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1. Introduction

Economic theory is replete with examples of what have come to be called, after Bu-
low et al. (1985), games of strategic substitutes (STS) or strategic complements (STC).
They cover phenomena ranging from oligopolistic competition between firms, to the prob-
lem of the commons (Dasgupta and Heal, 1979), to macroeconomic coordination failures
(Diamond, 1982), to new technology adoption (Katz and Shapiro, 1986), to bank runs (Di-
amond and Dybvig, 1983). The basic (and most widely espoused—see, e.g., Tirole, 1988)
notion of STS/C is founded on cardinal utilities and runs as follows. Assume that players’
strategies are totally ordered by their “aggression levels,” and w.l.0.g. embedded in the real
line. Then the increment in every player’s payoff, when he unilaterally deviates from any
strategy of his to a more aggressive one, always falls (for STS) or rises (for STC) with
increases in his competitors’ strategies.

An immediate upshot is that, when his competitors turn more aggressive, the optimal
reaction of each player is to become less so (for STS) or more so (for ST@3.suggests
a broader, and purely ordinal, view of STS/C. Gamesesik strategic substitutes (WSTS)
or complements (WSTC) are those in which there exists a selection from the best reply
correspondence of each player, which is nonincreasing (for WSTS), or nondecreasing (for
WSTC)?

In this paper we focus attention on WSTS/C games which have one further property:
the payoff of a player depends only upon his own strategy, and some kind of “market ag-
gregate” of others’ strategies. This property is quite common to many examples, including
that most famous of all WSTS games: Cournot oligopoly. In the Cournot setting, and in-
deed in many others, it suffices to take the aggregate to be additive, i.e., just the sum of
everyone’s actions. However there are situations when the strategic interaction between
players is more complex, and simple additive aggregation will not do the job. A broader
concept of aggregation is called for, in order to bring out the hidden structure of the games
and to render them amenable to our analysis. We motivate and develop such a concept in
Section 5.

Once we have aggregation, a very striking thing occurs: in WSTS/C games, players can
be thought of as maximizing or@mmon payoff function—the “pseudo”-potential—in
order to deviate to a best reply (see Theorem 1). This is a variation on the more stringent
notion of “ordinal” potential, set forth in Monderer and Shapley (1996), wheiéumilat-
eral deviations had to be rank-ordered by the potential. We stress that the pseudo-potential
is considerably less faithful to the game than the ordinal potential, or even the “best-reply”
potentiaf of Voorneveld (2000%.Its maximization yields only a subset of the best replies,
and in general it may rank unilateral deviations differently from their concomitant gains

1 See, e.g., Theorem 4 of Milgrom and Shannon (1994).

2 While the terms WSTS/C are possibly new (indeed they were suggested by an anonymous referee), such
games have already been looked at for some time (see, e.g., Kukushkin, 1994).

3 But the pseudo-potential reduces to the best-reply potential in the event that all best replies happen to be
unique in the game.

4 see also Huang (2002) and Morris and Ui (2004).
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in payoff. Nevertheless the pseudo-potential turns out to be an effective technical tool, en-
abling us to take a unified and simple view of the dual classes of WSTS and WSTC games.

Up until now the analyses of WSTS and WSTC games have tended to be along quite dif-
ferent lines. For instance, the existence of Nash equilibrium{NB)VSTC games follows
immediately from the Tarski’s fixed point theorem, applied to the product of players’ best
reply selections. This was noticed by Milgrom and Roberts (1990) and Vives (1990), who
investigated a subclass of WSTC games known as superm&diaim WSTS games, this
product constitutes a nonincreasing function, and Tarski’s theorem is no longer directly ap-
plicable (except, of course, in the case of two players, where—reversing the order of one
player’s strategies—a WSTS game is converted to WSTC). For WSTS games, subtler ar-
guments are needed. This can be seen in the work of Kukushkin (1994), who established
the existence of NE in the presenceadflitive aggregation.

The pseudo-potential provides a unified proof of the existence of NE in WSTS/C games
with (general) aggregation, assuming only that strategy sets are compact (see Theorems 2,
3, and Section 5). It also helps to establish the stability of NE. If the games have finite strat-
egy sets then, for generic payoffs, sequential best-replies converge to NE (see Remark 1).
This yields a partial generalization of the results in Kukushkin (2004), who obtained con-
vergence for all payoffs but with a considerably stronger notion of strategic subsfitutes.
Remark 1, furthermore, clarifies the relation between our findings and those of DindoS
and Mezzetti (2003). And, if strategy sets are convex and best replies are unique, the limit
points of certain adaptive processes with simultaneous best replies—reminiscent of ficti-
tious play—are also NE, as follows from the results of Huang (2002) (see Remark 2).

Since the existence of NE in our WSTS/C games (and indeed in all pseudo-potential
games) relies only on the compactness of strategy sets, we are able to incorporate non-
convexities that are bound to arise when indivisibilities are present in the underlying
economic model. To highlight this point, we re-examine Cournot oligopoly in the quite
general setting of Amir (1996) (or, alternatively, Novshek, 1985). But we extend their mod-
els by dropping the hypothesis (maintained by both) that firms’ strategy sets are convex. It
turns out that we get a WSTS game with aggregatiand hence NE exist, generalizing
the results of Amir and Novshek. In particular, NE exist in the “discrete” Cournot model,
where each firm can produce only finitely many levels of output (a fact already observed
by Shapley (1994) when demand and costs are linear).

The paper is organized as follows. In Section 2 we introduce the notion of WSTS/C
games and, for ease of exposition, we start (as in Kukushkin, 1994) with simple additive
aggregation. Pseudo-potential games are introduced in Section 3. It is shown in Theorem 1
that these games include WSTS and WSTC games. They always possess an NE (Propo-

5 Throughout, we confine ourselves to pure strategies; so NE will always mean “pure-strategy NE.”

6 Supermodular games of Milgrom and Roberts (1990) are basically the STC that we mentioned in the be-
ginning: marginal returns to increasing one’s strategy rise with increases in competitors’ strategies. However,
strategy sets in their setup do not have to be totally ordered and are only required to be complete lattices.

7 The notion of (strict) strategic substitutes in Kukushkin (2004) is another ordinal version of STS, defined by
means of the “dual strong single crossing property” that we recall in Section 2.

8 While this fact is frequently alluded to, we did not find an explicit derivation of it outside the setting of convex
strategy sets. For the sake of completeness, we establish it in Section 7 for compact strategy sets.



80 P. Dubey et al. / Games and Economic Behavior 54 (2006) 77-94

sition 1 and Theorem 2 in Section 4). The convergence of certain adaptive processes to
NE is mentioned in Remarks 1 and 2. We develop the concept of general aggregation in
Section 5, and verify that our results remain intact. In Section 6, we extend our approach
to include discontinuous reaction functions (see Theorem 3 and Corollary 1). Finally, in
Section 7, we use this extension to show that indivisibilities in production do not disturb
the existence of NE in the Cournot oligopoly model (see Theorem 4).

2. Weak strategic substitutes and complements with aggregation

Consider a set of player$ = {1, 2, ..., n}. Eachi € N has a set of strategieé, which
is a nonempty compact subsetRf . PutS = S x --- x §". Foranys = (s%,...,s") e S
andr € §¢, denote(st, ..., s 1 ¢, 't . s by (s |in); (s ..., st ST L s by
s_;; and ZjeN\{i}sf by 5_;. The payoff functionz’ : § — R of playeri depends only
upon his own strategy’ and the additive aggregdté_; of others’ strategies. So, with a
slight abuse of notation, we will write’ (s’, 5_;) for 7’ (s), and viewr' as defined on the
domains’ x S_;, whereS_; = Yjemin SJ. ‘

For any choice_; € l_[jeN\{i} S/ of others’ strategieghe setg’ (5_;) of best replies of
playeri is given by

B(5_;) =argmaxt’ (t,5_;).
teSt

We assume it to be always nonempty (as will followrif(z, 5_;) is continuous irv for
everys_;). Recall thats = (s, ..., s") € S is aNash equilibrium (NE) if

s' € B G-i)
foralli e N.
Finally, let us recall the notion ddtrategic substitutes. This was introduced in Bulow

et al. (1985) (see also Fudenberg and Tirole, 1986; Tirole, 1988). Its more general, ordinal
versiort refers to games satisfying tlleial strong single crossing property (DSSCP):

JTi(Si,t_fi)SjTi(ti,t_fi) = JTi(Si,ffi)<7Ti(ti,§7i), (2)

for everyi e N ands, t € S with s > ¢/ ands5_; > 7_;. It is then evident that every
selectiony’ : S_; — S’ from g is a nonincreasing function of_;.11

In Kukushkin (2004), games with DSSCP are referred to as “games with strict strategic
substitutes.” The fact that these games have downward sloping reaction functions indeed
suggests a broader (weaker) definition of games of strategic substitutes. When there is
multiplicity of best replies, two distinct options come naturally to mind. One could require
that sus (x1) < inf B/ (x2) wheneverr; > xo; in other words, thaevery selection from

9 For amore general notion of aggregation see Section 5.
10 see, e.g., Amir (1996) and Kukushkin (2004).
11 |1 fact, this is true even when both inequalities in (1) are weak, provided the best reply correspondence of
each player is single-valued. This version of (1) is calleddin single crossing property (DSCP), and taken to
be the definition of strategic substitutes in Kukushkin (2004).
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B’ be nonincreasing. The other option (that we take in this paper, following Kukushkin,
1994) is to require only that there bame selectionb’ from g with this property. Unlike
Kukushkin (1994), we do not require upper hemi-continuitgfbut instead suppose that
it admits a continuous selectiony’.

Formally, we say that™ = (N, S%,..., 5", =1, ..., n") is a game ofweak strategic
substitutes (WSTS) with aggregation if, for evetiye N, there exists a functiob’ : S_; —
S’ such that:

(i) b'(x)epi(x)forallxeS_;,
(ii) b is continuou$®onS_;, and
(i) b'(x) <bi(y) whenever > y.

A game ofweak strategic complements (WSTC) with aggregation is defined exactly as
above, except for replacing"> y” by “x < y” in (iii).

3. Pseudo-potential games

Consider a gamd” = (N, S%,..., 8", #L,...,#") in which the players and their
strategy-sets are as before, but payoff functidhs S — R are allowed to take a gen-
eral form (i.e., they need not depend on competitors’ strategies only via the aggregate). We
say thatl” is apseudo-potential game if there exists a continuous functigh: S — R such
that, foralli e N and alls € S,

argmaxt’ (s |; ) D argmaxP (s |; 1). 2)
tes! tes’

In other words, each player’s best reply correspondence in the §arme(N, ST, ..., ",
P, ..., P)isincluded in that of ': it suffices for a player to maximize the pseudo-potential
P, rather than his real payoff’, in order to get tasome best reply. One may therefore
think of the pseudo-potentid@ as a convenient common proxy for all the different payoff
functions’, i € N, in the analysis of NE of . (For, as is evident, NE af* are a fortiori
NE of ")

Our main result is:

Theorem 1. A game of weak strategic substitutes or complements with aggregation is a
pseudo-potential game.

Proof. We start by considering WSTS games with aggregation/Let (N, st ..., 8",
7l ..., 7" be such a game, and, for @l N, let ' : S_; — S’ be a continuous and
nonincreasing best-reply selection.

12 The case of discontinuous selections will be considered later, in Section 6.
13 This requirement holds vacuously if the strategy $étare finite.
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Denote byX_; the convex hull ofS_;, which is obviously compact. We extemnd, in
a piecewise-linear fgshion, to a functim@, defined on the entire domaib_;. Thust!
coincides withb* on S_;; and, ifz € ¥_;\S_; we define

Z—X
b'(y),
y—x

wherex = maxw € S_; | w < z} andy = minfw € S_; | w > z}. (Notice thatz € (x, y) C
¥_;\S_; in this case.) Furthermore, we enhance the domairi & include the intervals
[—1, min X_;] and[maxX_;, maxX_; + 1], by setting:t’ (—1) = maxS’, r/ (maxX_; +
1) = 0. We then extend’ linearly on(—1, min X¥_;) and(maxX_;, maxX_; + 1).

Notice thatr’ inherits continuity, and the property of being nonincreasing, fbonfor
everyi € N, now defineF; : S — R by

ri(z) = ubi (x)+
y—x

max(¥_;)+1
F; (si) = / min(ri(x),si) dx.
-1

Consider the continuotfunction P : §1 x --- x §” — R given by*®
P(sl,...,s”):—Zsi—Zsisj+ZFi(si). (3)
i i<j i

We claim thatP renders!” into a pseudo-potential gam@To check this, fixs € S. Note
that for anyr € §'

PGslit)=[-tG_i+D+F ]+ [— dosl= > sl F (s-/):|. (4)
J#i Jj<k J#i
Jok£i
Itis clear thatr maximizesP (s |; t) if and only if it maximizes the first (bracketed) term
in (4) (for the givens_;). We will deduce from this that

argmax? (s |; 1) = {t' 60} (= {6 6-})- (5)
For everyr < v (5_;), note that
max(X_;)+1 S—i
—tG_ ;i +D+F(t)= / min(z’ (x), 1) dx — /tdx (6)
-1 -1

14 Note that when strategy se§6 are convex, the potentia is multi-concave (this is the property that is needed

in Remark 2). Indeed, it is clear from (4) that multi-concavityRfs tantamount to concavity of the functions

F;. This, in turn, follows from the fact that eaah is nonincreasing.

15 A function of a similar form first came to our attention in Huang (2002). He, however, defined it under more
restrictive assumptions on best replies, in the context of certain Cournot oligopoly games with convex strategy
sets, in order to study properties of fictitious play.

16 For a geometric intuition of this proof, see the Appendix in Dubey et al. (2004), the discussion paper on which
this article is based.
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max(X_;)+1 S—i
= / min(ri(x),t)dx—/min(ri(x),t)d.x, (7
-1 -1

sincer < v (5_;), and sincer’ (x) > t/(5_;) for x € [—1, 5_;] by the monotonicity of.
The term displayed in (7) obviously equals

max(X_;)+1
min(ti(x), t) dx. (8)
However,
max(X_;)+1 max(X_;)+1
/ min(z’ (x), 1) dx < / min(z’ (x), ' 5_;)) dx, 9)

since minz! (x), ) < min(z’ (x), ' (5_;)), and since the inequality is strict for afl
[5—i, max(X—;) + 1] which are sufficiently close to_; (on account of the assumption that
t < 1'(5_;), and the continuity ot'). Just as in (6)—(8), it can be seen that

max(X_;)+1
GG+ D+ F(7Go) = / min(z’ (x), ' (5_;)) dx,

and (9) now implies that
—1Goi + D)+ Fi(1) < =7’ G-)G—i + D) + Fi (7' G-)).
It follows from (4) that
P(slit)y<P(slit'(G-p) fore <7’ (5. (10)

Now, if # > 7/ (5_;), then

max(X_;)+1 S—i
—tG_i+D)+Fi@t) = f min(ri(x), 1)dx — ftdx (12)
21 1
max(X_;)+1 S_i
= / t'(x)dx — [ (t —min(z'(x), 7)) dx
5 1
max(¥_;)+1
< / 78 (x) dx. (12)

S—j

The last inequality follows from the fact that— min(z? (x), r) > 0 and the fact that this
inequality is strict for aILv € [—1,5_;] which are suffipiently close to_; (on account of
the assumption that> ¢’ (5_;), and the continuity o'). By the monotonicity of’,
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— T GG+ D+ Fi (7 Gop)

max(X_;)+1 S_i
= f T (x) dx — /(r"(s,l-) —min(z' (x), ' G_;))) dx
S_i -1
max(X_;)+1
= i (x) dx,

and thus (11) and (12) imply that
—1Goi + 1)+ Fi(1) < =7’ G_)G—i + D) + Fi (' G-)).
From (4) it follows that
P(slit)<P(slit'(G-)) fort>t'(5-).
Combining this with (10) leads to (5).
Equality (5) shows thap' is the best-reply (single-valued) correspondence of
the game(N, st ...,8" P,..., P). Sinceb', to begin with, was a selection from the
best reply correspondence bf= (N, S, ..., 8" =1, ..., 7"), we conclude thaf” is a
pseudo-potential game. This proves the theorem for WSTS games.
When T is a WSTC game with aggregation, it can be converted into a WSTS game
with aggregation by an appropriate change of its (additive) aggregator. For details, see the

Section 5 where the concept of general aggregation is developed, and then see Remark 4
where this change is describeda

4. NE in pseudo-potential games

The existence of a pseudo-potential in a game has some important ramifications. It is
easy to establish:

Proposition 1. A pseudo-potential game has an NE.

Proof. LetI’ = (N, S%,..., 8", 71, ..., #") be a game with pseudo-potential Suppose

s=(st,...,s")earg max P(r%....1")
@1,....tMes
(such ans exists becauseé® is continuous ands is compact). Ifs is not an NE of
Ir'*=(N,S%....,8" P,...,P), thenP(s | t) > P(s) for somer € §*, contradicting that
s maximizesP.
But any NE ofI'* is a fortiori an NE of ", since best replies i* are by definition
best replies in”. O

In conjunction with Theorem 1, this immediately yields:

Theorem 2. Any WSTS or WSTC game with aggregation has an NE.
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For supermodular WSTC games (even without aggregation), Theorem 2 was established
in Milgrom and Roberts (1990). For WSTS games with additive aggregation, Theorem 2
follows from Kukushkin (1994), provided best reply correspondences are upper hemi-
continuous.

We shall show, however, in Section 5 that Theorem 2 remains intact even when the
concept of aggregation is generalized, and no longer restricted to being additive. In that
setting, Theorem 2 shows the existence of NE in games that lie well beyond the domain
considered in Milgrom and Roberts (1990) and Kukushkin (1994). Furthermore, the gen-
eral aggregators that we admit may fail to be monotonic in the strategies themselves. Thus
our WSTS/C games with general aggregation need not even be WSTS/C in the ordinary
sense: the best reply selectibhof playeri can be non-monotonic with respect to others’
strategies.

Existence of a pseudo-potential in a game implies certain stability properties of the set
of NE. We summarize them in the following remarks.

Remark 1 (Generic convergence of sequential best replies with finite strategy sets). Given

finite strategy sets, WSTS/C games have single-valued best reply correspondences for
generic payoffs. In this situation the pseudo-potential is an (ordinal) best-reply pdtential

as defined in Voorneveld (2000), i.e., equality holds in place of inclusion in (2). It is then
straightforward to check that there are no best-response cycles in the game; i.e., if players
start with an arbitrary strategy profile, and each player (one at a time) unilaterally deviates
to his unique best reply (if he does not happen to be there already), then no cycles can
occur along the way and the process terminates in an NE after finitely many steps.

Thus, Theorem 1 provides a partial generalization of a “no-cycling” result of Kukushkin
(2004), by admitting a more general notion of strategic substitutes. (As was said,
Kukushkin, 2004 defined strict STS by means of DSSCP of the payoff functions, and
it immediately implies WSTS in our sense.)

Dindo$ and Mezzetti (2003) also analyze convergence of better-reply dynamics, in
which the turn of a player to unilaterally deviate, as well as the payoff-improving strat-
egy to which he deviates, are determined randomly. They obtain convergence results for
games of locdf strategic substitutes or complements with aggregation, but in the setup
where players have infinite amdnvex strategy sets, and quasi-concave payoffs. (With fi-
nite strategy sets, their stochastic better-reply dynamics leads to convergence to an NE in
a large class of games with aggregation, but in order for this to be the case without the
stochasticity assumption, it becomes necessary to postulate STS/C).

Remark 2 (Convergence of simultaneous best replies with convex strategy sets). Con-
sider a WSTS/C game with aggregation and with convex strategy sets, and assume that
all best reply correspondences are single-vakfetigain, the pseudo-potential is a best-

17 see Morris and Ui (2004) for more discussion of this notion.

18 |n other words, best reply correspondences must be single-valued and differentiable, and their derivatives
must have the same sign in open neighborhoods of NE.

19 |n the “standard” case, when the payoff of each player is strictly concave with respect to his own unilateral
deviations, the best reply will be unique.
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reply potential in this situation. Suppose that in every period players simultaneously choose
the best reply to their currerdonjectures of others’ strategies. Formally, le,}7°,

be a sequence of positive numbers such?h3t™, 1, = co and 3_7°; 12 < co. Let
sM}2, = (1), ..., s"(1))}72, be a sequence of strategy-profiles with the following
property. At every period, s'(¢) is the unique best reply afto his conjecturer_; (¢) of

the true strategies of other players. Conjectures are defined recursive(y) are arbi-

trary, and for allj € N\{i}

ol () =rs!(t =)+ Q= A)ol(t —1).

(SettingA; = 1/t is reminiscent of fictitious play.)

It was established by Huang (2002, Proposition 3.3.1) that all limit points of the se-
quence{s(r)};2, are NE for best-reply potential games, provided the potential is contin-
uous and “multi-concave” (i.e., concave separately in each player’s unilateral deviations).
But the (continuous) pseudo-potentfa) constructed in the proof of Theorem 1, is easily
seen to be multi-concave (see footnote 14 in that proof for WSTS games, and Remark 4
for WSTC games).

5. Non-additive aggregation

Adding up players’ strategies is but one way of aggregating them. However, there are
also many kinds of strategic interaction which, at first glance, look alien to our framework.
It is only when appropriate aggregaters S_; — R are constructed for them, that their
hidden structure is unmasked and they fit into our framework, wittreplaced by (s_;)
andS_; by a(5_;).

Before giving examples, let us define our class of aggregators. Denote

L= D syees

i1<ip<---<ig
01,02, ... i 1
for 1<k <n—1(i.e,s*, (k) is the sum of all possible products bfdistinct strategies
picked froms_; = (s, ..., s'~1, s"*1 ... s"); and so fork = 1 we gets* (1) =5_;.) Let
ai, ..., a,—1 be scalars, and define
n—1
a(s—i) =) as?; (k).
k=1
For the moment assume, by way of simplicity, that the scalaere such that(s_;) > 0
foralli e N and alls_; € S_;. (This restriction can be dropped, see Remark 3.) Notice that
the aggregatae (s_;) is thesame linear combination otsfl.(k)}z;} foralli e N.
Our aggregators are seemingly abstruse. We shall now give four examples to illustrate
how they might arise in a natural manner. In the first three examples, each pthgases

20 Herex, represents the weight given to the most recent observation in peramdl may be interpreted as the
“speed” with which players update their conjectures.
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effort level s’ € [0, B'] to apply to the personal task faced by him. This gives rise to the
probability p; (s') of “success” in his task, wherg; : [0, B'] — [0, 1] is a continuous and
strictly increasing function withp; (0) = 0 and p; (B’) = 1. By relabeling effort levels if
necessary, we tak®’ = 1 andp;, (s') = s'. The events of individual success are assumed to

be independent across different players. Furthermore, for ease of calculation, we assume
for the moment that there are three playess= {1, 2, 3}), and that each € N incurs
quadratic cost; (s')2, on account of his effort’, for some constant; > 0.

Example 1 (Team projects with complementary tasks). Each player’s task is critical to the

success of the team’s project. Thids?s3 is the probability that the project will succeed.
Supposer; > 0 is the utility to playeri of a successful project. This yields the payoff
function

7! (sl, sz, s3) = rislszs?’ — ¢ (si)z = risia(s_i) — ¢ (si)z,

wherea(s_;) is the aggregator*; (2) = sisk (and,N\{i} = {j, k}). Theni’s best reply is

o (riaGse)
,B(a(s_l))—{mln( 2, 1)}

which is a nondecreasing function @fs_;); and shows that we have a WSTC game with
aggregation (whek_; is replaced byx(s_;)).

Example 2 (Team projects with substitutable tasks). Here we suppose that each player by
himself can make the project successful. Then the probability that the project is successful
is

f(sl, s2, s3) =1- (1 — sl) (1 — s2) (1 — s3)

12 (13

S - R [ 1,23

—s253+s s°8°,

and the payoff to playeris
7t (sl, 52, s3) = rif(sl, 52, 53) — ¢ (si)2 =rs' [1 — (x(s_i)] +o(s—;) —c (si)z,

wherea(s_;) is the aggregator*; (1) — s*;(2). Thus

is a nonincreasing function ef(s_;), and so this example describes a WSTS game with
aggregatot.

Example 3 (Tournaments). Assume that a reward of dollars is shared by the group of
players who succeed. If only one player succeeds, he detsure if exactly two succeed,
each gets with probability 1/2; if all three succeed, each getsvith probability 1/3. By
rescaling utilities, we may assume w.l.o.g. thadollars yieldr utilities to each player.
Then the expected value of the reward i
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i i k rij k rik i rijok
rs (l—sf)(l—s )+§S sJ(l—s )—G—Ess (1—s/)+§s sts

; 1. 1 1. ;
=rs |:1 - ES'/ - Esk + §S‘/Ski| =rs' [1 — (X(Sfi)],

wherea(s_;) = %s:(l) - %sfi(Z). Therefore each player’s payoff function is
7! (sl, 52, ss) =rs! [l - oz(s,,-)] — ¢ (si)z.

Consequently,

B (a(s—)) = {min<7r[l _ZO;(L")], 1) }

is a nonincreasing function af(s_;), and therefore tournaments are also WSTS games
with aggregatotr.

Example 4 (Team projects and tour naments with non-convex strategy setsand general cost
functions). Consider strategy sef that are arbitrary closed subsets[0f1]. Let g; be a
continuous cost function (not necessarily quadratic)®n], for each playe¥. We claim

that the WSTS or WSTC character of the games in Examples 1-3 will not be affected
by these generalizations. Indeed, it is easy to see that the modified payoff fdhation
from Example 1 satisfies tharong single crossing property (SSCP) with respect to the
aggregatou:

ni(si, oz(t_i)) > ni(ti, (x(t_i)) = ni(si, oz(s_i)) > ni(ti, a(s_i)),
for everys, ¢ € [0, 1]% with s’ > ¢ anda(s_;) > a(r_;). Thus, a fortiori, the SSCP con-
tinues to hold when the strategy sets are closdxets of [0, 1]. It is then evident (al-
ternatively, see Theorem 4 of Milgrom and Shannon, 1994) that every selectiorgfrom

is a nondecreasing function af(s_;). Similarly, the modified payoff functions’ from
Examples 2 and 3 satisfy the DSSCP with respeat to

wl(sha—) <at (i al-p) = ' (sh als—) < 7' (1, al(s=)),
for everys, r € [0, 12 with s > ¢/ anda(s_;) > a(r—;). Again, the DSSCP continues to

hold when the strategy sets are closed subset8,df, and every selection fromd is a
nonincreasing function ai(s_;).

As we said, our results remain intact if we postulate that the payoff to any plajeer
pends only upon his own strategyand the aggregaie(s_;) of others’ strategies. Other
than the obvious change of notation ( replaced byx(s_;) andS_; by a(S_;)), the only
variation needed is in the proof of Theorem 1. Given a WSTS game with aggregator
wherea(s_;) = Z;i ais*; (k), we redefineP (which was defined for the additive aggre-
gator in (3)) as follows:

n—1
P(sl,...,s”)z—Zsi—Zak~ Z si1~~-si"+1+ZFi(si). (13)
i k=1 i

i1<ip<-<igy1

21 Optained by replacing; (-)2 by g; (-) throughout.
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Note that for any € N,

n—1
P(s|it) = [—t(zaksi,.(k) + 1) + F,~(t)i|

k=1
r n—2 ]

+ _Zsj—Zaksfi(kﬁ-l)'i'ZFj(sj) (14)

L i k=1 J# -

- [—t(a(s_,) +1)+ F (0]

=57 - Zaksﬂ(k+1)+ZF . (15)

L j#i k=1 J#i .

The above equality replaces (4) in the proof of Theorem 1, and the rest of the arguments
hold exactly as before.

It must be mentioned (as was pointed out to us by an anonymous referee) that Exam-
ples 1-4 above admiteighted potentials?? (defined in Monderer and Shapley, 1996), and
can therefore be analyzed without recourse to our Theorem 1 (for non-additive aggrega-
tion). Our approach does provide an alternative view, which we hope is not without some
utility. And we conjecture that there are games of our variety which are not weighted po-
tential games.

Remark 3 (Aggregation without the positivity requirement). The requirement that aggrega-

tion be nonnegative can be droppedx(§_;) is negative for some_; € S_;, we can define
another aggregatar by a(s_;) = a(s—;) +a foralli e N and alls_; € S_;. Clearly, for

large enougha, @(s—;) is always nonnegative. It is obvious that ¥ payoff is a function

of s; anda(s_;), then it is representable also as a function;adnda(s—;), and any non-
increasing and continuous best-reply selection remains such after this change of variables.
Our analysis holds with these “non-homogeneous”aggregations just as well. One only has
toadds*;(0)=1to the sel{sii(k)}}jj, and allow aggregatoks(s_;) to be linear combi-

nations of{s*, (k)}; _g, notjust{sfi(k)}g;i

Remark 4 (WSTC games with aggregation). The previous remark also enables us to in-
clude WSTC games with aggregation in our approach. Indeed, given a WSTC game with
aggregatou the payoff function of each playércan be obviously redefined to depend
ons’ anda(s_;) = —a(s_;), instead ofs’ anda(s_;). Consequently, if a best-reply se-
lection b’ is a nondecreasing function ef (which is the case for WSTC), it turns into
b'(&) = b'(—&), a nonincreasing function af, and our analysis goes through by Re-
mark 3. Note that this trick is purely technical, and does not change the real WSTC
character of the game, if the aggregatds increasing irs_;: while b (@(s—;)) is a nonin-
creasing function o&(s_;), it remains nondecreasing in the underlying basic variable

22 |n other words, the change in any player's payoff from switching between any two of his strategies (holding
other players’ strategies fixed) is proportional to the change in the potential function.
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Assume now that all strategy-sets are convex. Using the same argument as in foot-
note 14 and equalities (14) and (15), it can be shown that the pseudo-poiefibEn the
aggregator used &(s_;) + a, for sufficiently largea) is multi-concave.

6. Discontinuous best reply selections

We do not know if continuity of our best reply selections is necessary for the validity of
Theorem 1. However, the functiaP that we constructed in its proof can still be of value,
even thoughP might not be a faithful proxy for discontinuous best replies. We exemplify
its use in the proof of the following extension of Theorem 2 on the existence of NE. For
simplicity, the result is stated only for WSTS games.

Theorem 3. The conclusion of Theorem 2 remainsintact, even without requiring continuity
of the best reply selections, provided one of the following assumptionsis made:

(i) For every i € N there exists a best reply selection »' which is a strictly decreasing
function®3 of 5_;;

(ii) for everyi e N thereexistsa best reply selection b’ which is nonincreasing and right-
continuousin §_;;

(iii) for everyi e N there exists a best reply selection b’ which is nonincreasing and | eft-
continuousins_;.

Proof. Given a nonincreasing best reply selectidrior each player, construct:’ and P
exactly as in the proof of Theorem R.is continuous as before, but this time
argmaxP (s |; 1) = [ lim 7' (x), im /(o] n s (16)
test x|S—i XS
forall i € N and alls € S. In particular, argmaxg: P(s |; t) need not be single-valued, if
! is discontinuous ai_;. (This is why P may fail to be a pseudo-potential function for
the given game.) However, it follows from (16) that

b (5_;) e argmaxP(s |; 1), (17)
teS

as before.
Now consider some
L. s")Yearg max P(:},....").

s = (s
(t1,....,t"eS

Suppose first that assumption (i) is satisfied, an@'ldie a strictly decreasing best reply
selection for each. Note that if there i$ € N (say,i = 1) such thak!  b1(5_1), then by
7).

s'=(b*Go1),s% ... s") earg max P(eh ... ).
tL,...,"es

23 For ease of notation, we revert froats_;) to §_; (though the argument holds replacifig; by a(s_;)
throughout, provided we assume thdt_;) is strictly increasing ins_;).
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Sinces ands’ maximizeP, s’ € argmax.g: P (s |; t) and(s’)’ € argmax.q P (s’ |; t) for
alli e N. Then (16) implies

sze[ lim z2(x), lim rz(x)]ﬂ[ lim 2(x), lim rz(x)].
x{s_2 xPs5_2 x¢;_2 XT;_z

But clearlys_» # s’_», and so, from the fact that is strictly decreasingthe intersection
of the above two intervals must be empty. This is a contradiction’ seb’ (5_;) for all
i € N, ands is an NE ofI".

Next suppose that assumption (ii) holds, and detbe a nonincreasing and right-
continuous best reply selection for eacfrhen, since every’ is also nonincreasing and
right-continuous, it follows from (16) that

b (GG_) = min[arg maxP (s |; t)] (18)
teSt

foralli e N. If (say) s ¢ argmax g1 71(z,5_1), thenb(5_1) < s* by (18) and the fact
thats! € argmaxcg1 P(s [11). Thus for allj # 1

s <§_j, (19)
where (recall)

s'=(b*Go1),s% ..., s") earg max P(eh .. 1").
tL,...,t")eS

Since
s/ eargmaxP (s |; 1) NargmaxP(s' |; 1)
teSJ teSJ

for all j # 1, the conjunction of (16), (19), and the fact thdtis nonincreasing, yields
si = min[arg maxP (s’ |; t)]. (20)
teS/

The right-hand side of (20) is equaldé(s’_;) by (18). Thus(s’)/ = s/ = b/ (s'_;) for all
j # 1. Since(s")t = b1(5_1) = b1(s’_1) by definition,s’ is an NE ofr".

Finally, when assumption (iii) holds, the analysis is similar to that for assump-
tion (i). O

The following result on the existence of NE is a corollary of Theorem 3 (and is also

immediately implied by Kukushkin, 1994). It will be used in the next section, when we
focus on Cournot oligopoly with indivisibilities in production.

Corollary 1. Assume that the best-reply correspondence g of every player i in I' is:

(a) nonempty-valued; ~

(b) upper hemi-continuous (that is, if {(x,, y»)}5>; C S—; x S’ is such that y, € B’ (x,)
and lim,,, o (X, y2) = (x, y), then y € ' (x)); and

(c) nonincreasing in the sense that?* maxg (x1) < min 8¢ (x2) whenever x1 > x».

Then I hasan NE.

24 Note that may’ (x) and ming’ (y) are well defined by upper hemi-continuity.
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Proof. Note that
bi(x)=ming'(x) forallxeS_;

defines a nonincreasing best-reply selection which is right-continuous, and
bi(x) =maxp'(x) forallxeS_;

defines a nonincreasing best-reply selection which is left-continuous. Thestisfies
both (ii) and (iii) of Theorem 3. O

7. Cournot oligopoly with indivisibilities

Consider Cournot oligopoly with the s&t = {1, 2, ..., n} of firms. Following Amir
(1996), we assume that the inverse demand funcgiois strictly decreasing and log-
concave; the cost functian of each firmi is strictly increasing and left-continuous; and
each firm’s monopoly profit (i.ex Q(x) — ¢;(x)) becomes negative for large enough
However, unlike Amir, we allow for indivisibilities in production. The strategy s&ts
consisting of all possible levels of output producible by firnare not required to be con-
vex but just closed® Thus, in particular, the “discrete” Cournot model, in which each
firm’s outputs consist of indivisible units, will be included in our analysis.

Theorem 4 below extends Theorem 3.1 of Amir (1996), which t§ok R, . Its proof
simply exploits the fact that Cournot oligopoly is a game of strategic substitutes (in the
sense expressed in (c) of Corollary 1).

Theorem 4. Under the above assumptions, Cournot oligopoly has an NE.

Proof. Amir (1996) showed that the payoff functiari of each firmi has the DSSCP:

mh(x1,y2) < (x2,y2) = w(x1,y1) <7 (x2, y1),

where®® 7i(x, y) = xQ(x + y) — ¢i(x), forall x; > x >0 andy; > y» > 0. As in Ex-
ample 4, DSSCP continues to hold when the strategy sets are ddsets of R, and

thus eachs’ is nonincreasing. Also, since profits become negative for large outputs, we
may w.l.0.g. restrict the strategy s&t of each firmi to be compact. Finally, notice that
Bi(y) = argmax.g 7' (x, y) is nonempty-valued and upper hemi-continuous inS_;,
sincerr! is continuous iry and upper semi—continuous(, y). Thus, according to Corol-

lary 1, NE exists. O

Remark 5 (Novshek's existence theorem for Cournot oligopoly). Novshek (1985) es-
tablished the existence of NE provide€?l is strictly decreasing and twice continuously
differentiable, and satisfies

0'(x) +x0"(x) <0, (21)

25 We now drop the compactness (i.e., boundedness) requirement.
26 =output of firmi, y =aggregate output of all firms other than
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for all x below the point where the inverse demand reaches zero. (The cost functions were
required to be only weakly, not strictly, increasing). But, as was shown in the proof of
Theorem 3 in Novshek (1985), eaghis still nonempty, upper hemi-continuous and non-
increasing. Thus, his existence result is also implied by our Corollary 1.

To extend Novshek’s model to allow for indivisibilities, we assume (21) with strict
inequality. As in Novshek (1985), this implies th;%:t% [xQ(x+y)] <0, i.e., the marginal
revenue of any firm is decreasing in the aggregate output of other firms. Therefore

x10(x1+y2) —x20(x2+ y2) > x10(x1 + y1) — x20(x2 + y1)

for all x1 > x2 > 0 andy; > y2 > 0. This clearly implies the DSSCP of the payoff func-
tions, and so, just as in the previous scenario, our Corollary 1 yields the existence of NE
even when the strategy seitsare not convex but merely compact.
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