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1. Introduction

Economic theory is replete with examples of what have come to be called, afte
low et al. (1985), games of strategic substitutes (STS) or strategic complements
They cover phenomena ranging from oligopolistic competition between firms, to the
lem of the commons (Dasgupta and Heal, 1979), to macroeconomic coordination fa
(Diamond, 1982), to new technology adoption (Katz and Shapiro, 1986), to bank run
amond and Dybvig, 1983). The basic (and most widely espoused—see, e.g., Tirole
notion of STS/C is founded on cardinal utilities and runs as follows. Assume that pla
strategies are totally ordered by their “aggression levels,” and w.l.o.g. embedded in t
line. Then the increment in every player’s payoff, when he unilaterally deviates from
strategy of his to a more aggressive one, always falls (for STS) or rises (for STC
increases in his competitors’ strategies.

An immediate upshot is that, when his competitors turn more aggressive, the o
reaction of each player is to become less so (for STS) or more so (for STC).1 This suggests
a broader, and purely ordinal, view of STS/C. Games ofweak strategic substitutes (WSTS
or complements (WSTC) are those in which there exists a selection from the bes
correspondence of each player, which is nonincreasing (for WSTS), or nondecreasi
WSTC).2

In this paper we focus attention on WSTS/C games which have one further pro
the payoff of a player depends only upon his own strategy, and some kind of “mark
gregate” of others’ strategies. This property is quite common to many examples, inc
that most famous of all WSTS games: Cournot oligopoly. In the Cournot setting, an
deed in many others, it suffices to take the aggregate to be additive, i.e., just the
everyone’s actions. However there are situations when the strategic interaction b
players is more complex, and simple additive aggregation will not do the job. A bro
concept of aggregation is called for, in order to bring out the hidden structure of the g
and to render them amenable to our analysis. We motivate and develop such a con
Section 5.

Once we have aggregation, a very striking thing occurs: in WSTS/C games, playe
be thought of as maximizing onecommon payoff function—the “pseudo”-potential—i
order to deviate to a best reply (see Theorem 1). This is a variation on the more str
notion of “ordinal” potential, set forth in Monderer and Shapley (1996), whereinall unilat-
eral deviations had to be rank-ordered by the potential. We stress that the pseudo-p
is considerably less faithful to the game than the ordinal potential, or even the “best-
potential3 of Voorneveld (2000).4 Its maximization yields only a subset of the best repl
and in general it may rank unilateral deviations differently from their concomitant g

1 See, e.g., Theorem 4 of Milgrom and Shannon (1994).
2 While the terms WSTS/C are possibly new (indeed they were suggested by an anonymous refere

games have already been looked at for some time (see, e.g., Kukushkin, 1994).
3 But the pseudo-potential reduces to the best-reply potential in the event that all best replies happ

unique in the game.
4 See also Huang (2002) and Morris and Ui (2004).
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in payoff. Nevertheless the pseudo-potential turns out to be an effective technical to
abling us to take a unified and simple view of the dual classes of WSTS and WSTC g

Up until now the analyses of WSTS and WSTC games have tended to be along qu
ferent lines. For instance, the existence of Nash equilibrium (NE)5 in WSTC games follows
immediately from the Tarski’s fixed point theorem, applied to the product of players
reply selections. This was noticed by Milgrom and Roberts (1990) and Vives (1990)
investigated a subclass of WSTC games known as supermodular.6 But in WSTS games, thi
product constitutes a nonincreasing function, and Tarski’s theorem is no longer direc
plicable (except, of course, in the case of two players, where—reversing the order
player’s strategies—a WSTS game is converted to WSTC). For WSTS games, sub
guments are needed. This can be seen in the work of Kukushkin (1994), who esta
the existence of NE in the presence ofadditive aggregation.

The pseudo-potential provides a unified proof of the existence of NE in WSTS/C g
with (general) aggregation, assuming only that strategy sets are compact (see Theo
3, and Section 5). It also helps to establish the stability of NE. If the games have finite
egy sets then, for generic payoffs, sequential best-replies converge to NE (see Rem
This yields a partial generalization of the results in Kukushkin (2004), who obtained
vergence for all payoffs but with a considerably stronger notion of strategic substit7

Remark 1, furthermore, clarifies the relation between our findings and those of D
and Mezzetti (2003). And, if strategy sets are convex and best replies are unique, th
points of certain adaptive processes with simultaneous best replies—reminiscent o
tious play—are also NE, as follows from the results of Huang (2002) (see Remark 2

Since the existence of NE in our WSTS/C games (and indeed in all pseudo-po
games) relies only on the compactness of strategy sets, we are able to incorpora
convexities that are bound to arise when indivisibilities are present in the unde
economic model. To highlight this point, we re-examine Cournot oligopoly in the q
general setting of Amir (1996) (or, alternatively, Novshek, 1985). But we extend their
els by dropping the hypothesis (maintained by both) that firms’ strategy sets are con
turns out that we get a WSTS game with aggregation,8 and hence NE exist, generalizin
the results of Amir and Novshek. In particular, NE exist in the “discrete” Cournot m
where each firm can produce only finitely many levels of output (a fact already obs
by Shapley (1994) when demand and costs are linear).

The paper is organized as follows. In Section 2 we introduce the notion of WS
games and, for ease of exposition, we start (as in Kukushkin, 1994) with simple ad
aggregation. Pseudo-potential games are introduced in Section 3. It is shown in The
that these games include WSTS and WSTC games. They always possess an NE

5 Throughout, we confine ourselves to pure strategies; so NE will always mean “pure-strategy NE.”
6 Supermodular games of Milgrom and Roberts (1990) are basically the STC that we mentioned in

ginning: marginal returns to increasing one’s strategy rise with increases in competitors’ strategies. H
strategy sets in their setup do not have to be totally ordered and are only required to be complete lattices

7 The notion of (strict) strategic substitutes in Kukushkin (2004) is another ordinal version of STS, defi
means of the “dual strong single crossing property” that we recall in Section 2.

8 While this fact is frequently alluded to, we did not find an explicit derivation of it outside the setting of co
strategy sets. For the sake of completeness, we establish it in Section 7 for compact strategy sets.
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sition 1 and Theorem 2 in Section 4). The convergence of certain adaptive proce
NE is mentioned in Remarks 1 and 2. We develop the concept of general aggrega
Section 5, and verify that our results remain intact. In Section 6, we extend our app
to include discontinuous reaction functions (see Theorem 3 and Corollary 1). Fina
Section 7, we use this extension to show that indivisibilities in production do not di
the existence of NE in the Cournot oligopoly model (see Theorem 4).

2. Weak strategic substitutes and complements with aggregation

Consider a set of playersN = {1,2, . . . , n}. Eachi ∈ N has a set of strategiesSi, which
is a nonempty compact subset ofR+. PutS ≡ S1 × · · · × Sn. For anys = (s1, . . . , sn) ∈ S

andt ∈ Si, denote(s1, . . . , si−1, t, si+1, . . . , sn) by (s |i t); (s1, . . . , si−1, si+1, . . . , sn) by
s−i; and

∑
j∈N\{i} sj by s−i . The payoff functionπi :S → R of player i depends only

upon his own strategysi and the additive aggregate9 s−i of others’ strategies. So, with
slight abuse of notation, we will writeπi(si , s−i ) for πi(s), and viewπi as defined on the
domainSi × S−i , whereS−i ≡ ∑

j∈N\{i} Sj .

For any choices−i ∈ ∏
j∈N\{i} Sj of others’ strategies, the setβi(s−i ) of best replies of

playeri is given by

βi(s−i ) = arg max
t∈Si

πi(t, s−i ).

We assume it to be always nonempty (as will follow ifπi(t, s−i ) is continuous int for
everys−i ). Recall thats = (s1, . . . , sn) ∈ S is aNash equilibrium (NE) if

si ∈ βi(s−i )

for all i ∈ N.

Finally, let us recall the notion ofstrategic substitutes. This was introduced in Bulow
et al. (1985) (see also Fudenberg and Tirole, 1986; Tirole, 1988). Its more general, o
version10 refers to games satisfying thedual strong single crossing property (DSSCP):

πi
(
si , t−i

)
� πi

(
t i , t−i

) ⇒ πi
(
si , s−i

)
< πi

(
t i , s−i

)
, (1)

for every i ∈ N and s, t ∈ S with si > ti and s−i > t−i . It is then evident that ever
selectionbi : S−i → Si from βi is a nonincreasing function ofs−i .11

In Kukushkin (2004), games with DSSCP are referred to as “games with strict str
substitutes.” The fact that these games have downward sloping reaction functions
suggests a broader (weaker) definition of games of strategic substitutes. When t
multiplicity of best replies, two distinct options come naturally to mind. One could req
that supβi(x1) � inf βi(x2) wheneverx1 > x2; in other words, thatevery selection from

9 For a more general notion of aggregation see Section 5.
10 See, e.g., Amir (1996) and Kukushkin (2004).
11 In fact, this is true even when both inequalities in (1) are weak, provided the best reply correspond
each player is single-valued. This version of (1) is called thedual single crossing property (DSCP), and taken to
be the definition of strategic substitutes in Kukushkin (2004).
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βi be nonincreasing. The other option (that we take in this paper, following Kukus
1994) is to require only that there besome selectionbi from βi with this property. Unlike
Kukushkin (1994), we do not require upper hemi-continuity ofβi, but instead suppose th
it admits a continuous12 selectionbi.

Formally, we say thatΓ = (N,S1, . . . , Sn,π1, . . . , πn) is a game ofweak strategic
substitutes (WSTS) with aggregation if, for everyi ∈ N, there exists a functionbi : S−i →
Si such that:

(i) bi(x) ∈ βi(x) for all x ∈ S−i ,

(ii) bi is continuous13 onS−i , and
(iii) bi(x) � bi(y) wheneverx > y.

A game ofweak strategic complements (WSTC) with aggregation is defined exactly
above, except for replacing “x > y” by “ x < y” in (iii).

3. Pseudo-potential games

Consider a gamẽΓ = (N,S1, . . . , Sn, π̃1, . . . , π̃n) in which the players and the
strategy-sets are as before, but payoff functionsπ̃ i : S → R are allowed to take a gen
eral form (i.e., they need not depend on competitors’ strategies only via the aggrega
say thatΓ̃ is apseudo-potential game if there exists a continuous functionP : S → R such
that, for alli ∈ N and alls ∈ S,

arg max
t∈Si

π̃ i (s |i t) ⊃ arg max
t∈Si

P (s |i t). (2)

In other words, each player’s best reply correspondence in the gameΓ ∗ = (N,S1, . . . , Sn,

P, . . . ,P ) is included in that of̃Γ : it suffices for a player to maximize the pseudo-poten
P , rather than his real payoff̃πi , in order to get tosome best reply. One may therefo
think of the pseudo-potentialP as a convenient common proxy for all the different pay
functionsπ̃ i , i ∈ N, in the analysis of NE of̃Γ . (For, as is evident, NE ofΓ ∗ are a fortiori
NE of Γ̃ .)

Our main result is:

Theorem 1. A game of weak strategic substitutes or complements with aggregation is a
pseudo-potential game.

Proof. We start by considering WSTS games with aggregation. LetΓ = (N,S1, . . . , Sn,

π1, . . . , πn) be such a game, and, for alli ∈ N, let bi : S−i → Si be a continuous an
nonincreasing best-reply selection.

12 The case of discontinuous selections will be considered later, in Section 6.
13 This requirement holds vacuously if the strategy setsSi are finite.
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Denote byΣ−i the convex hull ofS−i , which is obviously compact. We extendbi, in
a piecewise-linear fashion, to a functionτ i, defined on the entire domainΣ−i . Thusτ i

coincides withbi onS−i; and, ifz ∈ Σ−i\S−i we define

τ i(z) = y − z

y − x
bi(x) + z − x

y − x
bi(y),

wherex = max{w ∈ S−i | w � z} andy = min{w ∈ S−i | w � z}. (Notice thatz ∈ (x, y) ⊂
Σ−i\S−i in this case.) Furthermore, we enhance the domain ofτ i to include the intervals
[−1,minΣ−i] and[maxΣ−i ,maxΣ−i + 1], by setting:τ i(−1) = maxSi, τ i(maxΣ−i +
1) = 0. We then extendτ i linearly on(−1,minΣ−i ) and(maxΣ−i ,maxΣ−i + 1).

Notice thatτ i inherits continuity, and the property of being nonincreasing, frombi. For
everyi ∈ N, now defineFi : Si → R by

Fi

(
si

) =
max(Σ−i )+1∫

−1

min
(
τ i(x), si

)
dx.

Consider the continuous14 functionP : S1 × · · · × Sn → R given by15

P
(
s1, . . . , sn

) = −
∑

i

si −
∑
i<j

sisj +
∑

i

Fi

(
si

)
. (3)

We claim thatP rendersΓ into a pseudo-potential game.16 To check this, fixs ∈ S. Note
that for anyt ∈ Si

P (s |i t) = [−t (s−i + 1) + Fi(t)
] +

[
−

∑
j �=i

sj −
∑
j<k
j,k �=i

sj sk +
∑
j �=i

Fj (s
j )

]
. (4)

It is clear thatt maximizesP(s |i t) if and only if it maximizes the first (bracketed) ter
in (4) (for the givens−i ). We will deduce from this that

argmax
t∈Si

P (s |i t) = {
τ i(s−i )

}(= {
bi(s−i )

})
. (5)

For everyt < τ i(s−i ), note that

−t (s−i + 1) + Fi(t) =
max(Σ−i )+1∫

−1

min
(
τ i(x), t

)
dx −

s−i∫
−1

t dx (6)

14 Note that when strategy setsSi are convex, the potentialP is multi-concave (this is the property that is need
in Remark 2). Indeed, it is clear from (4) that multi-concavity ofP is tantamount to concavity of the function
Fi . This, in turn, follows from the fact that eachτ i is nonincreasing.
15 A function of a similar form first came to our attention in Huang (2002). He, however, defined it under
restrictive assumptions on best replies, in the context of certain Cournot oligopoly games with convex s
sets, in order to study properties of fictitious play.
16 For a geometric intuition of this proof, see the Appendix in Dubey et al. (2004), the discussion paper on
this article is based.
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−1

min
(
τ i(x), t

)
dx −

s−i∫
−1

min
(
τ i(x), t

)
dx, (7)

sincet < τ i(s−i ), and sinceτ i(x) � τ i(s−i ) for x ∈ [−1, s−i] by the monotonicity ofτ i .

The term displayed in (7) obviously equals

max(Σ−i )+1∫
s−i

min
(
τ i(x), t

)
dx. (8)

However,

max(Σ−i )+1∫
s−i

min
(
τ i(x), t

)
dx <

max(Σ−i )+1∫
s−i

min
(
τ i(x), τ i(s−i )

)
dx, (9)

since min(τ i(x), t) � min(τ i(x), τ i(s−i )), and since the inequality is strict for allx ∈
[s−i ,max(Σ−i )+ 1] which are sufficiently close tos−i (on account of the assumption th
t < τ i(s−i ), and the continuity ofτ i ). Just as in (6)–(8), it can be seen that

−τ i(s−i )(s−i + 1) + Fi

(
τ i(s−i )

) =
max(Σ−i )+1∫

s−i

min
(
τ i(x), τ i(s−i )

)
dx,

and (9) now implies that

−t (s−i + 1) + Fi(t) < −τ i(s−i )(s−i + 1) + Fi

(
τ i(s−i )

)
.

It follows from (4) that

P(s |i t) < P
(
s |i τ i(s−i )

)
for t < τ i(s−i ). (10)

Now, if t > τ i(s−i ), then

−t (s−i + 1) + Fi(t) =
max(Σ−i )+1∫

−1

min
(
τ i(x), t

)
dx −

s−i∫
−1

t dx (11)

=
max(Σ−i )+1∫

s−i

τ i(x)dx −
s−i∫

−1

(
t − min

(
τ i(x), t

))
dx

<

max(Σ−i )+1∫
s−i

τ i(x)dx. (12)

The last inequality follows from the fact thatt − min(τ i(x), t) � 0 and the fact that thi
inequality is strict for allx ∈ [−1, s−i] which are sufficiently close tos−i (on account of
the assumption thatt > τ i(s−i ), and the continuity ofτ i ). By the monotonicity ofτ i,
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−τ i(s−i )(s−i + 1) + Fi

(
τ i(s−i )

)
=

max(Σ−i )+1∫
s−i

τ i(x)dx −
s−i∫

−1

(
τ i(s−i ) − min

(
τ i(x), τ i(s−i )

))
dx

=
max(Σ−i )+1∫

s−i

τ i(x)dx,

and thus (11) and (12) imply that

−t (s−i + 1) + Fi(t) < −τ i(s−i )(s−i + 1) + Fi

(
τ i(s−i )

)
.

From (4) it follows that

P(s |i t) < P
(
s |i τ i(s−i )

)
for t > τ i(s−i ).

Combining this with (10) leads to (5).
Equality (5) shows thatbi is the best-reply (single-valued) correspondence ofi in

the game(N,S1, . . . , Sn,P, . . . ,P ). Sincebi, to begin with, was a selection from th
best reply correspondence ofΓ = (N,S1, . . . , Sn,π1, . . . , πn), we conclude thatΓ is a
pseudo-potential game. This proves the theorem for WSTS games.

WhenΓ is a WSTC game with aggregation, it can be converted into a WSTS g
with aggregation by an appropriate change of its (additive) aggregator. For details, s
Section 5 where the concept of general aggregation is developed, and then see R
where this change is described.�

4. NE in pseudo-potential games

The existence of a pseudo-potential in a game has some important ramification
easy to establish:

Proposition 1. A pseudo-potential game has an NE.

Proof. Let Γ̃ = (N,S1, . . . , Sn, π̃1, . . . , π̃n) be a game with pseudo-potentialP. Suppose

s = (
s1, . . . , sn

) ∈ arg max
(t1,...,tn)∈S

P
(
t1, . . . , tn

)
(such ans exists becauseP is continuous andS is compact). Ifs is not an NE of
Γ ∗ = (N,S1, . . . , Sn,P, . . . ,P ), thenP(s |i t) > P (s) for somet ∈ Si, contradicting that
s maximizesP.

But any NE ofΓ ∗ is a fortiori an NE ofΓ̃ , since best replies inΓ ∗ are by definition
best replies iñΓ . �

In conjunction with Theorem 1, this immediately yields:

Theorem 2. Any WSTS or WSTC game with aggregation has an NE.
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For supermodular WSTC games (even without aggregation), Theorem 2 was esta
in Milgrom and Roberts (1990). For WSTS games with additive aggregation, Theo
follows from Kukushkin (1994), provided best reply correspondences are upper
continuous.

We shall show, however, in Section 5 that Theorem 2 remains intact even whe
concept of aggregation is generalized, and no longer restricted to being additive.
setting, Theorem 2 shows the existence of NE in games that lie well beyond the d
considered in Milgrom and Roberts (1990) and Kukushkin (1994). Furthermore, the
eral aggregators that we admit may fail to be monotonic in the strategies themselve
our WSTS/C games with general aggregation need not even be WSTS/C in the o
sense: the best reply selectionbi of playeri can be non-monotonic with respect to othe
strategies.

Existence of a pseudo-potential in a game implies certain stability properties of t
of NE. We summarize them in the following remarks.

Remark 1 (Generic convergence of sequential best replies with finite strategy sets). Given
finite strategy sets, WSTS/C games have single-valued best reply corresponden
generic payoffs. In this situation the pseudo-potential is an (ordinal) best-reply pote17

as defined in Voorneveld (2000), i.e., equality holds in place of inclusion in (2). It is
straightforward to check that there are no best-response cycles in the game; i.e., if
start with an arbitrary strategy profile, and each player (one at a time) unilaterally de
to his unique best reply (if he does not happen to be there already), then no cycl
occur along the way and the process terminates in an NE after finitely many steps.

Thus, Theorem 1 provides a partial generalization of a “no-cycling” result of Kukus
(2004), by admitting a more general notion of strategic substitutes. (As was
Kukushkin, 2004 defined strict STS by means of DSSCP of the payoff functions
it immediately implies WSTS in our sense.)

Dindoš and Mezzetti (2003) also analyze convergence of better-reply dynam
which the turn of a player to unilaterally deviate, as well as the payoff-improving s
egy to which he deviates, are determined randomly. They obtain convergence res
games of local18 strategic substitutes or complements with aggregation, but in the
where players have infinite andconvex strategy sets, and quasi-concave payoffs. (With
nite strategy sets, their stochastic better-reply dynamics leads to convergence to a
a large class of games with aggregation, but in order for this to be the case witho
stochasticity assumption, it becomes necessary to postulate STS/C).

Remark 2 (Convergence of simultaneous best replies with convex strategy sets). Con-
sider a WSTS/C game with aggregation and with convex strategy sets, and assu
all best reply correspondences are single-valued.19 Again, the pseudo-potential is a be

17 See Morris and Ui (2004) for more discussion of this notion.
18 In other words, best reply correspondences must be single-valued and differentiable, and their de
must have the same sign in open neighborhoods of NE.
19 In the “standard” case, when the payoff of each player is strictly concave with respect to his own un
deviations, the best reply will be unique.
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reply potential in this situation. Suppose that in every period players simultaneously c
the best reply to their currentconjectures of others’ strategies. Formally, let{λt }∞t=1
be a sequence of positive numbers such that20 ∑∞

t=1 λt = ∞ and
∑∞

t=1 λ2
t < ∞. Let

{s(t)}∞t=1 = {(s1(t), . . . , sn(t))}∞t=1 be a sequence of strategy-profiles with the follow
property. At every periodt, si(t) is the unique best reply ofi to his conjectureσ−i (t) of
the true strategies of other players. Conjectures are defined recursively:σ−i (1) are arbi-
trary, and for allj ∈ N\{i}

σ j (t) = λt s
j (t − 1) + (1− λt )σ

j (t − 1).

(Settingλt = 1/t is reminiscent of fictitious play.)
It was established by Huang (2002, Proposition 3.3.1) that all limit points of th

quence{s(t)}∞t=1 are NE for best-reply potential games, provided the potential is co
uous and “multi-concave” (i.e., concave separately in each player’s unilateral devia
But the (continuous) pseudo-potentialP, constructed in the proof of Theorem 1, is eas
seen to be multi-concave (see footnote 14 in that proof for WSTS games, and Rem
for WSTC games).

5. Non-additive aggregation

Adding up players’ strategies is but one way of aggregating them. However, the
also many kinds of strategic interaction which, at first glance, look alien to our frame
It is only when appropriate aggregatorsα : S−i → R are constructed for them, that the
hidden structure is unmasked and they fit into our framework, withs−i replaced byα(s−i )

andS−i by α(S−i ).

Before giving examples, let us define our class of aggregators. Denote

s∗−i (k) ≡
∑

i1<i2<···<ik
i1,i2,...,ik �=i

si1 · · · sik

for 1 � k � n − 1 (i.e., s∗−i (k) is the sum of all possible products ofk distinct strategies
picked froms−i = (s1, . . . , si−1, si+1, . . . , sn); and so fork = 1 we gets∗−i (1) = s−i .) Let
a1, . . . , an−1 be scalars, and define

α(s−i ) ≡
n−1∑
k=1

aks
∗−i (k).

For the moment assume, by way of simplicity, that the scalarsak are such thatα(s−i ) � 0
for all i ∈ N and alls−i ∈ S−i . (This restriction can be dropped, see Remark 3.) Notice
the aggregatorα(s−i ) is thesame linear combination of{s∗−i (k)}n−1

k=1 for all i ∈ N.

Our aggregators are seemingly abstruse. We shall now give four examples to illu
how they might arise in a natural manner. In the first three examples, each playeri chooses

20 Hereλt represents the weight given to the most recent observation in periodt , and may be interpreted as th
“speed” with which players update their conjectures.
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effort level si ∈ [0,Bi] to apply to the personal task faced by him. This gives rise to
probabilitypi(s

i) of “success” in his task, wherepi : [0,Bi] → [0,1] is a continuous an
strictly increasing function withpi(0) = 0 andpi(B

i) = 1. By relabeling effort levels if
necessary, we takeBi = 1 andpi(s

i) = si . The events of individual success are assume
be independent across different players. Furthermore, for ease of calculation, we
for the moment that there are three players(N = {1,2,3}), and that eachi ∈ N incurs
quadratic costci(s

i)2, on account of his effortsi , for some constantci > 0.

Example 1 (Team projects with complementary tasks). Each player’s task is critical to th
success of the team’s project. Thuss1s2s3 is the probability that the project will succee
Supposeri > 0 is the utility to playeri of a successful project. This yields the pay
function

πi
(
s1, s2, s3) = ris

1s2s3 − ci

(
si

)2 = ris
iα(s−i ) − ci

(
si

)2
,

whereα(s−i ) is the aggregators∗−i (2) = sj sk (and,N\{i} = {j, k}). Theni ’s best reply is

βi
(
α(s−i )

) =
{

min

(
riα(s−i )

2ci

,1

)}
,

which is a nondecreasing function ofα(s−i ); and shows that we have a WSTC game w
aggregation (whens−i is replaced byα(s−i )).

Example 2 (Team projects with substitutable tasks). Here we suppose that each player
himself can make the project successful. Then the probability that the project is suc
is

f
(
s1, s2, s3) = 1− (

1− s1)(1− s2)(1− s3)
= s1 + s2 + s3 − s1s2 − s1s3 − s2s3 + s1s2s3,

and the payoff to playeri is

πi
(
s1, s2, s3) = rif

(
s1, s2, s3) − ci

(
si

)2 = ris
i
[
1− α(s−i )

] + α(s−i ) − ci

(
si

)2
,

whereα(s−i ) is the aggregators∗−i (1) − s∗−i (2). Thus

βi
(
α(s−i )

) =
{

min

(
ri[1− α(s−i )]

2ci

,1

)}
is a nonincreasing function ofα(s−i ), and so this example describes a WSTS game
aggregatorα.

Example 3 (Tournaments). Assume that a reward ofr dollars is shared by the group
players who succeed. If only one player succeeds, he getsr for sure; if exactly two succeed
each getsr with probability 1/2; if all three succeed, each getsr with probability 1/3. By
rescaling utilities, we may assume w.l.o.g. thatr dollars yieldr utilities to each player
Then the expected value of the reward toi is
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(
1− sj

)(
1− sk

) + r

2
sisj

(
1− sk

) + r

2
sisk

(
1− sj

) + r

3
sisj sk

= rsi

[
1− 1

2
sj − 1

2
sk + 1

3
sj sk

]
= rsi

[
1− α(s−i )

]
,

whereα(s−i ) = 1
2s∗−i (1) − 1

3s∗−i (2). Therefore each player’s payoff function is

πi
(
s1, s2, s3) = rsi

[
1− α(s−i )

] − ci

(
si

)2
.

Consequently,

βi
(
α(s−i )

) =
{

min

(
r[1− α(s−i )]

2ci

,1

)}
is a nonincreasing function ofα(s−i ), and therefore tournaments are also WSTS ga
with aggregatorα.

Example 4 (Team projects and tournaments with non-convex strategy sets and general cost
functions). Consider strategy setsSi that are arbitrary closed subsets of[0,1]. Let gi be a
continuous cost function (not necessarily quadratic) on[0,1], for each playeri. We claim
that the WSTS or WSTC character of the games in Examples 1–3 will not be aff
by these generalizations. Indeed, it is easy to see that the modified payoff functio21 πi

from Example 1 satisfies thestrong single crossing property (SSCP) with respect to th
aggregatorα:

πi
(
si , α(t−i )

)
� πi

(
t i , α(t−i )

) ⇒ πi
(
si , α(s−i )

)
> πi

(
t i , α(s−i )

)
,

for everys, t ∈ [0,1]3 with si > ti andα(s−i ) > α(t−i ). Thus, a fortiori, the SSCP con
tinues to hold when the strategy sets are closedsubsets of [0,1]. It is then evident (al-
ternatively, see Theorem 4 of Milgrom and Shannon, 1994) that every selection froβi

is a nondecreasing function ofα(s−i ). Similarly, the modified payoff functionsπi from
Examples 2 and 3 satisfy the DSSCP with respect toα:

πi
(
si , α(t−i )

)
� πi

(
t i , α(t−i )

) ⇒ πi
(
si , α(s−i )

)
< πi

(
t i , α(s−i )

)
,

for everys, t ∈ [0,1]3 with si > ti andα(s−i ) > α(t−i ). Again, the DSSCP continues
hold when the strategy sets are closed subsets of[0,1], and every selection fromβi is a
nonincreasing function ofα(s−i ).

As we said, our results remain intact if we postulate that the payoff to any playeri de-
pends only upon his own strategysi and the aggregateα(s−i ) of others’ strategies. Othe
than the obvious change of notation (s−i replaced byα(s−i ) andS−i by α(S−i )), the only
variation needed is in the proof of Theorem 1. Given a WSTS game with aggregaα,

whereα(s−i ) = ∑n−1
k=1 aks

∗−i (k), we redefineP (which was defined for the additive aggr
gator in (3)) as follows:

P
(
s1, . . . , sn

) = −
∑

i

si −
n−1∑
k=1

ak ·
∑

i1<i2<···<ik+1

si1 · · · sik+1 +
∑

i

Fi

(
si

)
. (13)

21 Obtained by replacingci (·)2 by gi(·) throughout.
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Note that for anyi ∈ N ,

P(s |i t) =
[
−t

(
n−1∑
k=1

aks
∗−i (k) + 1

)
+ Fi(t)

]

+
[
−

∑
j �=i

sj −
n−2∑
k=1

aks
∗−i (k + 1) +

∑
j �=i

Fj

(
sj

)]
(14)

= [−t
(
α(s−i ) + 1

) + Fi(t)
]

+
[
−

∑
j �=i

sj −
n−2∑
k=1

aks
∗−i (k + 1) +

∑
j �=i

Fj

(
sj

)]
. (15)

The above equality replaces (4) in the proof of Theorem 1, and the rest of the argu
hold exactly as before.

It must be mentioned (as was pointed out to us by an anonymous referee) that
ples 1–4 above admitweighted potentials22 (defined in Monderer and Shapley, 1996), a
can therefore be analyzed without recourse to our Theorem 1 (for non-additive ag
tion). Our approach does provide an alternative view, which we hope is not without
utility. And we conjecture that there are games of our variety which are not weighte
tential games.

Remark 3 (Aggregation without the positivity requirement). The requirement that aggreg
tion be nonnegative can be dropped. Ifα(s−i ) is negative for somes−i ∈ S−i , we can define
another aggregator̃α by α̃(s−i ) ≡ α(s−i ) + a for all i ∈ N and alls−i ∈ S−i . Clearly, for
large enougha, α̃(s−i ) is always nonnegative. It is obvious that ifi ’s payoff is a function
of si andα(s−i ), then it is representable also as a function ofsi andα̃(s−i ), and any non-
increasing and continuous best-reply selection remains such after this change of va
Our analysis holds with these “non-homogeneous”aggregations just as well. One o
to adds∗−i (0) ≡ 1 to the set{s∗−i (k)}n−1

k=1, and allow aggregatorsα(s−i ) to be linear combi-

nations of{s∗−i (k)}n−1
k=0, not just{s∗−i (k)}n−1

k=1.

Remark 4 (WSTC games with aggregation). The previous remark also enables us to
clude WSTC games with aggregation in our approach. Indeed, given a WSTC gam
aggregatorα, the payoff function of each playeri can be obviously redefined to depe
on si and α̃(s−i ) ≡ −α(s−i ), instead ofsi andα(s−i ). Consequently, if a best-reply s
lection bi is a nondecreasing function ofα (which is the case for WSTC), it turns in
b̃i (α̃) ≡ bi(−α̃), a nonincreasing function of̃α, and our analysis goes through by R
mark 3. Note that this trick is purely technical, and does not change the real W
character of the game, if the aggregatorα is increasing ins−i : while b̃i (α̃(s−i )) is a nonin-
creasing function of̃α(s−i ), it remains nondecreasing in the underlying basic variables−i .

22 In other words, the change in any player’s payoff from switching between any two of his strategies (h
other players’ strategies fixed) is proportional to the change in the potential function.
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Assume now that all strategy-sets are convex. Using the same argument as i
note 14 and equalities (14) and (15), it can be shown that the pseudo-potentialP (when the
aggregator used is̃α(s−i ) + a, for sufficiently largea) is multi-concave.

6. Discontinuous best reply selections

We do not know if continuity of our best reply selections is necessary for the valid
Theorem 1. However, the functionP that we constructed in its proof can still be of valu
even thoughP might not be a faithful proxy for discontinuous best replies. We exemp
its use in the proof of the following extension of Theorem 2 on the existence of NE
simplicity, the result is stated only for WSTS games.

Theorem 3. The conclusion of Theorem 2 remains intact, even without requiring continuity
of the best reply selections, provided one of the following assumptions is made:

(i) For every i ∈ N there exists a best reply selection bi which is a strictly decreasing
function23 of s−i ;

(ii) for every i ∈ N there exists a best reply selection bi which is nonincreasing and right-
continuous in s−i ;

(iii) for every i ∈ N there exists a best reply selection bi which is nonincreasing and left-
continuous in s−i .

Proof. Given a nonincreasing best reply selectionbi for each playeri, constructτ i andP

exactly as in the proof of Theorem 1.P is continuous as before, but this time

argmax
t∈Si

P (s |i t) =
[

lim
x↓s−i

τ i(x), lim
x↑s−i

τ i(x)
] ∩ Si (16)

for all i ∈ N and alls ∈ S. In particular, arg maxt∈Si P (s |i t) need not be single-valued,
τ i is discontinuous ats−i . (This is whyP may fail to be a pseudo-potential function f
the given game.) However, it follows from (16) that

bi(s−i ) ∈ argmax
t∈Si

P (s |i t), (17)

as before.
Now consider some

s = (
s1, . . . , sn

) ∈ arg max
(t1,...,tn)∈S

P
(
t1, . . . , tn

)
.

Suppose first that assumption (i) is satisfied, and letbi be a strictly decreasing best rep
selection for eachi. Note that if there isi ∈ N (say,i = 1) such thats1 �= b1(s−1), then by
(17),

s′ ≡ (
b1(s−1), s

2, . . . , sn
) ∈ arg max

(t1,...,tn)∈S
P

(
t1, . . . , tn

)
.

23 For ease of notation, we revert fromα(s−i ) to s−i (though the argument holds replacings−i by α(s−i )

throughout, provided we assume thatα(s−i ) is strictly increasing ins−i ).
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Sinces ands′ maximizeP, si ∈ arg maxt∈Si P (s |i t) and(s′)i ∈ arg maxt∈Si P (s′ |i t) for
all i ∈ N. Then (16) implies

s2 ∈
[

lim
x↓s−2

τ2(x), lim
x↑s−2

τ2(x)
]
∩

[
lim

x↓s′−2

τ2(x), lim
x↑s′−2

τ2(x)
]
.

But clearlys−2 �= s′−2, and so, from the fact thatτ2 is strictly decreasing, the intersection
of the above two intervals must be empty. This is a contradiction, sosi = bi(s−i ) for all
i ∈ N, ands is an NE ofΓ.

Next suppose that assumption (ii) holds, and letbi be a nonincreasing and righ
continuous best reply selection for eachi. Then, since everyτ i is also nonincreasing an
right-continuous, it follows from (16) that

bi(s−i ) = min
[

arg max
t∈Si

P (s |i t)
]

(18)

for all i ∈ N. If (say) s1 /∈ argmaxt∈S1 π1(t, s−1), thenb1(s−1) < s1 by (18) and the fac
thats1 ∈ arg maxt∈S1 P(s |1 t). Thus for allj �= 1

s′−j < s−j , (19)

where (recall)

s′ ≡ (
b1(s−1), s

2, . . . , sn
) ∈ arg max

(t1,...,tn)∈S
P

(
t1, . . . , tn

)
.

Since

sj ∈ arg max
t∈Sj

P (s |j t) ∩ argmax
t∈Sj

P (s′ |j t)

for all j �= 1, the conjunction of (16), (19), and the fact thatτ j is nonincreasing, yields

sj = min
[
arg max

t∈Sj
P (s′ |j t)

]
. (20)

The right-hand side of (20) is equal tobj (s′−j ) by (18). Thus(s′)j = sj = bj (s′−j ) for all
j �= 1. Since(s′)1 = b1(s−1) = b1(s′−1) by definition,s′ is an NE ofΓ.

Finally, when assumption (iii) holds, the analysis is similar to that for assu
tion (ii). �

The following result on the existence of NE is a corollary of Theorem 3 (and is
immediately implied by Kukushkin, 1994). It will be used in the next section, when
focus on Cournot oligopoly with indivisibilities in production.

Corollary 1. Assume that the best-reply correspondence βi of every player i in Γ is:

(a) nonempty-valued;
(b) upper hemi-continuous (that is, if {(xn, yn)}∞n=1 ⊂ S−i × Si is such that yn ∈ βi(xn)

and limn→∞(xn, yn) = (x, y), then y ∈ βi(x)); and
(c) nonincreasing in the sense that24 maxβi(x1) � minβi(x2) whenever x1 > x2.

Then Γ has an NE.

24 Note that maxβi(x) and minβi(y) are well defined by upper hemi-continuity.
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Proof. Note that

bi
r (x) = minβi(x) for all x ∈ S−i

defines a nonincreasing best-reply selection which is right-continuous, and

bi
l (x) = maxβi(x) for all x ∈ S−i

defines a nonincreasing best-reply selection which is left-continuous. Thus,Γ satisfies
both (ii) and (iii) of Theorem 3. �

7. Cournot oligopoly with indivisibilities

Consider Cournot oligopoly with the setN = {1,2, . . . , n} of firms. Following Amir
(1996), we assume that the inverse demand functionQ is strictly decreasing and log
concave; the cost functionci of each firmi is strictly increasing and left-continuous; a
each firm’s monopoly profit (i.e.,xQ(x) − ci(x)) becomes negative for large enoughx.

However, unlike Amir, we allow for indivisibilities in production. The strategy setsSi,

consisting of all possible levels of output producible by firmi, are not required to be con
vex but just closed.25 Thus, in particular, the “discrete” Cournot model, in which ea
firm’s outputs consist of indivisible units, will be included in our analysis.

Theorem 4 below extends Theorem 3.1 of Amir (1996), which tookSi = R+. Its proof
simply exploits the fact that Cournot oligopoly is a game of strategic substitutes (i
sense expressed in (c) of Corollary 1).

Theorem 4. Under the above assumptions, Cournot oligopoly has an NE.

Proof. Amir (1996) showed that the payoff functionπi of each firmi has the DSSCP:

πi(x1, y2) � πi(x2, y2) ⇒ πi(x1, y1) < πi(x2, y1),

where26 πi(x, y) = xQ(x + y) − ci(x), for all x1 > x2 � 0 andy1 > y2 � 0. As in Ex-
ample 4, DSSCP continues to hold when the strategy sets are closedsubsets of R+, and
thus eachβi is nonincreasing. Also, since profits become negative for large output
may w.l.o.g. restrict the strategy setSi of each firmi to be compact. Finally, notice tha
βi(y) ≡ argmaxx∈Si πi(x, y) is nonempty-valued and upper hemi-continuous iny ∈ S−i ,

sinceπi is continuous iny and upper semi–continuous in(x, y). Thus, according to Corol
lary 1, NE exists. �
Remark 5 (Novshek’s existence theorem for Cournot oligopoly). Novshek (1985) es
tablished the existence of NE providedQ is strictly decreasing and twice continuous
differentiable, and satisfies

Q′(x) + xQ′′(x) � 0, (21)

25 We now drop the compactness (i.e., boundedness) requirement.
26 x ≡output of firmi, y ≡aggregate output of all firms other thani.
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for all x below the point where the inverse demand reaches zero. (The cost function
required to be only weakly, not strictly, increasing). But, as was shown in the pro
Theorem 3 in Novshek (1985), eachβi is still nonempty, upper hemi-continuous and no
increasing. Thus, his existence result is also implied by our Corollary 1.

To extend Novshek’s model to allow for indivisibilities, we assume (21) with s
inequality. As in Novshek (1985), this implies that∂

∂y
∂
∂x

[xQ(x +y)] < 0, i.e., the margina
revenue of any firm is decreasing in the aggregate output of other firms. Therefore

x1Q(x1 + y2) − x2Q(x2 + y2) > x1Q(x1 + y1) − x2Q(x2 + y1)

for all x1 > x2 � 0 andy1 > y2 � 0. This clearly implies the DSSCP of the payoff fun
tions, and so, just as in the previous scenario, our Corollary 1 yields the existence
even when the strategy setsSi are not convex but merely compact.
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