z) — Mg].
Thus, since P(X — Ugepl}) = 0 by (A3) and the fact that G has full support,
W(I*;D,¢) —W(I;D,?)

= D /mz {lu(d, z) = My — [u(d', x) — Mg} G(dz)

dd'eD
N Z/ [u(d, x) — My)G(dz)
deD VY 1an(X—Uaenly)
= > / {[u(d, z) — My — [u(d,z) — My} G(dz) > 0,
d#d'ep 1M

and the inequality is strict if P(/; N Iy) > 0 for some d # d'. This proves the
result. O

A.3. Proof of Theorem 3.2. By Lemma 3.4, if (D, ¢, I) is the outcome of an optimal
inquiry, then W(I; D,¢) = W (I*; D,¢). To be optimal, it then must solve (10). O

A.4. Proof of Theorem 3.3. (a) If (D, ¢) solves (10), given the partition, the length
profile must deliver the lowest average length among those satisfying (6), for otherwise
by Lemma 3.3 we can find another inquiry that implements the same expected utility
from actions but with lower expected cost. The length profile must be given by the
Huffman coding (Cover and Thomas, 2006, Theorem 5.8.1).

(b) Let Z = (D,¢,I) be the outcome of an optimal inquiry. First we show that
if {4 < Ly, then P(1;) > P(Iy). Suppose, by contradiction, that P(I;) < P(Iy).
Now, Z' = (D, ', I) be another outcome which is the same as Z, except ¢/, = ¢y and

¢!, = {4. Note that Z' satisfies (6) and hence can be induced by an inquiry. But now
[P(La) 0+ P(1g) ] — [P(1g)lq + P(Ig)la)
= [P(Id)gd/ + P([d’>€d] — [P(Id)gd + P(Id/)gd/]
= —[]P)(Id/) — ]P(Id)](éd/ — Ed) < 0.

Thus, Z’ decreases the average length but keeps the utilities unchanged. This is a
profitable deviation and a contradiction to the optimality of Z. 0J
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A.5. Proof of Theorem 4.1. Let \; < A\y. For each j = 1,2, let Q,, be an optimal

inquiry for j = 1,2, and let Z% = (DX (% [%) be the associated outcome. Denote

u(Z%) = Z /e[‘ u(d,z)G(dz), j=1,2.

deDJ a
By (7) and (12), we have W(Q,,; A;) = a(Z*) — M(Z%). By the optimality of Z%

given A;, for each j = 1,2, we have
a(ZM) = MU(Z™M) > a(Z272) — \MU(Z*2) and G(Z27?) — Ml(Z27?) > a(ZM) — Ml(Z7).
Combining these inequalities yields

M (U(Z7) = UZ7)) <a(Zh) —a(Z™) < 2 (U(Z27) - U(Z27)).

Thus, £(Z*) > ((Z*?) whenever \; < \y.

Next, we show that £(Z*) > £(Z*2) unless both ¢* and ¢*2 are uniform with the
same length. If both ¢* and ¢*? are uniform, then, by assumption, they have different
lengths and it must be the case that ¢(Z*) > £(Z*?). It remains to consider the case
where one of them is non-uniform.

Suppose that (* is non-uniform; the other case is symmetric. For any (D, () € F*,
let

V(A D, 0) = | max (u(d,z) — My) G(dx) (22)

x d€D
be the optimal value under (D, ¢). Clearly, V' is continuous and convex in A.

Because F* is finite, there exists € € (0, A2 — A1) such that one of the inquiries
that are optimal at A; is also optimal over [Ay, A; + €]. Let (D, ¢) be the form that is
optimal over [A;, A\; + €], with the corresponding optimal content I*(D, ¢; \) given by
(8). We have two cases.

First, suppose that (D,f) # (D (M) and we may assume that V(\;D,{) >
V(X; DM AY) over (A, Ay + €]. By convexity of V| the right derivatives of V w.r.t.
A always exist, denoted by V. It then follows from V(\; D, £) > V(X; DM, (*) over
(A1, M1+ €] that VI (Ai; D, £) > VI (Ay; DM, 7). Moreover, by the Envelope Theorem,
we have

_Z(Z)\l) < Vi()‘l;D)\lag)\l) < V+/<)‘17D7‘€)
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Moreover, since V(\; D, /) is differentiable almost everywhere, there exists X' €
[A1, A1 + €) such that

—U(D, 6, 1*(D, ; \)) = V'(XN; D, £) > VI (\; D, £) > —£(Z™).
This then implies that
UZM) > U(D, 6, I (D, ;X)) > £(Z27?),

where the last inequality follows from X < \,.

Second, suppose that (D', ¢*1) is optimal over [A;, A\; +¢€]. Denote A3 = \; +¢ and
72 = (DM, M (DM 2\ +€)). Tt then suffices to show that £(Z2) > 0(Z7).
Let E,ij be given by (15) with (D, £) = (D, ¢*1), and hence for each j = 1,3 we have

P(E) =P (CJ 14, (D, 6 Aj)) = Xk: P(15,, (D, 6 X;))-

k'=1

Thus, by Lemma A.1 (see Section A.6 below), for each k = 1,..., K — 1 we obtain

> P, (D6 A)) = D P, (D, 6 M), (23)

k=1 k=1
with strict inequality for some k. In other words, given (D,¢) = (D™ (), the
probability distribution over actions in D = {d}, }}_; under A3 first-order stochastically
dominates that under A;. Thus, by (12), we obtain

|D| |D|
UZ%) = P15 (D, 6 2s)) < Y €a,P(I (D, 6; \1)) = U ZM).
k=1 k=1

A.6. Proof of Theorem 5.1. Before proving Theorem 5.1, we state a lemma.

Lemma A.1. Let (D,l) € F*, and let K = |D|. W.l.o.g, let actions in D be ordered
according to their lengths of inquiry, so D = {dy}5_,, such that

bay < lg, < ... <Ay, (24)
For each A\, Ay € R with Ay < Ag,

EM CEY forallk=1,2,.. K—1. (25)
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Moreover, if £ is not uniform, then there exists k € {1, ..., K — 1} such that the set

EY» — EY has a non-empty interior. (26)

Proof. First, we prove (25). Let k € {1,..., K — 1}. Suppose by contradiction that
there exists » € F," such that = ¢ E}. By (15), x € E}* and z € E.? imply that
there exist k* < k < m* such that

u(dy, x) — Ml = k/rillaxku(dk/, r) — Mlba, > u(dpe, ) — Mily,,., (27)
u(dp, ) — Aoly,. < _mnax Ku(dm,x) — Xoly,, = u(dpr, ) — Xaly,.. (28)

Combining (27) and (28), we obtain
Ao (la,. = Lap) < uldpe, ) — uldp, ) < Ai(la,,. — Lap ),

which is a contradiction since Ay > Ay > 0, and ¢4 . > (4. by (24).
Next, suppose ¢ is not uniform. Then there exists k* € {1,..., K — 1} such that

Edl = .. = Edk* < édk*-ﬂ <...< de. (29)

We prove (26) for k = k*. Define

k=1,...k

w= max u(dg,r) and wy(z)= ( _max u(dpm, ) — )\ﬁdm> — (W — Mg,.).
Observe that
wy, () < wy, (x) for all z € X and all \j < Ag. (30)
This is because for any given x € X there exists m* > k* such that
Wy, (1) = u(dpms, ) — Aoly . + Xola,. — W < u(dps,x) — Mily . + Mlg,. — 0 < wy, (),

where the strict inequality follows from Ay < Ay and lp« < £,,+.
Next, by (15) and (29), we have

r € E). <= wy(r) <0, (31)

Fix A\; < Ag. By assumptions (As)—(Aj), the sets E,;\i and X — E,;\Z have nonempty
interiors. Let
y € Int(EY) and z € Int(X — E}2).
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By (30) and (31), we have

wy, (¥) <0 < wy,(2) < wy (2).
Let
r =a"y+ (1 —a")z, where o =sup{a € [0,1]: wy, (ay + (1 — a)z) < 0}.

Since X is convex, and points y and z are in Int(X), z* is an interior point of X.
Since wy, (x) is continuous in x by assumption (A;), we have wy, (z*) = 0. Moreover,

by (30), wy,(z*) > 0. Let O, be the open neighborhood of z* given by
Op ={z € X : |wy, () —wy, ()] < wy, (z")}.

By the continuity of wy, (z), O+ is an open nonempty set. Recall that by assumption
(A3), (X — E;) has nonempty interior. Since the set O,- N (X — E}}) contains z*, it
has nonempty interior. Finally, since O, N (X — E}!) C E;? — Ej, we obtain (26)
for k = k*. O

We now prove Theorem 5.1. Let A > 0 and let (D, ¢, I) be an outcome of an optimal
inquiry. Observe that D = {d;}X_, satisfies (14) if and only if it satisfies (24). Then,
the statement of the theorem is immediate by Definition 5.1 and Lemma A.1 with
A1 =0and Ay = A\ OJ
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ONLINE APPENDIX
PrRoOOFS OoF LEMMAS

We first provide three claims that will be used for the proofs of Lemmas 3.1-3.3.

Claim 1. Let (N, T,0) be a binary tree with a set of nodes N, a set of terminal nodes
T C N, and a successor function o. For each t € T, let {; be the length of the path
from the root to t. Then >, 27" =1.

Proof. This claim directly follows from Theorem 5.2.1 in Cover and Thomas (2006)
and its proof. As in that proof, one can convert an instantaneous code into binary so
that the lengths of paths to the terminal nodes correspond exactly to the codeword
lengths. We have an equality here instead of inequality because in our inquiry tree

every non-terminal node branches down to two further nodes. 0

Claim 2. Let K > 1. If £ = (1,....,lx11) € NET1 satisfies Sot'27% = 1, then
there exists (' = ({4, ..., ) € N¥ such that 0, < Oy for allk =1,.., K, {j <y, for
some kg € {1,..., K}, and 30 27% = 1.

Proof. Without loss of generality assume that ¢; < -+ < lg.q. It follows that
lx = lg.q; for otherwise the terminal node corresponding to ¢x .1 must be the only
successor of its predecessor. Let ¢ = (; for k = 1,..., K — 1 and let ¢}, = {5 — 1.
Thus,

K K—1 K—1 K+1
k=1 k=1 k=1 k=1
where the last equality follows from (5 = (k1. O

Claim 3. Let I = {I,}}| be a partition of X into K elements, let D = {d;, ...,dx } C
A, and let { = ({1, ..., lx) € NX be a length profile such that

K
» o=, (32)
k=1

Then, there exists an inquiry Q = (N, T, 0, x,d) with a set T = {t1,...,tx} of terminal

nodes such that

I, (Q)=1; and 0, (Q) =1Ly forallk=1,.. K. (33)
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Proof. By Theorem 5.2.1. in Cover and Thomas (2006) (with the argument as in the
proof of Claim 1 that translate instantaneous codes into binary trees), (32) implies
that there exists a finite binary tree with a set of nodes N and a successor relation
over N, with K terminal nodes labeled t, ..., tx, such that, for each k =1, ..., K, the
length of the path from the root to each terminal node t; is exactly .

We now construct an inquiry @ = (N, 7,0, x,d) that satisfies (33). Let N be
as above, and let T' = {t;,...,tx}. For each nonterminal node n € N — T, let us

associate two edges leading out of n with true and false, and define the map o so that

true true

o(n,true) = n'e if n ~ nfr¢ along the edge labelled true and o(n, false) = nfese
if n ~» n/9¢ along the edge labelled false. Let decision rule d be given by the choice
of di in terminal node t; for each k =1, ..., K.

It remains to construct a proposition mapping y that yields the partition I in the
terminal nodes. First, we associate each node in N with a set, [,,(Q), as follows. For
eachk =1,.... K, let I, (Q) = I;. Then, by backward induction, for each nonterminal
node n € N =T, let I,(Q) = Lo true)(Q) U Io(n faise)(Q). This implies that I,,.(Q) at
the root n° is equal to X up to a measure-zero set, since {Iz}% , is a partition, and
we can place the measure-zero set anywhere in the propositions used along the tree
anywhere without affecting the payoffs.

Finally, define a proposition map x as follows. For each nonterminal node n € N —
T, let xX(n) = Is(ntrue)(Q). By induction from the root of the tree, it is straightforward
to verify that yx satisfies (1), so, for each n € N, I,,(Q) is indeed the information set

induced by @ at node n. 0

Proof of Lemma 3.1. Let () be an optimal inquiry. Suppose, by contradiction, that
some n’ € N is reached with probability zero, but all the predecessors are reached
with positive probability. Let n be the immediate predecessor of n’, and let n” be the
second successor of n. Consider now a new inquiry () obtained by modifying @) as
follows. First, eliminate all the nodes succeeding n’ (including n’). Second, eliminate
the branch that connects n and n” and identify n with n”, so that all the nodes
following n” remain but for each terminal node ¢ following n”, {(t) in Q is one less
than ¢(¢) in Q. Note that for terminal nodes ¢ in Q, (32) holds. Moreover, since n/
happens with zero-probability, for the set of terminal nodes inherited by Q, denoted
by T, we have {1:(Q) },c7 forms a partition according to Definition 2.1. By Claim 3
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and its proof, we can construct the questions in Q so that the final partition is the
same as {1;(Q)},c4, up to measure-zero sets. Clearly, every terminal node ¢ € T that
is reached with positive probability under () is reached with the same probability
under Q, and the DM’s expected payoff conditional on reaching any such node is
unchanged. But the length of inquiry for the terminal nodes in the branch that starts
from n” is uniformly shorter under Q and this happens with a positive probability.
This contradicts the optimality of Q. 0

Proof of Lemma 3.2. Let Q = (N, T,0,x,d) be an optimal inquiry. Suppose, by
contradiction, that dy = dy for some t',t" € T with t' #t". Let K = |T| — 1, and
let us label the terminal nodes consecutively, T' = {t1, ..., tx, tx 11}, such that tx =t/
and tygq =1".

Now we construct an alternative inquiry, Q" = (N',T",0', X', d'), with |T"| = K

terminal nodes that leads to a strictly higher expected value to the DM. Let
I, =1,(Q) foreach k =1,.., K —1, and Iy =1, (Q)UIL,  (Q), (34)
and let
d,, =d;, foreacht =1,..., K.
Now, by Claim 1, we have Y 0" 27%(@ = 1. By Claim 2, there exists ¢ € N¥
such that

0, (Q) <t forall k=1,.., K, {,(Q) < {, for some k € {1,..., K}, (35)

and S5 274(@ = 1. By Claim 3 applied to I' = {I}}E,, ¢/ = (¢},..., %), and
d = (d},...,d}), there exists an inquiry Q" = (N', T, ¢, x/,d’) with T" = {t1, ..., tx}
such that

I(Q)=1, and £, (Q) =10, forall k=1, K. (36)

Thus, we obtain

W(Q';\) Z / (u(d), ) — M}, (Q"))G(dx) Z / (u(d, z) — M, )G(dx)
I I/
K+1

= / (uldy ) — Mo (Q))G(dz) = W(Q: ).

=1 71, (Q)
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where the first and last equalities are by (2), the second equality is by (36), and the
inequality is by (34), (35), and that, by Lemma 3.1, all the terminal nodes in 7" are
reached with positive probability under Q). 0
Proof of Lemma 3.3. The sufficiency is immediate by Claim 3. To prove the
necessity, suppose that an outcome profile (D, ¢, I) is implementable by an inquiry
Q= (T,N,o,x,d). Let (D, ¢,I) = (T,¢(Q),1(Q)). By Lemma 3.2, D C A, and, by
Claim 1, (D, ¢) satisfies (6). O

PROOFS OF PROPOSITIONS

Proof of Proposition 4.1. Let (D,¢,I) be the outcome of an optimal inquiry
Q. Suppose that 0(a’,a”) < A for some d’,a” € A. Suppose by contradiction that
a',a” € D. There are two cases.

Case 1. Suppose that ¢, # (.. W.lo.g., let ¢, > (. By Lemma 3.4 and
assumption (Ajz), @’ € D implies that the set

Ip={ze X :u(d,z) >u(a,z) + A\(ly —{,) for all a € D — {a'}} (37)
has nonempty interior. Therefore, because a” € D, we must have
u(a',z) > u(a”, z) + Ny — lyr) > u(a”,z) + X for each x € I,

where the first inequality is by (37), and the second inequality is because £, > £y
and both ¢, and ¢, are integers. This contradicts the assumption that 6(a’, a”) < .

Case 2. Suppose that ¢, = . Consider an alternative outcome (IA?,@, I ) given
by D=D- {a"}, by =Ly —1,0,=10,forallae D— {d'}, I, =1,UIly, and
I,=1I,forallae D— {a’}. In words, this outcome is the same as that of @) except
that this outcome merges actions ¢’ and a” and the two categories that distinguishes

these actions into one. Because
Ea/ = £a,, = éa’ —+ 17 (38)
we obtain 2% + 2% = 20w Since > yep 279 =1, we obtain that

Yoot [N o) yote = STt ot ot =1,

deD deD—{a'} deD—{a’,a"}
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Thus, by Lemma 3.3, there exists an inquiry ¢ with outcome (ﬁ, /, f) As Q and Q
differ only for x € I, U I,», we obtain

~

W(QN) = W(QiN) = [ ((ula's) = M) = (ula', ) = M) ) Gldo)

I,

~

+ / (e 2) = M) = (", ) = M) ) )

- /1/ AG(dz) + /IGI ) (u(a',x) —u(a”, x) + /\)G(da:) > 0,

where the first equality is by (7), the second equality is by (38), and the inequality
is because d(a’,a”) < A and I,y U I,» has nonempty interior. We thus obtain a

contradiction to the optimality of Q. O

Proof of Proposition 4.2. Let Ay = sup,.y(maxgea u(a,x) — mingea u(a, x)).
Then, for all A > Ay, the utility gain from distinguishing any actions is smaller than
the cost, so the optimal consideration set D is a singleton.

Next we show that the optimal consideration set must be A for A sufficiently small.
By (As) and (A3) and the assumption that G has full support, each action a is optimal
for a positive measure of states. As a result, for any (A,¢) and (D', ') in F* with
D' C A,

max V(A A, 0) > max V(X D, ')
(Af)cF* (D' #)eF* with D'CA

at A = 0, and by continuity, there exists A\; > 0 such that the same inequality holds
for all A < A;. Thus, for any A < A{, any optimal inquiry has D = A. O

Proof of Proposition 4.3. Suppose that

G1 >rosp G2 =rosp --- =rosp Gr,

that is, [ < I’ implies that G;(z) < Gy(z) for all z € R. Let (D, ¥, 1) be an optimal
inquiry. We show that optimal consideration set D must consist of the first K actions.
By contradiction, suppose that for some k' < k, and hence Gy =rosp Gk, ap ¢ D
but a; € D. By Lemma 3.4 and the utility function (13), we have that the expected

payoff from this inquiry is the expected value of

z =max{z; — N, : @ € D}.
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Let F' be its cumulative distribution function; by independence, we have
F(z) = [ [{Gi(z + My,) - ) € D}.

Now, consider an alternative inquiry with outcome (D', ¢, I") such that D' = (D —
{ar})U{aw}, b, = Lo, for all s € D —{ay} and ¢, , = {,,, and I' = I* (D', ¢'). Then,

the expected payoff from this inquiry is the expected value of
w =max{z; — N, : aq; € D'}.
Let H be its cumulative distribution function, and hence for all y,

H(y) = [[{Gy+r,): @D}
= ([[Giy+ 7)€ D~ {ar}}) Goly + Aay)
< <H{Gl(y + My,):a €D — {ak}}> Grly + M,,) = F(z),

where the inequality follows from the fact that Gy =rosp Gr. Hence w has a strictly
higher expected value than z, and this leads to a contradiction of the optimality of

the original inquiry. O

Proof of Proposition 5.1. Let A > 0. The existence of an optimal (D,¢) for an
interval [\, "] that contains A follows from the same arguments as those in the proof
of Theorem 4.1. Consider arbitrary A, As € [N, \’] with A\; < Ay. By Lemma A.1, it
is immediate that, for each £k =1,..., K — 1,

EY C B> (39)

Moreover, if ¢ is not uniform, the inclusion (39) is strict for some & with the difference
having a non-empty interior. We thus obtain that confirmation bias is increasing, and

strictly so whenever ¢ is not uniform. O
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