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1. Introduction

The literature on information design, or Bayesian persuasion, traditionally assumes

that the principal, or information designer, commits to an information disclosure

protocol without any private knowledge about what she is about to disclose. While

this feature is plausible in a variety of contexts, it is often more realistic to consider

an alternative, where the principal may possess private information and use it to her

advantage when deciding how the information should be disclosed.1 We will refer to

the former and latter settings as, respectively, the uninformed and informed principal

models.

In general, the informed principal can implement fewer outcomes than the unin-

formed one. This is because the informed principal has to make sequentially ratio-

nal choices given her private information, whereas the uninformed principal has no

such constraint. We are interested in the conditions when this sequential rationality

constraint entails no loss of generality, namely, when the uninformed principal’s in-

formation disclosure protocol can be sustained as a sequentially rational play for the

informed principal.

To illustrate the central idea of this paper, consider an example with a plaintiff

(principal, she) and a judge (agent, he), as in Kamenica and Gentzkow (2011). Based

on presented evidence, the judge chooses whether to rule in favor or against the

plaintiff’s case. In litigation, especially in civil lawsuits, usually there is a specific

and detailed procedure, or practice direction, that explains the conduct and sets out

the steps the court normally expects the plaintiff to follow. It is plausible that the

plaintiff is privately informed about the evidence before presenting it to the judge. So

the plaintiff might have an incentive to alter the procedure in some way, depending on

her information. What can be done to deter such deviations? A reasonable answer is

that a deviation from the procedure may raise the judge’s suspicion that he is being

manipulated. Provided there is no incriminating evidence, so there remains some

uncertainty about the truth no matter what the plaintiff discloses, any alteration of

the procedure could predispose the judge’s against the plaintiff’s case, so much that

this change in the disposition dominates the informational benefit for the plaintiff.

As a result, the plaintiff’s sequentially rational choice is to adhere to the procedure

irrespectively of her private information.

1For literature surveys see Bergemann and Morris (2019) and Kamenica (2019), and for an outline of
questions of interest in Bayesian persuasion, including the theme of private information of a sender,
see Kamenica, Kim, and Zapechelnyuk (2021).
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In this paper, we show that, under certain assumptions, every implementable Pareto

undominated outcome in the uninformed principal model is implementable as a se-

quential equilibrium in the informed principal model. This equilibrium is pooling, in

the sense that the informed principal chooses the same information disclosure proto-

col irrespective of her private information. Coupled with the observation that every

outcome implementable in the informed principal model is also implementable in the

uninformed principal model2, we draw the conclusion about the equivalence of imple-

mentation of Pareto undominated outcomes by means of information design in these

two models. A notable consequence of this result is the optimality equivalence: the

mechanism that induces the optimal sequential equilibrium in the informed principal’s

problem can be found by solving the uninformed principal’s problem.3

Our result holds under two assumptions. The first assumption states that the prin-

cipal has monotone preferences over the agent’s actions. Specifically, there exists an

order over the agent’s actions along which the principal’s utility is increasing irrespec-

tive of the state of the world. This assumption includes state-independent preferences

of the principal as a special case. The consequence of this assumption is that there

exists an agent’s belief that leads to a state-independent “punishment” action. This

is an action that, regardless of the state, is inferior to every action inducible in Pareto

undominated information disclosure in the uninformed principal model. This punish-

ment is used to deter the principal’s deviations conditional on learning the state.

The second assumption states that information structures, referred to as tests, that

are available to the principal cannot be absolutely accurate. That is, no test can make

the agent absolutely certain about the state of the world, although it can be arbitrarily

close to providing this certainty. We use this assumption to ensure that the agent’s

posterior beliefs conditional on tests and their messages are defined by Bayes’ rule for

any prior. This assumption entails no loss of generality in the uninformed principal

model, because we define outcomes to be implementable if they can be induced in the

limit by a convergent sequence of tests. However, this assumption is substantive in the

informed principal model, because it prevents the principal to deviate to absolutely

accurate tests, thus imposing a refinement on the set of equilibria.

2This observation is reminiscent of the inscrutability principle of Myerson (1983). In the context of
information design by informed principal, this observation was first made by Perez-Richet (2014) in
a setting with two states and two actions.
3Note that the informed principal model is a signaling game that generally has multiple sequential
equilibria. So our argument of optimality equivalence presumes that the equilibrium selection can
be made in favor of the principal.



INFORMATION DESIGN BY UNINFORMED AND INFORMED PRINCIPALS 3

Related Literature. The closest paper in the literature to our paper is Koessler and

Skreta (2022), thereafter, KS. Like our paper, KS compare the problems of uninformed

and informed information designer, but they reach a different conclusion. KS show

that an equilibrium in the informed principal model that implements the optimal

outcome for the uninformed principal need not exist. This is because KS impose

a specific, albeit natural and commonly accepted, constraint on the agent’s out-of-

equilibrium beliefs. Under this constraint, the beliefs that induce the “punishment”

action, which is used to deter the principal’s deviations in our setting, need not be

feasible. Our paper adopts a complementary approach. We do not impose constraints

on the agent’s out-of-equilibrium beliefs. Instead, we assume that tests are never

absolutely accurate. This difference between KS and our paper is illustrated by

example in Section 4. Another difference is that our model has more structure due

to the assumption on the principal’s preferences. KS make no such assumption, so a

state-independent punishment that deters the principal’s deviations need not exist in

KS’s setting.

A few other papers study the model of information design by an informed principal.

Perez-Richet (2014) and Degan and Li (2021) consider a more specialized setting with

two states and two actions. Hedlund (2017) analyzes the setting with two states and

multiple actions, where the principal is partially informed about the state. Applying

the D1 equilibrium refinement criterion, Hedlund (2017) shows that the resulting

outcome either fully reveals the principal’s private information about the state, or

fully reveals the state itself. Chen and Zhang (2020) consider an interaction between a

privately informed seller and a potential buyer. They allow the seller to communicate

her type to the buyer via two channels, information disclosure and pricing, and show

that a credible type separation is generally impossible via one channel alone. Bizzotto

and Vigier (2021) study Bayesian persuasion over multiple periods with exogenous

news, where the sender is unable to commit to the information that she will supply

in future periods. Lastly, Serena (2022) study a model with an informed principal

designs information disclosure to maximizes the aggregate effort of two contestants

who compete in a Tullock contest.4

The papers mentioned above allow the principal to choose arbitrary information struc-

tures. Alonso and Câmara (2018) restrict the principal’s choice of tests to a given

set and characterize the conditions when the uninformed principal can benefit from

accessing additional information about the state. There is also a substantial literature

4In a related paper, Antsygina and Teteryatnikova (2022) study information design in contests with
uninformed principal.
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on information disclosure with evidence by an informed principal that restricts the

use of information structures, in particular, focusing on deterministic and partitional

ones. Prominent papers in this literature include Okuno-Fujiwara, Postlewaite, and

Suzumura (1990), Seidmann and Winter (1997), Hagenbach, Koessler, and Perez-

Richet (2014), Hart, Kremer, and Perry (2017), Ben-Porath, Dekel, and Lipman

(2019), and Ivanov (2021) to name a few.

Our paper is also is related to the literature on the informed principal in the standard

mechanism design setting that was set in motion by the seminal paper of Myerson

(1983). Some of this literature touches upon the question of information disclosure

of the principal’s private type to agents, particularly focusing on when full disclosure

does not hurt the principal (e.g., Maskin and Tirole, 1990; Yilankaya, 1999; Skreta,

2011; Mylovanov and Tröger, 2014; Bedard, 2017; Mekonnen, 2021).

One can interpret the principal’s ability to change her mind after observing private

information as her lack of commitment. In this sense, our paper is related to the

literature that investigates information design where the principal chooses an infor-

mation structure without full commitment to its messages (Guo and Shmaya, 2021;

Lipnowski, Ravid, and Shishkin, 2022; Min, 2021; Eilat and Neeman, 2023). In these

models, failure to commit means cheap talk.5 In contrast, in our informed principal

model, the principal can still credibly communicate information. This is because the

principal does not freely choose a message after learning the state, instead she publicly

commits to a state contingent disclosure mechanism that communicates messages on

behalf of the principal.

2. Model

2.1. Preliminaries. Consider a setting with two players, a principal (she) and an

agent (he), whose utilities depend on the agent’s action a and the state of the world

θ, and are given by uP (a, θ) and uA(a, θ), respectively. The set of actions A and the

set of states Θ are finite. There is a common prior q0 ∈ ∆(Θ) about the state.

We assume that the principal has monotone preferences over the agent’s actions.

Specifically, the principal’s ordinal comparison of any pair of actions does not change

with the state, so uP (a, θ) satisfies

uP (a′, θ′) ≥ uP (a′′, θ′) ⇐⇒ uP (a′, θ′′) ≥ uP (a′′, θ′′)

for all a′, a′′ ∈ A and all θ′, θ′′ ∈ Θ.
(A1)

5Credible communication by cheap talk when the sender has state-independent preferences is char-
acterized by Lipnowski and Ravid (2020).
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Under this assumption, without loss of generality, actions in A can be ordered so that

the principal’s utility is increasing in the action. Assumption (A1) includes a special

case where the principal’s utility is state-independent, so uP (a, θ) = uP (a).6

In addition, to simplify the exposition, we assume that in each state the agent has a

single optimal action, so

for each θ ∈ Θ there exists a∗θ ∈ A s.t. uA(a∗θ, θ) > uA(a, θ) for all a 6= a∗θ. (1)

The agent is initially uninformed about the state. He receives information about the

state via a test designed by the principal. Let M be a set of messages, with at least

as many messages as actions in A. A test t is a conditional probability distribution

that sends each message m ∈ M with probability t(m|θ) when the realized state is

θ ∈ Θ.

We consider nondegenerate tests. Formally, the set of nondegenerate tests, denoted

by T , is the set of all conditional probability distributions t(·|θ) over M that satisfy(∑
θ∈Θ

t(m|θ) > 0 =⇒ t(m|θ) > 0 for each θ ∈ Θ

)
for each m ∈M. (A2)

Assumption (A2) means that every message m either cannot occur under t at all, or it

occurs with a positive probability in every state. This assumption captures the idea

that no test can make the agent absolutely certain about the state, although tests

can be arbitrarily close to providing this certainty. It is also necessary and sufficient

for the agent’s posterior beliefs conditional on messages of the test to be defined by

Bayes’ rule for all priors.

After having observed a test t ∈ T and a message m generated by that test, the agent

forms a posterior belief about the state, denoted by β(·|t,m) ∈ ∆(Θ), according to

Bayes’ rule whenever possible.7 Given a posterior, the agent chooses an action that

maximizes his expected utility using an exogenously given decision rule d that satisfies

d(q) ∈ arg max
a∈A

∑
θ∈Θ

uA(a, θ)q(θ) for each q ∈ ∆(Θ). (2)

6Assumption (A1) can be relaxed. It is sufficient to assume that there exists a “punishment” action
that is worst for the principal among those actions that are optimal for the agent in some state. We
further comment on this in Remark 2 (Section 3).
7In fact, the agent updates his prior twice, first after seeing test t, and second after seeing message
m generated by the test. But because the agent only acts after seeing both t and m, all that matters
is the final posterior β(·|t,m).
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Rule d is used for tie breaking whenever a utility maximizing action is not unique.

For example, as often assumed in the literature, the ties can be resolved in favor of

the principal.

We now describe the principal’s information and behavior. We consider two settings,

one where the principal is uninformed about the state and one where the principal is

informed.

2.2. Uninformed Principal. We first consider the standard Bayesian persuasion

setting as in Kamenica and Gentzkow (2011). In this setting, the principal is unin-

formed about the state when choosing a test t ∈ T .

Given a test t ∈ T , the interaction proceeds as follows. First, Nature draws a state θ

from Θ according to the prior q0. Then, test t produces a message m ∈M according

to the conditional probability distribution t(·|θ). Finally, the agent observes the

test t and its message m, forms posterior belief β(·|t,m), and chooses action a =

d(β(·|t,m)).

Every test t ∈ T induces a conditional probability distribution over the agent’s choices

of actions, denoted by λt. The probability λt(a|θ) of action a conditional on state θ

is given by

λt(a|θ) =
∑
m∈M

t(m|θ)1{a=d(β(·|t,m))}, (3)

where 1{·} is the indicator function. We will refer to λt as the outcome induced by t.

An outcome is sufficient to describe the interim utilities of the principal and the agent.

Given an outcome λ, for each θ ∈ Θ, these interim utilities are given by

Ui(θ;λ) =
∑
a∈A

ui(a, θ)λ(a|θ), i = P,A. (4)

An outcome is implementable by the uninformed principal if it is approachable by

outcomes of tests in T .

Definition 1. An outcome λ ∈ (∆(A))|Θ| is implementable by the uninformed prin-

cipal if there exists a sequence of tests (tk)k∈N such that tk ∈ T for each k ∈ N, and

limk→∞ λtk = λ.8

2.3. Informed Principal. We now consider the informed principal setting. In this

setting, the principal is privately informed about the state and designs a test that

8Here and elsewhere in the paper, the convergence is pointwise.
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depends on her information. The principal’s mechanism τ : Θ → ∆(T ) specifies a

probability distribution τ(·|θ) over the set of tests conditional on each state θ.

Consider a pair (τ, β) of the principal’s mechanism τ and the agent’s system of poste-

rior beliefs β that specifies a posterior belief β(·|t̂, m) ∈ ∆(Θ) for each test t̂ ∈ T and

each message m ∈M . Given a pair (τ, β), the interaction proceeds as follows. First,

Nature draws a state θ from Θ according to the prior q0. Then, the mechanism draws

a test t ∈ T according to the conditional distribution τ(·|θ). Next, the test produces

a message m ∈M according to the conditional distribution t(·|θ). Finally, the agent

observes the realized test t and its message m, forms posterior belief β(·|t,m), and

chooses action a = d(β(·|t,m)).

Analogously to the uninformed principal setting, every pair (τ, β) induces a condi-

tional probability distribution over the agent’s choices of actions, denoted by λ(τ,β).

The probability λ(τ,β)(a|θ) of action a conditional on state θ is given by

λ(τ,β)(a|θ) =

∫
t∈T

(∑
m∈M

t(m|θ)1{a=d(β(·|t,m))}

)
τ(dt|θ). (5)

We will refer to λ(τ,β) as the outcome induced by (τ, β). As in the uninformed principal

setting, an outcome is sufficient to describe the interim utilities of the principal and

agent, which are given by (4).

Our notion of implementation by the informed principal is based on sequential equi-

librium (Kreps and Wilson, 1982). We rule out the agent’s out-of-equilibrium beliefs

that cannot withstand small perturbations of the principal’s mechanism.

Let ε > 0. Given a belief system β, a mechanism τ is called ε-sequentially rational

under β if the principal cannot improve her interim expected utility by more than ε

in any state, so

UP (θ;λ(τ,β)) ≥ sup
t∈T

(∑
m∈M

uP (d(β(·|t,m), θ)t(m|θ)

)
− ε for each θ ∈ Θ. (6)

A mechanism τ is called a full-support mechanism if conditional distribution τ(·|θ)
has full support on T for each θ ∈ Θ.

Given a mechanism τ , a belief system β is called consistent with τ if there exists a

sequence of full-support mechanisms (τk)k∈N and the corresponding sequence of belief

systems (βk)k∈N derived by Bayes’ rule such that limk→∞(τk, βk) = (τ, β).
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Definition 2. A pair (τ, β) is an ε-sequential equilibrium if τ is ε-sequentially rational

under β, and β is consistent with τ .9

An outcome is implementable by the informed principal if it is approachable by out-

comes of ε-sequential equilibria with arbitrarily small ε.

Definition 3. An outcome λ ∈ (∆(A))|Θ| is implementable by the informed principal

if there exists a sequence (εk, τk, βk)k∈N such that (i) for each k ∈ N, εk > 0 and

(τk, βk) is εk-sequential equilibrium, and (ii) limk→∞ εk = 0 and limk→∞ λ(τk,βk) = λ.

3. Result

Before presenting our result, we introduce the notion of Pareto dominance.

Definition 4. Consider the uninformed principal model. An implementable outcome

λ is Pareto undominated if there is no implementable outcome that is weakly preferred

to λ by both principal and agent in each state, and strictly so by at least one of them

in some state.

Theorem 1. (a) If an outcome is implementable by the informed principal, then it

is implementable by the uninformed principal.10

(b) Let Assumptions (A1) and (A2) hold. If an outcome is implementable by the un-

informed principal and Pareto undominated, then it is implementable by the informed

principal.

The proof is in the Appendix. Here we provide the intuition for the result, and in the

next section we will illustrate it by an example.

Part (a) follows from an application of the sure-thing principle.11 If the agent chooses

the same optimal action in two distinct events, then he should choose the same action

without knowing which of those events has occurred. So one can bundle together all

pairs (t,m) that lead to the same action a, and identify all these pairs with a single

message that “recommends” action a. We would like to point out that Part (a) is

not a trivial statement that always holds. It relies on the richness of the set of tests

9This solution concept corresponds to Myerson and Reny’s (2020) perfect conditional ε-equilibrium
who extend sequential equilibrium (Kreps and Wilson, 1982) to infinite sets of signals and actions.
10Note that we do not impose Assumptions (A1) and (A2) in part (a). Assumption (A1) plays
no role for this result. If we restrict attention to the tests that satisfy Assumption (A2), part (a)
continues to hold as we show in Remark 3 (see the Appendix).
11The idea behind the statement in Part (a) is not novel. A version of this result for the model with
two states and two actions appears in Perez-Richet (2014).
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available to the principal and need not be true if the set of tests is restricted (see

Alonso and Câmara, 2018).

The intuition for Part (b) is as follows. Let λ∗ be a Pareto undominated outcome

implementable by the uninformed principal. Suppose that there is a test, t∗, that

implements λ∗. This test can be replicated within the informed principal setting by

the mechanism τ̄ that prescribes the same test t∗ independently of θ. The problem is

that τ̄ might not be sequentially rational, nor even ε-sequentially rational for a small

enough ε. For example, the principal might have an incentive to deviate by choosing

a highly accurate test that nearly reveals the state.

As the key part of the proof, we construct a sequential equilibrium with out-of-

equilibrium beliefs for the agent that deter the principal’s deviations from the pre-

scribed test. Specifically, whenever the principal deviates from the prescribed test t∗

to any different test t̂, the agent (who observes this deviation) becomes “skeptical”

and forms a posterior belief that assigns probability one to a specific “punishment”

state. This “punishment” state induces an action of the agent that hurts the principal

no matter what the state is, referred to as the “punishment” action. Assumption (A1)

ensures that the same action is the worst for the principal in all states. Assumption

(A2) ensures that messages of the deviation test t̂ cannot alter the agent’s degenerate

posterior belief that the state is equal to the “punishment” state. The condition that

λ∗ is Pareto undominated ensures that there actually exists such a degenerate pos-

terior belief under which the agent optimally chooses the principal’s “punishment”

action (which is, by definition, is weakly inferior to λ∗ for the principal).

Lastly, the described belief system satisfies the consistency requirement of sequential

equilibrium, because it is obtained as the limit of a sequence of perturbed mechanisms

constructed as follows. With a probability that approaches zero, instead of choosing

t∗, the perturbed mechanism chooses a full-support lottery over tests. The probability

of choosing this lottery is by the order of magnitude larger in the “punishment” state

than in all other states. Thus, whenever the principal deviates from the prescribed

test t∗ to any different test t̂, the agent’s posterior probability of the “punishment”

state approaches one as the perturbation vanishes.

Remark 1. The restriction to Pareto undominated outcomes stems from the require-

ment of consistency of out-of-equilibrium beliefs in sequential equilibrium. If the so-

lution concept was prefect Bayesian equilibrium (PBE), so that out-of-equilibrium
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beliefs could be arbitrary, then, under assumptions (A1) and (A2), all outcomes im-

plementable by the uninformed principal would be sustainable in PBE of the informed

principal game.

Remark 2. The proof of Theorem 1(b) relies on the existence of the agent’s action

that punishes the principal’s deviations uniformly in all states, thus allowing to sustain

pooling equilibria, where the principal chooses the same test in all states. Assumption

(A1) is sufficient for the existence of such a uniform punishment, but not necessary.

It can be relaxed as follows. Let Ã(θ) be the set of actions that are optimal for the

agent in state θ, and let Ã =
⋃
θ∈Θ Ã(θ).12 For the proof of Theorem 1(b), we only

need to assume that there exists an action a∗ ∈ Ã that is the worst for the principal

among all actions in Ã in each state, so a∗ ∈ arg mina∈Ã uP (a, θ) for each θ ∈ Θ.

4. Example

In this section, we present an example borrowed from Koessler and Skreta (2022).

The role of this example is twofold. First, it illustrates Theorem 1 and shows how an

equivalent pooling equilibrium in the informed principal setting is constructed for a

given optimal information design by the uninformed principal. Second, it shows why

the assumption that tests cannot be perfectly accurate (Assumption (A2)) is crucial

for this construction, and why relaxing this assumption (and thus enlarging the set

of tests that the principal can deviate to) can destroy the pooling equilibrium. It also

highlights the difference between Koessler and Skreta (2022) and this paper.

Consider the following example. There are three actions, A = {l,m, h}, and two

states, Θ = {L,H}. The prior probability of state H is denoted by q0 and is given by

q0 = 1/6. Table 1 shows the players’ utilities, where each pair of numbers presents

the utilities of the principal and agent, respectively.

l m h
L 0, 3 2, 2 3, 0
H 0, 0 2, 2 3, 3

Table 1. Utilities of Principal and Agent

Note that the principal’s utility is state-independent, uP (a, θ) = uP (a). Her prefer-

ence over actions is l ≺ m ≺ h. Given a posterior probability q of state H, the agent’s

12Note that Ã is not the same as the set of rationalizable actions, as there can be actions that are
rationalizable, i.e., optimal under some belief about state, and yet not optimal in any state.
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preferred action d(q) is given by

d(q) =


l, if q < 1/3,

m, if 1/3 ≤ q < 2/3,

h, if q ≥ 2/3,

with ties resolved in favor of the principal.

Figure 1. The principal’s expected utility V and its concavification cav V .

The concavification method of Kamenica and Gentzkow (2011) allows us to find

the optimal test for the uninformed principal. Provided the agent chooses actions

according to d, the principal’s expected utility V (q) as a function of the agent’s

posterior probability q of state H is given by

V (q) = uP (d(q)) =


0, if q < 1/3,

2, if 1/3 ≤ q < 2/3,

3, if q ≥ 2/3.

Figure 1 illustrates V (step function depicted by dashed lines) and its concavification13

cav V (piecewise linear function depicted by solid lines). The value of the optimal

test t∗ for the uninformed principal is cav V evaluated at the prior q0 = 1/6. As

apparent from Figure 1, the value cav V (1/6) is a convex combination of V (q) at two

posteriors, q = 0 and q = 1/3. The optimal test is given by t∗(·|H) = (0, 1, 0) and

t∗(·|L) = (3/5, 2/5, 0). In words, when the state is H, the test recommends action m;

when the state is L, the test recommends actions l and m with probabilities 3/5 and

13We write cav V for the smallest concave function that weakly exceeds V .
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2/5, respectively. The agent’s posterior is q = 0 after observing l, and it is q = 1/3

after observing m. Message h is never sent by the test.

Note that the optimal test t∗ is degenerate, in the sense that it does not satisfy As-

sumption (A2). However, it can be represented as the limit of a sequence of nondegen-

erate tests. So the outcome of this optimal test is implementable by the uninformed

principal.

Koessler and Skreta (2022) argue that the outcome of the test t∗ is not implementable

by the informed principal. The reason is that if it was implementable, the informed

principal would have to choose t∗ in both states, H and L. But when the state was

H, the principal would prefer to deviate by revealing the state. The agent would

then optimally choose h instead of m, which would be a strict improvement for the

principal. The conclusion is that the sequential rationality of the informed principal

poses a substantive constraint that prevents the attainment of the outcome that is

optimal for the uninformed principal.

The above argument has a potential caveat. Imagine that after observing the princi-

pal’s deviation, the agent becomes “skeptical” and believes that the state is L with

certainty. But then, the test reveals that the state is H with certainty. The agent’s

posterior belief is indeterminate under Bayes’ rule. It could be that the agent doubts

his conviction that θ = L and thus believes the result of the test. Alternatively, it

could be that the agent doubts the accuracy of the test, and thus remains convinced

that θ = L.

Perez-Richet (2014) and Koessler and Skreta (2022) deal with the above belief inde-

terminacy problem using to the principle of the preeminence of tests. They impose

the constraint that every out-of-equilibrium posterior belief must assign probability

one to each event that is revealed as certain by the test. For example, if the test

reveals that the state is H with certainty, the agent’s posterior belief must be that

the state is H with certainty, irrespective of the prior.

This paper takes a complementary approach. We do not impose constraints on the

agent’s out-of-equilibrium beliefs. Instead, we assume that tests are never absolutely

accurate, as captured by Assumption (A2). With such tests, no events are certain, so

the principle of the preeminence of tests has no substance.

We argue that the outcome of test t∗ is implementable by the informed principal,

provided her deviations conditional on learning the state are restricted to nondegen-

erate tests. Consider the pooling mechanism τ ∗ that chooses test t∗ with certainty in

every state. This mechanism is sequentially rational under the following agent’s belief
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system β∗. If the principal deviates from t∗ to a different test t, the agent forms the

belief that the state is θ = L with certainty. Because t is nondegenerate, after every

message of t the agent remains certain that θ = L, and thus chooses action l, which is

the principal’s least preferred action. Moreover, (τ ∗, β∗) is a sequential equilibrium,

since the above degenerate out-of-equilibrium belief can be sustained as an outcome

of Bayes’ rule by slightly perturbing the mechanism τ ∗. Let f be a full-support dis-

tribution over the set of tests T . For a small ε̃ > 0, consider the following perturbed

mechanism τε̃:

(i) when θ = L, τε̃(·|θ) chooses test t∗ with probability 1 − ε̃, and with the comple-

mentary probability it draws a random test from T according to distribution f ;

(ii) when θ = H, τε̃(·|θ) chooses test t∗ with probability 1− ε̃2, and with the comple-

mentary probability it draws a random test from T according to distribution f .

As ε̃ vanishes, τε̃ approaches τ ∗. At the same time, conditional on observing a devi-

ation t 6= t∗ and a message of t, the agent’s posterior beliefs approach the degenerate

belief that θ = L.

Our conclusion is that, under the assumptions of our setting, the sequential rationality

of the informed principal does not pose a substantive constraint.

Appendix. Proof of Theorem 1

Recall our assumption that the set M has at least as many messages as actions in A.

Let us identify actions with messages, so assume that

A ⊆M.

We then interpret each message m ∈ A as a recommendation to choose action m.

A test t is called obedient if

(i) it induces the agent’s choice equal to the recommended action, so d(β(·|t,m)) = m

for each m ∈ A, and

(ii) it never sends messages outside of A, so t(m|θ) = 0 for each m ∈M\A.

By (3), the outcome λt of an obedient test t in the uninformed principal setting is

given by

λt(a|θ) =
∑
m∈M

t(m|θ)1{a=d(β(·|t,m))} = t(a|θ). (7)
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By the revelation principle, in the uninformed principal model, any test can be re-

placed by an obedient test without changing the outcome.14

Proof of Theorem 1(a). Let (τ, β) be an ε-sequential equilibrium in the informed

principal model for some ε > 0. For each action a ∈ A let Yβ(a) be the set of all pairs

(t,m) of a test t and a message m such that the agent’s optimal choice is a,

Yβ(a) = {(t,m) ∈ T ×M : d(β(·|t,m)) = a}.

Using this notation, the outcome λ(τ,β), which is given by (5), can be rewritten as

λ(τ,β)(a|θ) =

∫
t∈T

(∑
m∈M

t(m|θ)1{a=d(β(·|t,m))}

)
τ(dt|θ) =

∫
(t,m)∈Yβ(a)

t(m|θ)τ(dt|θ).

Given (τ, β), construct a test t̃ as follows. For each θ ∈ Θ let

t̃(m|θ) =

λ(τ,β)(m|θ) for each m ∈ A,
0 for each m ∈M\A.

(8)

By the definition of Yβ(a), the test t̃ is obedient. By (7) and (8), the outcome of this

test in the uninformed principal setting, λt̃, is given by

λt̃(a|θ) = t̃(a|θ) = λ(τ,β)(a|θ), a ∈ A, θ ∈ Θ.

Let λ be an outcome implementable by the informed principal. Then there is a

sequence (εk, τk, βk)k∈N such that limk→∞ εk = 0 and limk→∞ λ(τk,βk) = λ. For each

k ∈ N, using the construction (8), the pair (τk, βk) is replaced by the test t̃k with the

same outcome, λt̃k = λ(τk,βk). Thus, limk→∞ λt̃k = limk→∞ λ(τk,βk) = λ, which means

that λ is implementable by the uninformed principal.

Remark 3. We do not impose Assumption (A2) in part (a) of Theorem 1. However,

this result continues to hold if we make this assumption, specifically, if every test in

the support of τ satisfies (A2). Observe that t̃ constructed in (8) need not satisfy

(A2). Nevertheless, the outcome λt̃ of test t̃ is still implementable by the uninformed

principal, because t̃ can be approximated by a sequence of tests (tk)k∈N such that tk
satisfies (A2) for each k ∈ N, and limk→∞ λtk = λt̃. In other words, (A2) does not

pose a substantive restriction for the uninformed principal when it is imposed on the

informed principal.

14Note that in the informed principal model restricting to obedient tests entails loss of generality.
This is because tests can be used as signals of information, so the principal can potentially use two
tests with the same outcome as distinct signals.
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Proof of Theorem 1(b). Using Assumption (A1), let actions in A be ordered so

that the principal’s utility is increasing in a. Let ≺ denote this order.

For each state θ ∈ Θ let δθ be the degenerate belief that puts probability one on θ.

Let a∗ be the worst action for the principal among the actions that can be induced

by degenerate beliefs, so

a∗ = d(δθ∗) = min
θ∈Θ

d(δθ), (9)

We refer to a∗ and δθ∗ as the punishment action and punishment belief, respectively.

We prove the following statement. In the uninformed principal model, if an outcome

is Pareto undominated, then every action induced in this outcome is at least as good

for the principal as the punishment action a∗.

Lemma 1. Consider the uninformed principal model. Let λ be implementable and

Pareto undominated. Then for each a′ ∈ A,

a′ ≺ a∗ =⇒
∑
θ∈Θ

λ(a′|θ) = 0.

Proof. By contradiction, suppose that there exists a′ ∈ A such that

a′ ≺ a∗ and
∑
θ∈Θ

λ(a′|θ) > 0. (10)

Let (εk)k∈N be a sequence of positive numbers with limk→∞ εk = 0. Because λ is

implementable, there exists a sequence of tests (tk)k∈N in T such that limk→∞ λtk = λ.

Consider k ∈ N. By the revelation principle, without loss of generality, let tk be

obedient. Consequently, by (7),

λtk(a|θ) = tk(a|θ) for each a ∈ A and each θ ∈ Θ.

Moreover, by (10) and by tk ∈ T (so tk satisfies (A2)),

λtk(a
′|θ) = tk(a

′|θ) > 0 for each θ ∈ Θ and each k ∈ N. (11)

Let a∗θ be the agent’s preferred action in state θ, and let A∗ be the set of such actions,

a∗θ = d(δθ) and A∗ = {a∗θ}θ∈Θ.

Construct a test t̃k as follows. For each θ, with probability εk let t̃k(·|θ) send a

random message with uniform distribution over the set A∗. With the complementary

probability, 1− εk, whenever tk(·|θ) sends message a′, let t̃k(·|θ) send instead message

a∗θ, and whenever tk(·|θ) sends message m 6= a′, let t̃k(·|θ) send the same message as
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tk(·|θ). In summary,

t̃k(m|θ) =



εk
|A∗| + (1− εk)(tk(m|θ) + tk(a

′|θ)) if m = a∗θ,

εk
|A∗| + (1− εk)tk(m|θ) if m ∈ A∗\{a∗θ},
0, if m = a′,

(1− εk)tk(m|θ) if m 6∈ A∗ ∪ {a′},

The following observations are in order.

First, t̃k ∈ T . This is because tk is in T , so the posteriors of the messages that are sent

under tk with positive probability have full support in both tk and t̃k. Furthermore,

the messages a∗θ, which may or may not be sent by tk, are sent by t̃k with a positive

probability in each state by construction of t̃k.

Second, t̃k is obedient for every large enough k. If t̃k sends message m 6∈ A∗ ∪ {a′},
then the posterior under t̃k is the same as under tk. Alternatively, if t̃k sends message

a∗θ ∈ A∗, then the posterior β(·|t̃k, a∗θ) is a perturbed mixture of two beliefs. The first

belief is β(·|tk, a∗θ) induced in tk (provided tk generates a∗θ with a positive probability),

in which case we know that a∗θ must be optimal for the agent by the obedience of

tk. The second belief is δθ, in which case a∗θ is uniquely optimal for the agent. The

mixture of these two beliefs is perturbed, with the magnitude of the perturbation

proportional to εk. When k is sufficiently large, so that the perturbation εk is small

enough, a∗θ is uniquely optimal for the agent under the posterior β(·|tk, a∗θ).

Finally, for every large enough k, the agent is better off and the principal is strictly

better off under t̃k, as compared to tk. This is because in each state θ, whenever test

tk sends a′ and test t̃k sends a∗θ, the agent prefers a∗θ because it is the agent’s uniquely

optimal action in state θ. For the principal, by Assumption (A1) and by (9), we have

uP (a′, θ′) < uP (a∗, θ
′) ≤ uP (a∗θ, θ

′) for every θ′ ∈ Θ. Therefore, there is a constant

c > 0 such that

uP (a∗θ, θ
′)− uP (a′, θ′) ≥ c for all θ, θ′ ∈ Θ.

In addition, by (10) and (11), there exists a probability p > 0 such that a′ is played

with probability at least p in test tk for each sufficiently large k. Consequently, the

principal’s utility increment under t̃k as compared to tk is at least pc > 0 for every

sufficiently large k. We conclude that λ is Pareto dominated by λ̃ = limk→∞ λt̃k . �

Equipped with Lemma 1, we return to the proof of Part (b) of Theorem 1. Let λ∗ be

implementable in the uninformed principal model, and Pareto undominated. Then
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there exists a sequence (εk, tk)k∈N with εk > 0 and tk ∈ T such that

lim
k→∞

εk = 0 and lim
k→∞

λtk = λ∗, (12)

and, by Lemma 1,∑
a′∈A:a′≺a∗

λtk(a
′|θ) ≤ εk for each θ ∈ Θ, and each k ∈ N. (13)

That is, test tk induces actions that are weakly superior to a∗ for the principal with

the probability at least 1− εk in each state.

Fix k ∈ N. Consider the following pair (τk, βk) in the informed principal model. Let

mechanism τk choose test tk in all states, so τk(·|θ) assigns probability one to tk for

each θ ∈ Θ. Let βk satisfy

βk(·|t,m) =

β(·|tk,m) if t = tk,

δθ∗ if t ∈ T\{tk}

for each t ∈ T and each m that has a positive probability under t. In words, after

observing test tk, the agent forms an interim belief (i.e., the belief given the test

but before observing the message of the test) equal to the prior, and then, given a

message of tk, the agent forms the posterior belief according to Bayes’ rule. However,

after observing a deviation t 6= tk, the agent forms an interim belief equal to the

punishment belief δθ∗ . As this belief is degenerate but test t is nondegenerate by

Assumption (A2), messages of t do not affect the belief, leading to the same posterior

belief βk(·|t,m) = δθ∗ for any message m. Recall that δθ∗ induces the punishment

action a∗ = d(δθ∗). By (13), with probability at least 1 − εk, test tk generates one

of the actions that are at least as good as a∗ for the principal. Thus, the principal’s

utility increment from the deviation to t 6= tk is bounded by ūP εk, where

ū = max
a′,a′′∈A,θ∈Θ

|uP (a′, θ)− uP (a′′, θ)|.

We thus conclude that τk is (ūεk)-sequentially rational under βk. Moreover, by con-

struction,

λ(τk,βk) = λtk , k ∈ N. (14)

We now show that βk is consistent with τk. Let θ∗ be the “punishment” state, so it

satisfies a∗ = d(δθ∗). Let f be an arbitrary atomless full-support distribution over T .

Consider a sequence (εn, τkn)n∈N, where εn > 0 and limn→∞ εn = 0, and, for each

n ∈ N, the mechanism τkn is defined as follows. For each θ 6= θ∗, with probability

1 − (εn)2 let τkn(·|θ) choose the test tk, and with probability (εn)2 let it choose a
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random test according to distribution f . When θ = θ∗, with probability 1 − εn

let τkn(·|θ) choose the test tk, and with probability εn let it choose a random test

according to distribution f . Thus, when observing tk and message m, the agent’s

posterior belief βkn(·|tk,m) under τkn is given by

βkn(θ|tk,m) =


tk(m|θ∗)q0(θ∗)

tk(m|θ∗)q0(θ∗)+(1+εn)
∑
θ′ 6=θ∗ t(m|θ

′)q0(θ′)
if θ = θ∗,

(1+εn)t(m|θ)q0(θ)
tk(m|θ∗)q0(θ∗)+(1+εn)

∑
θ′ 6=θ∗ t(m|θ

′)q0(θ′)
if θ 6= θ∗.

When observing a test t 6= tk and message m, the posterior belief is given by

βkn(θ|t,m) =


t(m|θ∗)q0(θ∗)εn

t(m|θ∗)q0(θ∗)εn+
∑
θ′ 6=θ∗ t(m|θ

′)q0(θ′)(εn)2
if θ = θ∗,

t(m|θ)q0(θ)(εn)2

t(m|θ∗)q0(θ∗)εn+
∑
θ′ 6=θ∗ t(m|θ

′)q0(θ′)(εn)2
if θ 6= θ∗.

As n→∞, βkn(·|tk,m)→ βk(·|tk,m) and βkn(·|t,m)→ δθ∗ for each t 6= tk pointwise.

We thus obtain that limn→∞(τkn, βkn) = (τk, βk), so βk is consistent with τk.

To summarize, (τk, βk) is (ūεk)-sequential equilibrium for each k ∈ N. By (12) and

(14), we conclude that λ∗ is implementable by the informed principal. �
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