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Abstract. This paper provides a framework to study communication conflicts,

such as political debates, using a novel model of competition in Bayesian persuasion.

Debating parties can “frame” their arguments for maximal impact. They also can

“spam” the discussion to distract the audience from the opponent’s arguments. We

find that spamming is more detrimental to truth discovery than framing. When

parties are allowed to speak freely, spamming can kill truth discovery and make

communication uninformative. By contrast, framing is disciplined by competition.

If the conflict between parties is strong and the number of arguments is restricted,

the parties reveal the truth.
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1. Introduction

The proper response to a charge that you beat your wife is not to

explain that you don’t beat your wife and are in fact an ardent feminist:

it’s to point out that throwing around accusations without evidence

makes your opponent a piece of garbage.

Ben Shapiro, “How to Debate Leftists and Destroy Them”

On June 4th, 2021 Tymofiy Mylovanov, a coauthor of this paper, was preparing for

a debate on national television. A fortnight earlier a prominent journalist accused

Tymofiy – without evidence – of accepting a bribe.

Just before the accusation, Tymofiy was appointed the chairman of the supervisory

board of the Ukrainian Defense Industry Consortium, a holding of over a hundred of

state-owned enterprises that produce military equipment in Ukraine. A day before the

appointment, the Consortium made public (as required by law) a research contract

with Kyiv School of Economics, where Tymofiy is the president. The journalist stated

that this contract is a bribe to Tymofiy for agreeing to serve on the board. A public

communication crisis ensued.

What was Tymofiy supposed to do? Issue a public rebuttal? Write a post on his

(popular, well-followed) social network page? Appear on a prominent TV show?

Reach out to the journalist and convince him that there was no impropriety? Tymofiy

was worried that all of it would be futile. Any response would be perceived as defensive

and the truth would be lost in the noise of the social media and TV. After all, who’s

got the patience nowadays to get to the bottom of the issue?

Tymofiy did not explain the facts. Instead, he challenged the journalist to a debate

on national television. It took a week to bargain over the format and find a suitable

national TV show. The debate was 1 hour long split in two parts. In each part

one party made statements or posed questions and the opponent responded. Then

the roles switched. After the debate, the audience seemed to be convinced that the

scandalous aspect of the accusation – the bribe – had no substance. The public

interest in the topic vanished and the communication crisis was over.
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This paper provides a formal framework to study communication conflicts, such as the

one described above. We focus on two competing forces. First, each party can frame

its arguments, by choosing the structure of information communication and involving

attestations of reputable experts, to achieve maximal effect on the audience. Second,

each party can spam the discussion, by voicing a large number of uninformative but,

perhaps, scandalous or entertaining statements, to distract the audience from the

opponent’s arguments.

In our model, spamming turns out to be more detrimental than framing. Truth dis-

covery requires restricting the number of arguments that parties are allowed to make.

Spamming can kill truth discovery and make communication completely uninforma-

tive. By contrast, framing is disciplined by competition. If the conflict between the

accuser and the defendant is strong and the number of arguments is restricted, the

parties will reveal the truth.

Before we describe the model, let us note several applications in addition to the one of

a response to a public accusation. In democracy, freedom of speech enables informed

citizens (and voters). But what if opinion leaders manipulate citizens through fram-

ing and distraction? Social media provide everyone with an opportunity to speak.

But special interest groups have learned to abuse social media to frame, polarize, and

confuse. Congressional hearings, like the Truman commission that rooted out inef-

ficiency and profiteering during World War II, were once the gold standard of truth

discovery. Now they are more likely to be shouting matches. The same holds for

political debates. In the second Biden-Trump debate, the organizers were compelled

to use a rule that mutes the microphone of the candidate unless it was his turn to

speak.

In our model, there are two parties: an accuser and a defendant. The parties appeal

to an audience that consists of a continuum of citizens. A citizen supports the accuser

if there is sufficient truth to the accusation. Otherwise she supports the defendant.

Formally, the truth is an unobserved state of the world. A citizen supports the accuser

if the expected state is above the citizen’s private threshold. Citizens’s thresholds
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differ reflecting their sympathy to the defendant, political stance, preferences, or

biases. Each party maximizes an increasing function of the citizens’ total support.

The parties invite several (potentially) informed agents to make arguments. Citizens

observe the arguments and then choose whether to support the accuser or the de-

fendant. Each citizen can only observe and mentally process up to a given number

of arguments. If the number of arguments exceeds the limit, the citizen takes into

account only a random sample of them.

The agents who make arguments are classified into experts, activists, and bots. Ex-

perts are instruments of informational framing. They reveal information about the

state according to their expertise. An expertise is described by an information struc-

ture that divides the state space into intervals (categories) and reveals which category

the state belongs to. The experts cannot lie, as their expertise is valuable only as

long as it is credible. There is a large pool of such experts with a variety of expertise.

The parties choose framing by selection of an appropriate type of experts.1

Activists capture the idea that the parties cannot control all sources of information.

They are partially and independently informed participants who make (binary) ar-

guments in support or against the accusation. While the accuser and the defendant

control information they provide through experts, they can neither control the infor-

mation provided by their opponent, nor the information provided by activists.

Bots make uninformative arguments in support of either the accuser or the defendant,

whoever has invited them. Citizens cannot perfectly distinguish bots from activists,

they do so with some probability (although they recognize experts with certainty).

Because citizens have limited attention, bots distract citizens from informative argu-

ments, thus serving as instruments of spamming.

We compare three discussion formats. The first format is an information monopoly,

where the defendant refrains from responding, so the accuser is the only party that

controls information disclosure. The other two formats are called free debate and

moderated debate. A debate has an exogenous capacity for the number of arguments.

1In some applications, as in the one motivating this paper, the accuser and the defendant can
themselves be the experts and make arguments on their own behalf.
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Each party can invite agents to make arguments as long as the capacity is not ex-

ceeded. In a free debate, the capacity is large and exceeds the citizens’ attention limit.

So a large, potentially unlimited number of opinions can be voiced, as in discussion

threads on Facebook and Twitter. Each citizen can only observe a sample of all the

arguments made in a free debate. In contrast, in a moderated debate, a small number

of invited participants are allowed to speak, as in TV debates and Zoom webinars.

The capacity is smaller than a citizen’s attention limit, so the citizens can observe all

the arguments made in the debate.

An obvious merit a free debate is that it allows everybody to have a say. Freedom

of speech is a fundamental value of democracy, in particular, because it leads to

informed citizens and informed voters. However, we show that when the participation

and agenda of debates are controlled by the interested parties, there is little or no

information disclosure in a free debate. The information aggregation from a large

number of independent information sources does not occur. There is a simple reason

for this. Each party has an incentive to substitute activists, who are uncontrolled

sources of information, with fully controlled bots. The debate becomes spammed. A

representative citizen, who can only observe a sample of the arguments due to her

attention constraint, is likely to observe nothing but noise.

In comparison to free debates, moderated debates reveal more information. In such

debates, disclosure comes through expertise. The restriction on the number of argu-

ments ensures that the citizens (who have limited attention) never miss the experts’

arguments. Despite the parties choosing their experts strategically, the competition

between them leads to substantial informational gains for citizens, greater than those

under information monopoly or free debate. In fact, the state of the world is fully

revealed if the conflict between the parties is strong enough, for example, if their

utilities are zero-sum, or if they are linear in the citizens’ total support.

This leads to a somewhat controversial conclusion. It is reasonable to think that

citizens would prefer two centrist parties who have a lot in common and can find

compromises to work for the good of the society, as opposed to having two extremist

parties who consider the win of one as the loss of the other, and compromise on
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nothing. It might seem that when there is a scope for compromise, there will be more

incentives to reveal information. Our model shows that this need not be the case. The

parties have interest in increasing the public support by manipulating information.

They reveal more than they would like to only when pressured by the competition.

We also establish how the public ranks the discussion formats, in terms of how much

information they reveal. Moderated debates reveal more than information monopo-

lies, and free debates reveal the least. We also find that, for the defendant who is

initially at disadvantage, moderated debates are preferred to both free debates and

the accuser’s information monopoly, whereas, obviously, the accuser always prefers

his own information monopoly.

Do our result imply that the society should regulate the freedom of speech to mitigate

spamming? This is a scary proposition in practice. Who will be the judge of what is

considered spam? The government? An appointed committee? The answer is outside

of our formal model, but we hope that technological innovation driven by competition

among social platforms will eventually take care of this. A recent (albeit fleeting)

popularity of audio social networks such as Clubhouse or Audio Telegram provide

an example. In audio social networks, discussions are moderated, often moderators

allow one person to speak at a time, spammers are removed, speakers are allowed

to respond to accusations and comments, and interaction happens in real time with

the audience present and focused on the speakers. On these platforms, competition

appears to be among the moderators rather than the speakers, and the audience flocks

to the audio rooms that are better moderated and have more informative discussions.

Finally, as a theoretical contribution, we show that our moderated debate can be

represented as a novel model of the competition in Bayesian persuasion between two

senders, with a vanishing cost of information disclosure. This model is an extension

of a single-sender model of Kolotilin, Mylovanov, and Zapechelnyuk (2021), which

corresponds to the information monopoly. We characterize and prove uniqueness

of the equilibrium outcome in our model, compare it with that in the single-sender

model, and find the necessary and sufficient condition for full disclosure.
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Related Literature. The term debate refers to a decision procedure that formalizes

rhetoric and argumentation, where informed but biased parties choose arguments,

and an uninformed listener reaches a conclusion based on these arguments. Glazer

and Rubinstein (2001) study an abstract model where the state is a string of 0’s

and 1’s, and the listener wants to know whether there are more 1’s than 0’s. They

adopt a mechanism design approach: To elicit information from two informed parties,

the listener designs a sequential communication protocol subject to a constraint on

its complexity. Spiegler (2006) studies a setting where two parties debate on two

issues at the same time. He uses an axiomatic approach to derive a solution that

describes how arguments should be selected and how winners should be chosen. Levy

and Razin (2012) model a debate as an all-pay auction in which two parties bid for

attention slots of a decision maker. They show that complex policies that require

more attention slots to be explained are at disadvantage relative to simpler policies.

Our paper adopts a more pragmatic model of a debate as competition of two biased

parties in information disclosure to citizens.

In some public economics and political science literature, the term debate has a mean-

ing that is very different from that in our paper. It refers to a pre-play cheap talk

communication of asymmetrically informed legislators tasked to agree on a public

decision. This communication is simultaneous in Austen-Smith (1990) and sequential

in Ottaviani and Sørensen (2001). In Spector (2000) this communication precedes

each decision-making round in an infinitely repeated interaction of legislators.

We adopt the Bayesian persuasion approach to modeling experts. Methodologically

our paper is built upon a single-expert Bayesian persuasion model of Kolotilin, Mylo-

vanov, and Zapechelnyuk (2021), which we extend to a game between two competing

experts with a vanishing cost of information disclosure, and characterize the equilib-

rium of this game. The fundamental assumption in Bayesian persuasion, which is

also adopted in this paper, is that the parties can commit to information structures

ex ante, before learning any information about the state of the world. While this

assumption is certainly restrictive, to a certain extent it is justified by Zapechelnyuk
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(2022) who shows the equivalence of optimal outcomes in the settings where the in-

formation designer is uninformed about the state and where she is informed about

the state prior to committing to a disclosure mechanism. In Section 4.1 we outline

how the argument of Zapechelnyuk (2022) can be applied to this paper.2

Our paper is closely related to the literature on competition in Bayesian persuasion

where senders commit to information disclosure protocols before learning the state

of the world, as in Gentzkow and Kamenica (2017a,b), Li and Norman (2018), and

Ravindran and Cui (2020).3 The results in these papers use the property that if each

sender reveals some bit of information, then no sender can profitably deviate by con-

cealing it, because the receiver will learn it from the other sender anyway. This leads

to a continuum of equilibria, in particular, there is always a fully revealing equilibrium

where each sender reveals the state. Notice, however, that if information disclosure

was costly, then each sender could have profitably deviated by not revealing the in-

formation that is anticipated to be revealed by the competitor. The crucial difference

of our paper from Gentzkow and Kamenica (2017a,b), Li and Norman (2018), and

Ravindran and Cui (2020) is that we assume an arbitrarily small cost of information

disclosure. We thus eliminate the equilibria that rely on zero-cost disclosure, and we

obtain the unique equilibrium outcome. Our model has substantially more structure,

and our equilibrium characterization is not immediately generalizable to the setting

of Gentzkow and Kamenica (2017a,b).

Our paper also contributes to the literature on competitive expertise and informa-

tional lobbying, in which a policy maker or legislator consults two or more biased

experts. The main focus of this literature is on whether consulting more than one

expert can improve the information disclosure to the policy maker, and if so, whether

full disclosure can be achieved. The majority of this literature assumes that experts’

communication is cheap talk. In Gilligan and Krehbiel (1989), Krishna and Morgan

2Other papers that explore the Bayesian persuasion setting where the designer is informed about the
state of the world include Perez-Richet (2014), Degan and Li (2016), Hedlund (2017), and Koessler
and Skreta (2021).
3A different model of competition in Bayesian persuasion, where multiple senders disclose different
coordinates of a multidimensional state, is studied in Au and Kawai (2020) and Boleslavsky and
Cotton (2018).
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(2001a,b), Battaglini (2002), Ambrus and Takahashi (2008), Li (2010), and Mylo-

vanov and Zapechelnyuk (2013a,b) the experts are fully informed about the state of

the world, so the inclusion of more than one expert has no informational role, but

it can improve the incentives for information disclosure. In Austen-Smith (1993),

Wolinsky (2002), Battaglini (2004), Levy and Razin (2007), and Ambrus and Lu

(2014), the experts are imperfectly informed, so multiple experts can improve the

informational content of cheap talk. In contrast, Li (2010) shows that more experts

can lead to less information disclosure.4 In addition to cheap talk communication,

the literature considers other types of communication by experts. Experts can col-

lude in their information disclosure strategies, as in Zapechelnyuk (2013). Experts

can strategically choose the amount of information obtained through i.i.d. random

processes, as in Brocas, Carrillo, and Palfrey (2012) and Gul and Pesendorfer (2012).

The effects of the order in which experts present their arguments are explored in

Krishna and Morgan (2001b) and D’Agostino and Seidmann (2021).

In this paper we allow for a potentially large number of activists who report their

noisy i.i.d. information about the state of the world. Our paper is thus related to

the literature on strategic voting and information aggregation in elections and polls

(Austen-Smith and Banks, 1996; Feddersen and Pesendorfer, 1997; Razin, 2003; Mor-

gan and Stocken, 2008). The highlight of this literature is that the aggregation of

disperse information does not always occur in polls. We also obtain this result, but

for a different reason. Unlike the above literature, in our paper the set of poll partici-

pants is endogenous and strategically chosen by the interested parties. In equilibrium

only uninformative participants (bots) are chosen, thus no information aggregation

occurs.

2. Model

We describe a stylized model of debates with several simplifying assumptions. To

streamline the exposition, we postpone the discussion of the role of the assumptions

to Section 4.1, after we have presented the results.

4A similar result is shown by Li and Norman (2018) in a Bayesian persuasion setting.
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2.1. Preliminaries. Two parties are engaged in a public debate on some issue rel-

evant to the public, for example, whether some economic policy should be imple-

mented, or whether an accusation against one of the parties is true and that party

should face a political defeat. As per the latter interpretation, the two parties are

called an accuser (A) and a defendant (D) and labeled by A and D. The truth about

the issue is summarized by a random unobserved state of the world ω ∈ [0, 1]. The

public consists of a continuum of citizens indexed by type θ ∈ [0, 1] that captures the

heterogeneity of the citizens’ attitudes towards the issue. The utility of each citizen

with type θ is given by ω − θ if the citizen decides to support party A on this issue,

and it is equal to 0 if the citizen decides to support party D. In words, citizens with

lower types θ are more predisposed to support the accuser, and the higher the state

ω the stronger is their support.

The state ω and the type θ are distributed independently, according to prior probabil-

ity distribution functions F and G that have continuous and strictly positive densities

f and g, respectively.

2.2. Debate. Citizens are informed about the state ω through a debate. In a debate,

a few participants make arguments that are potentially informative about ω. A debate

has a given capacity of N participants, with at least one participant for each party,

so N ≥ 2.

Each debate participant makes a single argument, so there are N arguments in total.

Citizens have an attention limit. Each citizen can only observe up to L arguments,

where L ≥ 2 is exogenously given. So, if N ≤ L, then each citizen observes all N

arguments. However, if N > L, then each citizen observes a random sample of size

L from the profile of N arguments. We assume that each argument in the profile is

equally likely to be observed.5

The participants of the debate are classified into experts, activists, and bots. We now

describe each class of participants in detail.

Experts are participants who are partially informed about the state. Each party

i = A,D invites a single expert. An expert invited by party i is endowed with a

5This assumption can be substantially relaxed, as discussed in Section 4.1.
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disclosure rule that describes this expert’s expertise, that is, what this expert can

find out and reveal about ω. Each expert’s disclosure rule is fixed and publicly

known: the expert has a reputation to maintain and must reveal her information

when providing expertise. We assume that there is a large pool of such experts with

a variety of disclosure rules. Each party can invite any expert from this pool.

A disclosure rule of an expert i is a monotone partitional signal defined as a right-

continuous, weakly increasing function σi : [0, 1] → [0, 1] that associates with each

state ω a message σi(ω). Informally, σi divides the state space [0, 1] into intervals

(categories) and reveals the category that the state belongs to. As standard in the

persuasion literature (e.g., Kamenica and Gentzkow, 2011), we normalize each mes-

sage mi = σi(ω) to be equal to the expected state conditional on that message,

σi(ω) = E[ω|mi = σi(ω)].

For example, the full disclosure rule is σi(ω) = ω, and no disclosure rule is constant

and equal to the prior expectation of ω, so σi(ω) = E[ω]. Let Σ be the set of all

monotone partitional signals. Thus, Σ is the pool of experts that the parties choose

from.

Unlike the experts who can make complex arguments, activists and bots are partici-

pants who make binary arguments, m ∈ {A,D}, where m = i indicates the support

of party i.

Activists are participants who have a noisy information about ω. Each activist j

sends message mj = A with a commonly known probability p(ω) = Pr(mj = A|ω),

and message mj = D with the complementary probability, independently of the other

participants. The function p(ω) is assumed to be strictly increasing in ω. Activists

are not invited, they turn up on their own until the capacity of the debate is filled.

Bots are participants invited by the parties to make uninformative arguments in

support of the inviter. Each bot invited by party i = A,D always sends the message

that supports the inviting party.

Citizens are able to identify whether an argument is made by an expert or by a non-

expert. However, citizens cannot reliably distinguish activists from bots. With an
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exogenous probability γ ∈ (0, 1) each citizen is able to detect whether an argument

is made by an activist or a bot. For concreteness, assume that each citizen is either

able or unable tell apart bots from activists, and the probability of the former is γ

independently across citizens and independently of the citizens’ type θ.6

The debate protocol is as follows. First, each party i = A,D invites a single expert

with a disclosure rule σi chosen from the set of monotone partitional signals Σ.7 At

the same time, each party i invites ni bots, 0 ≤ ni ≤ N − 2. If nA + nD > N − 2,

then bots are proportionally rationed to capacity.8 If nA + nD < N − 2, then the

remaining capacity of N − 2−nA−nD is filled with activists. Then, state ω realizes,

and the participants simultaneously make their arguments conditional on the state.

Finally, each citizen (who privately knows her type θ) observes a random sample m̂

of the arguments with the sample size of min{L,N}, derives the posterior expected

state E[ω|m̂] by Bayes’ rule given the knowledge of how m̂ is generated, and then

supports party A if and only if E[ω|m̂] ≥ θ.9

2.3. Payoffs. The parties are expected utility maximizers. Their preferences are as

follows. Let qi be an expected fraction of citizens who support party i = A,D, so

qA+qD = 1. Each party i = A,D obtains the utility ui(qi), which is twice continuously

differentiable, and strictly increasing in qi. For example, the parties can be interested

in maximizing their public support on the debated issue, so the utilities are linear,

ui(qi) = qi. For another example, the parties can be interested in reaching the support

by the simple majority, so each ui smoothly approximates the step function ψ1/2 given

by ψ1/2(qi) = 0 when qi < 1/2 and ψ1/2(qi) = 1 when qi > 1/2.

In addition, the parties incur costs for inviting participants. Each bot has a fixed

cost κ > 0. The experts are assumed to have the entropy-based cost function as in

the rational inattention literature (e.g., Matějka and McKay, 2015). The cost of an

expert with a disclosure rule σ comprises the fixed cost κ (so that an expert is never

6We discuss alternative interpretations in Section 4.1.
7In Section 4.1 we discuss and provide a justification to the assumption that the parties choose
experts ex ante, before learning any information about the state.
8The exact rationing rule is unimportant as long as it is monotone, because the parties do not exceed
the capacity in equilibrium.
9It is immaterial how a tie is resolved, because it is a zero probability event.
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cheaper than a bot) and the expected reduction in the entropy relative to the prior

distribution, so

φ(σ) = κ+H(F )− Eσ
[
H(Fσ(·|m)

]
,

where H(·) is the entropy function, F is the prior distribution of ω, and Fσ(·|m) is

the posterior distribution of ω conditional on message m of disclosure rule σ.10 In

summary, party i that invites ni bots and the expert with a disclosure rule σi incurs

the cost

c
(
κni + φ(σi)

)
,

where c > 0 is a cost scaling parameter.

Throughout the paper we consider the limit case of vanishing costs,

c→ 0. (A0)

In our analysis, the cost plays the role of equilibrium refinement. We analyze the

equilibrium behavior when there is no cost to invite participants, but we rule out

equilibria that are not robust to the introduction of small cost.

2.4. Equilibrium. We analyze the game between the two parties. Each party i’s

strategy is a pair si = (ni, σi) that consists of a number of bots ni and a choice of an

expert’s disclosure rule σi, where 0 ≤ ni ≤ N −2 and σi ∈ Σ. The subsequent choices

of the debate participants and the citizens are as described above. Let Ui(sA, sD)

be the expected payoff of party i as a function of the parties’ strategies. This is the

expected utility from the citizens’ support net of the costs. The solution concept is

Nash equilibrium in pure strategies.

Each pair of strategies s = ((nA, σA), (nD, σD)) induces a probability distribution

Hs over the posterior expected state observed by a representative citizen. We will

refer to this probability distribution as the outcome of strategy profile s. In words,

the outcome summarizes the information disclosed to a representative citizen through

the debate.

10Our results are not affected as long as φ(σ) is any nonnegative and strictly increasing function
with respect to Blackwell informativeness of σ.
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2.5. Assumptions. For the remainder of the paper, we maintain the following as-

sumptions:

density g of type θ is strictly log-concave on [0, 1]; (A1)

marginal utilities u′A and u′D are log-concave on [0, 1]; (A2)

party D prefers full disclosure to no disclosure. (A3)

Log-concavity11 is a common assumption in a variety of economic applications, such

as voting, signalling, and monopoly pricing (see Section 7 in Bagnoli and Bergstrom,

2005). Log-concave densities exhibit nice properties, such as unimodality and hazard

rate monotonicity. Many familiar probability density functions are log-concave (see

Table 1 in Bagnoli and Bergstrom, 2005). Log-concave marginal utility functions are

monotone (e.g., decreasing marginal utility) or single-peaked. Thus, we can include

the case relevant in political applications in which the parties care more about ob-

taining the support of the citizens near the median of the population distribution and

less about those at the extremes (e.g., obtaining the support of the simple majority).

Assumption (A3) formalizes the idea that the defendant is initially at a disadvantage.

That is, the initial situation where the public is uninformed is less favorable for the

defendant than the situation where the public learns the truth. This is consistent

with our story, as in practice accusations come at the time when the accused is

vulnerable. This assumption is made for the ease of interpretation. It plays no role

in the equilibrium analysis.

3. Results

We analyze and compare three discussion formats: an information monopoly, a free

debate, and a moderated debate.

An information monopoly of a party is the format where only the specified party

provides information to the public by inviting a single expert.

11A function h(x) is (strictly) log-concave if lnh(x) is (strictly) concave.
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A moderated debate is one with a small capacity, so that the number of participants

does not exceed the limit of the citizen’s attention, 2 ≤ N ≤ L. In a moderated

debate, every citizen observes all the arguments of the debate.

A free debate is one with no upper bound on the number of participants. We will

consider an approximation of the free debate by assuming a bounded capacity as it

tends to infinity, N →∞.

3.1. Information Monopoly. To set a benchmark, we first consider the case of

the information monopoly, where one of the two parties monopolizes the information

disclosure to the public. This is a Bayesian persuasion problem with the restriction

of information disclosure rules to monotone partitional signals.

A party i ∈ {A,D} is the information monopoly if it chooses a single expert, and each

citizen is informed about the state ω only by observing messages of the disclosure rule

σi of that expert.

We now find for each party i = A,D the optimal disclosure rule σMi when this party

is the information monopoly.

Proposition 1. Let party i ∈ {A,D} be the information monopoly. The optimal

disclosure rule σMi is unique and satisfies the following properties:

(i) Let i = A. There exists a threshold xMA such that σMA reveals the state when

ω ∈ [0, xMA ] and pools the states in (xMA , 1].

(ii) Let i = D. There exists a threshold xMD such that σMD reveals the state when

ω ∈ (xMD , 1] and pools the states in [0, xMD ].

This proposition follows from Theorem 1 in Kolotilin, Mylovanov, and Zapechelnyuk

(2021), whose conditions are satisfied under our assumptions. Using their terminol-

ogy, rule σMA is referred to as upper censorship, and rule σMD is referred to as lower

censorship. The formal proof Proposition 1 is in Appendix A.2.

To gain the intuition for why such disclosure rules are optimal, imagine that there are

three states: bad, average, and good (for the defendant). Suppose that the citizens

initially believe the expected state is average. Also suppose that the majority of the

citizens will support the defendant if they believe that the state is above average. The
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defendant never gets the support of the majority if it provides no information, and

only gets it in the high state if it fully reveals the state. However, the defendant can

get the support of the majority in the average and high states if she pools these states

(by sending the same message in both) and reveals the low state. So, giving away

bad news is instrumental to credibly improve the posterior beliefs when the news is

not bad.

3.2. Optimal Number of Bots. In this section we consider debates in both free and

moderated formats. We show that, in equilibrium, either the state is fully revealed,

or the parties fill the debate capacity with bots and leave no room to activists.

Proposition 2. Consider a debate with capacity N ≥ 2. For every Nash equilibrium

s∗ = ((n∗A, σ
∗
A), (n∗D, σ

∗
D)) at least one of the following properties must hold:

(i) the equilibrium outcome is full disclosure;

(ii) n∗A + n∗D = N − 2.

The proof is in Appendix A.3.

Intuitively, if there are activists among the debate participants, each party i has an

incentive to deviate from its strategy (n∗i , σ
∗
i ) by adding a friendly bot. This devia-

tion is undetected by the fraction 1 − γ of the citizens who cannot distinguish bots

and activists. With a strictly positive probability, every such citizen observes one

less argument from an activist and one more argument from party i’s bot without

knowing about this change, which strictly benefits party i. Put simply, the parties

have incentives to substitute activists, who are uncontrolled sources of information,

with controlled bots, provided some part of the population cannot observe this sub-

stitution.

The main conclusion from Proposition 2 is that in debates where the participation

and agenda are controlled by the interested parties, activists play no role. Either

the state is fully revealed by the experts, in which case the information provided by

activists is redundant, or the entire capacity is filled with experts and bots, and no

activists are present at all. Thus, crowdsourcing of information by combining a large
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number of independent, imperfectly informative arguments does not occur in such

debates.

3.3. Informativeness. Let us compare how much information is revealed to the

public in different discussion formats.

We compare the value of different formats to the citizens by Blackwell informativeness

of their equilibrium outcomes. We say that a probability distribution H is more

Blackwell-informative than a probability distribution H̃ if H is a mean-preserving

spread of H̃ (Blackwell, 1953).

An outcome of a strategy profile s is interval censorship if there is a pair of thresholds

(x′, x′′) with 0 ≤ x′ ≤ x′′ ≤ 1 such that the state ω is revealed if ω ∈ [0, x′] and

ω ∈ (x′′, 1], and the states are pooled (i.e., the same pooling message is sent) when

they belong to the interval ω ∈ (x′, x′′].

Two special cases of interval censorship are full disclosure and no disclosure. An

outcome is full disclosure if the state is fully revealed, so Hs(ω) = Fs(ω). It is no

disclosure if no information about the state is revealed, so Hs(ω) has the unit mass

on the prior expected state E[ω].

Our first main result finds the equilibrium disclosure in the free and moderated for-

mats.

Theorem 1. Consider a debate with a capacity N ≥ 2. Let L ≥ 2 be a citizen’s

attention limit.

(Moderated Debate) If N ≤ L, then the unique Nash equilibrium outcome is an inter-

val censorship. This outcome is more Blackwell-informative than optimal disclosure

under the information monopoly of either party.

(Free Debate) In every Nash equilibrium, at least the fraction 1−2L/N of the citizens

remain completely uninformed. As N → ∞, the limit Nash equilibrium outcome is

no disclosure.

The proof is in Appendix A.4.

Theorem 1 shows that, when the debate is moderated, the unique equilibrium outcome

is interval censorship. Importantly, this outcome reveals more information to the
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citizens than the optimal interval censorships under the information monopoly of

either party A or D.

In contrast, when the debate capacity N is large, the citizens get to sample and

observe the experts’ arguments exceedingly rarely. A representative citizen samples

only bots with the probability at least 1 − 2L/N . Because bots are uninformative

(and the citizens know that there are no activists in equilibrium), the mass of at least

1 − 2L/N of the citizens remains uninformed. In the free debate, as N → ∞, every

equilibrium outcome approaches no disclosure.

Using Theorem 1, we can compare the informativeness of different discussion formats

for the public.

Corollary 1. A moderated debate is more Blackwell-informative than an information

monopoly of either party, which is more Blackwell-informative than a free debate.

The conclusion is that moderated debates are helpful as they reveal more information

than the information monopolies. In contrast, even when it is in the interest of each

party to optimally reveal some information, this interest is eroded and the information

gets spammed when the debate is free.

3.4. Comparison of Discussion Formats for Defendant. Let us compare the

discussion formats from the perspective of the defendant. Following our story, the

defendant can choose one of three formats. First, she can refrain from making any

discussion, thus granting the information monopoly to the accuser. Second, she can

choose a free debate format which is a stylized approximation of an endless exchange

of arguments. Third, she can challenge the accuser to a moderated debate, such as a

debate on TV.

Corollary 2. The defendant prefers a moderated debate to both a free debate and the

accuser’s information monopoly.

Intuitively, the defendant has a better control over information in a moderated debate

than in the accuser’s information monopoly. Also the defendant prefers the equilib-

rium outcome of a moderated debate to full disclosure, because she has an option



18 MYLOVANOV AND ZAPECHELNYUK

to fully disclose the state in a moderated debate. Finally, by our assumption (A3),

the defendant prefers full disclosure to no disclosure, which is the outcome of a free

debate.

Notice that the comparison of the same formats from the accuser’s perspective is

obvious. The accuser will prefer his own information monopoly, as this is the format

where he has the best control over the information disclosure.

3.5. Equilibrium in Moderated Debate. Our main result, Theorem 1, relies on

Proposition 3 below that characterizes the equilibrium strategies of the parties in a

moderated debate. In addition, it allows us to determine the conditions under which

the competition of the parties for the public support leads to full disclosure of the

state in moderated debates.

Before stating the proposition, we introduce some notation and prove an auxiliary

lemma. Let x be a posterior expected state conditional on some message from σi.

A citizen supports the accuser if and only if her type θ does not exceed x. Thus,

the citizen with type θ = x is indifferent between supporting the accuser and the

defendant, and the fraction of the population that supports the accuser is G(x).

Define

VA(x) = uA(G(x)) and VD(x) = uD(1−G(x)). (1)

So, Vi(x) is party i’s utility when the indifferent citizen has type x. Note that VA(x)

is strictly increasing and VD(x) is decreasing in x. We will refer to Vi(x) as party i’s

indirect utility.

We now show that, under the assumptions of this paper, the indirect utilities have

specific shapes. Namely, VA(x) is strictly S-shaped, that is, it is first strictly convex,

and then strictly concave. Symmetrically, VD(x) is strictly inverted S-shaped, that is,

it is first strictly concave, and then strictly convex.

Lemma 1. There exists τA, τD ∈ [0, 1] such that

(i) VA(x) is strictly convex for x < τA and strictly concave for x > τA;

(ii) VD(x) is strictly concave for x < τD and strictly convex for x > τD.

The proof is in Appendix A.5.
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We denote by τi the inflection point of party i’s indirect utility. If τA = 0 and τD = 1

then VA(x) and VD(x) are globally concave, so the value of every additional citizen

that supports party i = A,D diminishes. Similarly, if τA = 1 and τD = 0 then VA(x)

and VD(x) are globally convex, so the value of every additional citizen that supports

party i = A,D increases.

Recall that xMi denotes the threshold of the optimal interval censorship under the

information monopoly of party i (see Proposition 1).

Proposition 3. Consider a debate with a capacity 2 ≤ N ≤ L. Every Nash equilib-

rium s∗ = ((n∗A, σ
∗
A), (n∗D, σ

∗
D)) induces the same outcome.

(i) If τA ≥ τD, then there exists a threshold x∗ ∈ [0, 1] such that σ∗A reveals the states

in ω ∈ [0, x∗] and pools the states in (x∗, 1], whereas σ∗D reveals the states in ω ∈ (x∗, 1]

and pools the states in [0, x∗].

(ii) If τA < τD, then there exists a unique pair of thresholds 0 ≤ x∗A < x∗D ≤ 1 such

that σ∗A reveals the states in ω ∈ [0, x∗A] and pools the states in (x∗A, 1], whereas σ∗D

reveals the states in ω ∈ (x∗D, 1] and pools the states in [0, x∗D]. Moreover,

xMA ≤ x∗A < x∗D ≤ xMD . (2)

The proof is in Appendix A.6.

Besides characterizing the structure of the equilibrium disclosure outcomes, Proposi-

tion 3 delivers two insights.

The first insight is that in a moderated debate the Nash equilibrium outcome fully

discloses the state if and only if τA ≥ τD. To gain intuition, consider Figure 1.

The horizontal axis shows the position x of the citizen who is indifferent between

supporting parties A and D. As x increases, more citizens support party A and fewer

support party D. Solid curves depict the indirect utilities of the parties, VA is the

increasing curve and VD is the decreasing curve. To underscore this

Figure 1(a) shows the case of strong competition, τA = τD. Up to the intersection in

the middle, both parties have increasing marginal utilities from swaying the indifferent

citizen to their side. Given party D disclosing the state on [1/2, 1], VA is convex on

[0, 1/2], so party A is risk loving, and thus it optimally reveals the state on that
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revealing by A revealing by D
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pooling
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(a) The case of τA = τD (b) The case of τA < τD

Figure 1. Equilibrium disclosure for different τA and τD.

interval, which induces the riskiest lottery over the states. Symmetrically, given

party A disclosing the state on [0, 1/2], party D optimally reveals the state on interval

[1/2, 1]. We thus obtain full disclosure by the two parties.

In Figure 1(b), where τA < τD, the situation is different. Both parties have decreasing

marginal utilities from swaying the indifferent citizen x to their side when x is between

τA and τD. The utilities of the parties are concave on that interval, so the parties

are risk averse and benefit from pooling some states in the middle. The equilibrium

cutoffs are as shown in Figure 1(b) for an appropriately chosen distribution of the

state.

We summarize the above as a corollary.

Corollary 3. A moderated debate fully reveals the state if and only if the preferences

of A and D are sufficiently conflicting, τA ≥ τD.

The second insight from Proposition 3 is that a moderated debate reveals more in-

formation that an information monopoly for two reasons. First, each information

monopoly alone reveals the states on one end of the spectrum (as follows from Propo-

sition 1), but the two parties together reveal the states on both ends of the spectrum,

thus making the citizens fully informed whenever the states are extreme. Second, as

follows from full disclosure in the case of τA ≥ τD, and from the inequality (2) in the
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case of τA < τD, the competition makes each party reveal the state on a larger interval

(e.g., [0, x∗A] for the accuser) as compared to what it would optimally do under the

information monopoly ([0, xMA ] for the accuser).

3.6. Increasing Marginal Utility Ratio. We now show that the condition of τA ≥
τD is satisfied, and thus the state is fully revealed in a moderated debate, under the

assumption that the ratio of the marginal utilities of the parties is constant,

u′A(q)

u′D(1− q) is weakly increasing in q. (3)

In words, this assumption means that every utility unit lost by one party translates

into an increasingly larger number of utility units gained by the other party.

There are two special cases of this condition that are prominent in the literature.

First, (3) holds when the parties have zero-sum or constant-sum utilities,

if uA(q) + uD(1− q) = constant for all q ∈ [0, 1], then (3) holds.

Second, (3) holds when the parties’ utilities are linear in the fraction of citizens who

support them,

if uA(q) and uD(q) are linear in q, then (3) holds.

Proposition 4. A moderated debate fully reveals the state if condition (3) holds.

The proof is in Appendix A.7.

4. Discussion

In this section we discuss several modeling assumptions and comment on some vari-

ations of the model.

4.1. Assumptions. We outline the roles of various assumptions in our model.

In our debates, each party can invite only one expert. In the moderated debate,

inviting more than one expert is unprofitable, as long as the set of experts is rich, in

the sense that the available expertise includes all monotone partitional signals. This

is because any such information structure communicated by multiple experts can be
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communicated by a single expert, while adding more experts increases the cost. In

the free debate, inviting more than one expert is also unprofitable, because the impact

of an extra expert vanishes as N → ∞. However, in a debate with a given bounded

capacity N > L, there is a further consideration: adding more experts increases the

chance that citizens observe their arguments. For example, let N = L+ 1, so there is

a small chance that a representative citizen does not observe party i’s single expert σi.

Adding the second expert costs cφ(σi) but eliminates the chance that citizens do not

observe party i’s expert. For a positive but small c, this tradeoff can be worthwhile,

and the analysis is nontrivial.

As standard in Bayesian persuasion literature, we assume that the parties choose ex-

perts ex ante, before learning any information about the state. However, in practice,

it is plausible to think that the parties may know something about the state when

choosing experts. We justify this assumption by invoking the equivalence result of

Zapechelnyuk (2022). According to this result, under the assumption of monotone

utility (which holds in our model), a party that is informed about the state before

choosing an expert can arbitrarily closely replicate (in sequential equilibrium) its ex

ante optimal outcome. The reason is outlined as follows. In equilibrium, the citizens

expect each party to choose a specific expert independently of that party’s private

information about the state. If the party deviates from the equilibrium choice, the

citizens become “suspicious” and form a posterior belief that strongly favors the com-

petitor, so much that the party is unwilling to deviate in this manner. Consequently,

in such an equilibrium, the parties optimally disregard their private information, and

choose the same expert as they would if they did not have this information at all.

Another standard assumption in Bayesian persuasion literature is that experts commit

to their disclosure strategies. Our justification for this commitment is that the experts

do not know the state, they simply reveal the results of their expertise. However, this

does not preclude the possibility that a party bribes an expert to falsify the results

of the expertise. We assume that this does not happen, as the experts have their

reputation to maintain. The model of partial commitment in Bayesian persuasion

is explored in Lipnowski, Ravid, and Shishkin (2019), Guo and Shmaya (2021), and
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Min (2021). Their findings demonstrate continuity with respect to small departures

from commitment, thus suggesting that our results are robust in this regard.

We assume that the experts’ information structures are monotone partitional. While

the restriction to monotone partitions can be justifiable in many applications (see the

justification of this assumption in Kolotilin and Zapechelnyuk (2019) and Onuchic and

Ray (2021)), it still begs the question whether our result about the equilibrium of the

competition in persuasion (Proposition 3) continues to hold if we permit arbitrary

information structures. The answer is that our equilbrium remains unchanged, but

it may lose uniqueness, so other equilibria may emerge. The reason is that, following

Kolotilin, Mylovanov, and Zapechelnyuk (2021), given a monotone partitional strat-

egy of the other party, the party’s best response among all information structures is

censorship, which itself is a monotone partition. So the pair of monotone partitional

strategies described in our Proposition 3 remains a mutual best response if we expand

the parties’ strategies to all information structures. Yet, the characterization of all

equilibria is challenging. It requires to solve the problem of Bayesian persuasion of a

receiver who has two-dimensional private information, one dimension is private type

θ and the other dimension captures the endogenous signal from the other party. To

the best of our knowledge this remains an open question.

In our model, each citizen either can or cannot distinguish activists and bots. The

probability of the former is γ, independently from their own type θ and from other

citizens. There are many other ways of introducing this assumption that do not

affect our results. For example, γ could be the probability that each activist/bot is

either publicly identifiable as such or not, independently from other activists/bots.

For another example, γ could be the probability that in a specific pair of (citizen,

participant), the citizen is able to identify whether the participant is activist or bot,

independently of all other pairs. What is important, however, is that the parties

cannot select bots on the basis of how hard they are to tell apart from activists. It

is also important that there is no prefect correlation between the citizens’ type θ and

their ability to distinguish activists and bots. As long as there is a nondegenerate
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probability of confusing a bot with an activist, and the cost of bots is small enough,

the parties would still have incentives to invite bots in order to crowd out activists.

We assume that each citizen has the same attention limit L and that a uniformly

random sample of L observations is observed when N > L. The property used in

our analysis is that a representative citizen samples an expert with a probability that

approaches zero as N → ∞. Clearly the above assumptions can be substantially

relaxed while retaining this property. However, we do rule out that citizens can

purposely search for experts and ignore uninformative bots. In practice, people often

listen to uninformative news because of its entertainment value. Moreover, there can

be a substantial cost to search for a needle in a haystack of arguments.

We also assume that when a debate has capacity that remains unfilled by invited par-

ticipants, this capacity is filled by activists. This assumption simplifies the derivation

of the results, but it is conceptually unimportant. For example, suppose instead that

activists arrive according to a Poisson process. If the number of activists and bots

together is greater than the capacity, then the participants are selected at random

until the capacity is filled. In this case, provided that the cost of bots is negligible,

the parties have incentives to invite a large number of bots that dwarfs the expected

number of activists, so a vanishing number of activists is selected.

In our model, the distribution of the citizens’ types and the marginal utilities of the

parties are assumed to be logconcave. While this is a rather common assumption, as

we pointed out in Section 2.5, one may ask, for example, what happens if we assume

monotone or single-peaked functions instead. As follows from Kolotilin, Mylovanov,

and Zapechelnyuk (2021), the logconcavity assumption is sufficient for our Proposition

1, but not necessary. So there is a scope for the extension of our result to a larger set

of primitives of the model. We leave this question for future research.

4.2. Optimal Capacity. Suppose that the regulator representing the defendant,

the public, or the society as a whole can choose the capacity N of the debate. The

optimal capacity is N = 2. That is, the optimal debate is the moderated debate

that includes experts only. This is because in equilibrium there are no activists. Any

excess capacity over N = 2 is filled with bots, which is a waste of resources from
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the perspective of the defendant and a waste of attention from the perspective of the

public.

4.3. Competing Events. Suppose that instead of holding a moderated debate, each

party hosts its own event (e.g., a press conference). This event has the same format

as a debate with a given capacity N ≤ L, but only the organizing party is allowed

to invite participants. Suppose further that each citizen has to choose how to spread

her attention L between the two events. In particular, a citizen can choose to focus

her attention on a single event.

The equilibrium information disclosure of this game is the same as that in Theorem

1. The reason is as follows. First, notice that each party will fill the capacity of its

event with bots, for the same reason as in the moderated debate. So the equilibrium

disclosure is determined by the expertise. Second, because citizens can choose where

to focus their attention, there will be self-selection with the full focus on a single event.

Specifically, there will be a cutoff type θ∗ such that types below θ∗ will observe the

event organized by the accuser, and types above θ∗ will observe the event organized

by the defendant. By the argument in Kolotilin, Mylovanov, Zapechelnyuk, and Li

(2017, Proposition 2), this is equivalent to them observing both events simultaneously,

which is the same as observing the moderated debate.

Appendix

A.1. Auxiliary Lemma. To prove our results, we will use an auxiliary lemma stated

below. This lemma directly follows from Kolotilin, Mylovanov, and Zapechelnyuk

(2021) under the assumptions of this paper.

Consider a problem of information monopoly when the state ω is restricted to some in-

terval [a, b] ⊂ [0, 1] and distributed according to the conditional density f(ω)/(F (b)−
F (a)). Let Σ[a,b] the set of monotone partitional disclosure rules on [a, b] of the infor-

mation monopolist i = A,D.

Let σi ∈ Σ[a,b]. Let x be a posterior expected state conditional on some message from

σi. Because a citizen supports the accuser if and only if her type θ does not exceed
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x, we can also interpret x as the type of the indifferent citizen. For each x ∈ [a, b] let

rA(x) = VA(x)− VA(m[x,b])− V ′A(m[x,b])(x−m[x,b]), (4)

rD(x) = −VD(x) + VD(m[a,x]) + V ′D(m[a,x])(x−m[a,x]), (5)

where VA and VD are given by (1), and we use the notation

m[x′,x′′] = E
[
ω
∣∣ω ∈ [x′, x′′]

]
.

By Lemma 1 in Section 3.5, there exist (τA, τD) ∈ [0, 1]2 such that VA(x) is strictly

convex on [0, τA] and strictly concave on [τA, 1], and VD(x) is strictly concave on [0, τD]

and strictly convex on [τD, 1]. So τA and τD are the inflection points of VA and VD.

Lemma 2. Let ω ∈ [a, b] ⊂ [0, 1] be distributed with density f(ω)/(F (b)−F (a)). Let

party i ∈ {0, 1} be the information monopoly. There is a unique optimal disclosure

rule σ′i ∈ Σ[a,b]. It is described as follows.

Let x̃i be the unique point in [a, b] that satisfies

ri(x) > (<) 0 whenever x < (>) x̃i.

(i) Let i = A. Then σ′A reveals the state in [a, x̃A] and pools the states in (x̃A, b].

Moreover, if τA ≥ b, then x̃A = b (so σ′A is full disclosure); if τA < b, then

a ≤ x̃A < τA < m[x̃A,b] < b, (6)

and

V ′A(m[x̃A,b]) > V ′A(x̃A) and V ′′A(m[x̃A,b]) < 0. (7)

(ii) Let i = D. Then σ′D reveals the state in (x̃D, b] and pools the states in [0, x̃D].

Moreover, if τD ≤ a, then x̃D = a (so σ′D is full disclosure); if τD > a, then

a < m[a,x̃D] < τD < x̃D ≤ b, (8)

and

V ′D(m[a,x̃D]) < V ′D(x̃D) and V ′′D(m[a,x̃D]) < 0. (9)
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Proof. Under Assumptions (A1)–(A2), by Lemma 1 in Section 3.5, VA is S-shaped

(first convex and then concave) and VD is inverted S-shaped (first concave and then

convex). For c = 0, the existence and uniqueness of the disclosure rule stated in

Lemma 2 follows from Theorem 1 in Kolotilin, Mylovanov, and Zapechelnyuk (2021)

(thereafter, KMZ). Inequalities (6) and (8) follow from Lemma 2 in KMZ. Inequalities

(7) and (9) follow from the property that ri(x) is single-crossing from above by Lemma

1 in KMZ, and that this crossing point is exactly x̃i. Finally, by Gentzkow and

Kamenica (2014), party i’s expected utility is continuous in c when c > 0, so any

optimal disclosure rule converges to σ′i as c→ 0. �

A.2. Proof of Proposition 1. Proposition 1 follows immediately from Lemma 2

(see Section A.1 above) with [a, b] = [0, 1]. �

A.3. Proof of Proposition 2. Let s∗ = ((n∗A, σ
∗
A), (n∗D, σ

∗
D)) be a Nash equilibrium

whose outcome is not fully informative. Suppose that there are activists, so n∗A+n∗D <

N − 2. We show that one of the firms strictly prefers to add one more bot, thus

contradicting the assumption that s∗ is a Nash equilibrium.

Let n∗A + n∗D < N − 2 and consider i = A (the argument for i = D is symmetric).

The deviation from (n∗A, σ
∗
A) to (n∗A + 1, σ∗A) changes the participant positioned at

j∗ = 2 + n∗A + n∗D + 1, from an activist who reports mj∗ = A with probability p(ω)

to a bot who reports mj∗ = A with certainty. A representative citizen samples the

argument of participant j∗ with a strictly positive probability, min{L,N}/N > 0.

Let m̂ be a sample from the participants’ arguments that contains the argument of

participant j∗ and does not fully reveal the state. The probability of drawing such a

sample is strictly positive, because the outcome is not fully informative by assumption.

Note that m̂ may contain both, either, or none of the two experts. (Obviously, m̂

always contains both experts if N ≤ L, and at least one if N = L + 1.) Because

the experts that are contained in m̂ (if any) do not fully reveal the state, there exists

at least one interval (ω′, ω′′] ⊂ [0, 1] such that, conditional on the arguments of the

experts’ contained in m̂, the posterior state is pooled for each ω ∈ (ω′, ω′′]. Because

the density f of the state is strictly positive, this event occurs with a strictly positive
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probability, F (ω′′) − F (ω′), leading to a nondegenerate posterior distribution with

support on (ω′, ω′′] and density f(ω)/(F (ω′′)− F (ω′)).

Recall that there is a fraction 1 − γ > 0 of citizens who cannot distinguish bots

and activists. Every such citizen only see argument A or D from every non-expert

participant in the samples they observe. Also recall that the activists’ arguments are

independent from each other, and the probability of mj = A is a strictly increasing

function p(ω). Let n̂ be the number of regular participants in the sample m̂, and let

k̂ ∈ {0, ..., n̂} be the number of arguments in favor of party A, mj = A, among these

participants. Because the citizens believe that there is a strictly positive number of

activists in total, N−2−n∗A−n∗D > 0, the posterior expected state E[ω|m̂, ω ∈ (ω′, ω′′]]

is strictly increasing in k̂.

Thus, when ω ∈ (ω′, ω′′), changing the report of participant j∗ from mj∗ = A with

probability p(ω) < 1 to mj∗ = A with certainty strictly increases the posterior ex-

pected state in each sample that contains participant j∗ and is not fully revealing. It

follows that a representative citizen’s posterior expected state is never smaller, and

with a strictly positive probability it is strictly greater. Thus, the deviation from

(n∗A, σ
∗
A) to (n∗A + 1, σ∗A) strictly increases the expected payoff of party A for each

sufficiently small cost parameter c > 0.

Now suppose that there no activists, so n∗A + n∗D = N − 2. We show that none one of

the firms prefers to remove bots when c is sufficiently small. Suppose party i deviates

and removes k bots, 0 < k ≤ n∗i , so k activists appear instead. Recall that there is a

fraction γ > 0 of citizens who can distinguish bots and activists. After the deviation

of i, every such citizen samples the messages of the activists with a strictly positive

probability. Analogously to our argument made in the first part of this proof, the

posterior expected state of this citizen changes in the way that makes party i strictly

worse off in expectation. Thus, such a deviation is not profitable for party i when the

cost parameter c is sufficiently small. �

A.4. Proof of Theorem 1. Part 1 (Moderated Debate). Let N ≤ L. By Proposition

3 (see Section 3.4), every Nash equilibrium leads to the same outcome.
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Let s∗ = ((n∗A, σ
∗
A), (n∗D, σ

∗
D)) be a Nash equilibrium, which leads to the unique equi-

librium outcome. If the outcome of s∗ is full disclosure, then it is a special case

of interval censorship. Obviously, it is more Blackwell-informative than any other

outcome, in particular, those induced by σMA and σMD .

If the outcome of s∗ is not full disclosure, then, by part (ii) in Proposition 3, σ∗A and σ∗D

together reveal the state on [0, x∗A] and (x∗D, 1], and pool the states on (x∗A, x
∗
D], where

x∗A < x∗D. Moreover, by Proposition 2, n∗A + n∗D = N − 2. Consequently, the outcome

of s∗ is interval censorship with thresholds (x∗A, x
∗
D). Moreover, by Proposition 3,

xMA ≤ x∗A < x∗D ≤ xMD . This means that the outcome of s∗ reveals the state on a

weakly larger set of states than either σMA or σMD (see Proposition 1), thus being more

Blackwell informative.

Part 2 (Free Debate). The statement is vacuous for N ≤ 2L. Let N > 2L, and

let s∗ = ((n∗A, σ
∗
A), (n∗D, σ

∗
D)) be a Nash equilibrium. The outcome of s∗ cannot be

full disclosure, because a citizen’s sample contains no experts with a strictly positive

probability:

N − 2

N
· N − 3

N − 1
· ... · N − L

N − L+ 2
· N − L− 1

N − L+ 1
=

(N − L)(N − L− 1)

N(N − 1)
≥ 1− 2L

N
> 0.

We can thus conclude by Proposition 2 that n∗A + n∗D = N − 2. It follows that

with probability at least 1 − 2L/N a citizen samples only bots, thus receiving no

information about the state. Consequently, the mass of uninformed citizens is at

least 1− 2L/N , which approaches 1 as N →∞. �

A.5. Proof of Lemma 1. We prove the lemma for i = A (the proof is symmetric

for i = D). By (1),

V ′′A(x) =
d2

dx2
uA(G(x)) = u′′A(G(x)) (g(x))2 + u′A(G(x))g′(x)

= u′A(G(x)) (g(x))2
(
u′′A(G(x))

u′A(G(x))
+

g′(x)

(g(x))2

)
. (10)

By assumption, u′A and g are strictly positive, so u′A(G(x)) (g(x))2 > 0. Because u′A

is log-concave by Assumption (A2) and G is strictly increasing, u′′A(G(x))/u′A(G(x)) is

decreasing. Because g is strictly log-concave by Assumption (A1), we have g′′(x)g(x) <
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(g′(x))2. Therefore,

d

dx

(
g′(x)

(g(x))2

)
=
g′′(x)(g(x))2 − 2g(x)(g′(x))2

(g(x))4
<

(g′(x))2g(x)− 2g(x)(g′(x))2

(g(x))4

= −(g′(x))2

(g(x))3
≤ 0.

Thus, g′/g2 is strictly decreasing. We have proved that V ′′A(x) crosses the horizontal

axis at most once and from above, which implies the statement of Lemma 1. �

A.6. Proof of Proposition 3. We first show that if there is a Nash equilibrium

outcome for N > 2, then the same outcome is obtained in a Nash equilibrium for N =

2. To prove this claim, let s∗ = ((n∗A, σ
∗
A), (n∗D, σ

∗
D)) be a Nash equilibrium for N > 2.

By Proposition 2, either (σ∗A, σ
∗
D) fully disclose the state, or n∗A+n∗D = N +2, so non-

expert participants are all bots, and thus the pair (σ∗A, σ
∗
D) determines the outcome.

We wish to show that for N = 2, the strategy profile s̃∗ = ((0, σ∗A), (0, σ∗D)) that

induces the same outcome must also be a Nash equilibrium. Suppose by contradiction

that this is not the case, so at s̃ some party i has a strictly profitable deviation to

some strategy (0, σ̂∗i ). But then the deviation to (n̂i, σ̂i) = (N + 2, σ̂∗i ) when playing

s∗ for N > 2 would also lead to a strict improvement in the payoff, provided the cost

c is small enough. We thus have reached a contradiction to the assumption that s∗ is

a Nash equilibrium.

We thus conclude that Proposition 3 for N > 2 follows from Proposition 3 for N = 2,

which we prove now. The proof for the case of N = 2 is divided into three steps. Step

1 derives a unique best reply of each party i. Steps 2 and 3 use Step 1 to establish

Parts (i) and (ii) of Proposition 3, respectively.

Let N = 2, so the two experts are the only debate participants. A strategy of each

party i reduces to a choice of a disclosure rule σi ∈ Σ. In what follows, we drop

nA = nD = 0 from the notation.

Recall that τi is the inflection point of the expected utility Vi of each party i, as

defined in Appendix A.1.
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Step 1. For each party i = A,D and each strategy σi ∈ Σ of that party, the other

party j 6= i has a unique (up to a measure zero of states) best reply BRj(σi) ∈ Σ.

This best reply is fully described by a threshold x̃i ∈ [0, 1] as follows:

(a) BRA(σD) reveals each state in [0, x̃A] whenever it is not already revealed by σD,

and pools the rest of the states into the largest possible intervals. Moreover, x̃A ≤ τA.

(b) BRD(σA) reveals each state in (x̃D, 1] whenever it is not already revealed by σA,

and pools the rest of the states into the largest possible intervals. Moreover, x̃D ≥ τD.

Proof of Step 1. We provide the proof for i = A (the proof is analogous for i = D).

Let σD ∈ Σ. Because σD is a monotone partition, it can be described by a set of

intervals IP where the states are pooled and a set of intervals IR where the states

are revealed. Specifically, IP contains the largest disjoint intervals (a, b] on which the

states are pooled by σD, so for each each (a, b] ∈ IP and each ω ∈ (a, b] we have

σD(ω) = E[ω|ω ∈ (a, b]]. Also, IR contains the largest disjoint intervals (a′, b′] on

which the states are revealed by σD, so for each each (a′, b′] ∈ IR and each ω ∈ (a′, b′]

we have σD(ω) = ω.

Suppose that τA = 0. Then by Lemma 2 it is optimal for party A to pool all the

states in [0, 1], so BRA(σD) satisfies (a) with x̃A = 0.

Alternatively, suppose that τA > 0. Then there exists a unique interval (a∗, b∗] ∈
IR ∪ IP that contains τA. Conditional on the state being in (a∗, b∗], by Lemma 2

there exists a unique x̃A < τA such that it is optimal to reveal the states in [a∗, x̃A]

and to pool the states in (x̃A, b
∗].12 For each interval (a, b] ∈ IR ∪ IP to the right

of b∗, so τA ≤ a, by Lemma 2, it is optimal to pool the states. For each interval

(a, b] ∈ IR ∪ IP to the left of a∗, so τA ≥ b, by Lemma 2, it is optimal to reveal

the states. Consequently, σA = BRA(σD) ∈ Σ pools the states in (x̃A, 1] and reveals

all the states in [0, x̃A] that are not already revealed by σD. Note that because less

informative rules are cheaper when c > 0, this means that σA = BRA(σD) ∈ Σ pools

the states that are already revealed by σD, i.e, in each interval (a, b] ∈ IR where

b < τA. �

Step 2. Let τA ≥ τD. Then Part (i) in Proposition 3 holds for the case of N = 2.

12Note that it does not make any difference whether an isolated point ω = a∗ is revealed or pooled
with an adjacent interval, because the distribution function F has no atoms by assumption.
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Proof of Step 2. If (σ∗A, σ
∗
D) are mutual best replies, then by Step 1, there exist

(x̃A, x̃D) with x̃A ≤ τA and x̃D ≥ τD such that σ∗D reveals all the states in (x̃D, 1] that

are not already revealed by σ∗A, and σ∗A reveals all the states in [0, x̃A] that are not

already revealed by σ∗D.

We now show that x̃A = x̃D.

To rule out x̃A > x̃D, observe that in this case both parties reveal the state in (xD, xA],

so each party has a profitable deviation by using a less informative rule that does not

reveal the state in that interval.

To rule out x̃A < x̃D, observe that in this case the state is pooled in the interval

(x̃A, x̃D], with the expected value

m(x̃A,x̃D] = E[ω|ω ∈ (x̃A, x̃D]].

But by Lemma 2 applied to [a, b] = [0, x̃D], given that the state is in [0, x̃D], the

optimal threshold x̃A for party A must satisfy

x̃A ≤ τA < m(x̃A,x̃D].

Similarly, by Lemma 2 applied to [a, b] = [x̃A, 1], given that the state is in [x̃A, 1], the

optimal threshold x̃D for party D must satisfy

m(x̃A,x̃D] < τD ≤ x̃D.

It follows that τA < m(x̃A,x̃D] < τD, which is a contradiction to the assumption that

τA ≥ τD. We thus conclude that x̃A = x̃D, and all states in [0, 1] are revealed by

(σ∗A, σ
∗
D), so the outcome is full disclosure. �

Step 3. Let τA < τD. Then Part (ii) in Proposition 3 holds for the case of N = 2.

Proof of Step 3. If (σ∗A, σ
∗
D) are mutual best replies, then by Step 1, there exists a

pair (x∗A, x
∗
D) with

0 ≤ x∗A ≤ τA < τD ≤ x∗D ≤ 1

such that σ∗A reveals the state when ω ∈ [0, x∗A] and pools the states in (x∗A, 1], whereas

σ∗D reveals the state when ω ∈ (x∗D, 1] and pools the states in [0, x∗D]. It remains to
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revealing by A pooling revealing by D

0 1x = τA

VA

m[x,x∗
D
] x∗

D

−rA(x)
revealing by A

pooling revealing by D

0 1τA

VA

m[x,x∗
D
]x x∗

D

rA(x)

(a) The case of rA(x) < 0, so x∗A < x (b) The case of rA(x) > 0, so x∗A > x

Figure 2. A choice of cutoff x by party A for a given x∗D.

0 1τA
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m[x∗
A
,x∗

D
]x∗

A

revealing by A

pooling revealing by D

x∗
D 0 1τA

VA

m[x∗
A
,1]x∗

A

revealing by A

pooling

(a) Optimal x∗A on the interval [0, x∗D] (b) Optimal x∗A on the interval [0, 1]

Figure 3. Optimal cutoff x∗A for party A.

prove that the equilibrium pair (x∗A, x
∗
D) is unique and to show that inequality (2)

holds.

Let (σ∗A, σ
∗
D) be a Nash equilibrium as described above, and let (x∗A, x

∗
D) be the asso-

ciated pair of thresholds. By (4) and Lemma 2 applied to [a, b] = [0, x∗D] (the interval

where the state is pooled by party D), party A’s best-reply threshold must satisfy

rA(x) = VA(x)− VA(m[x,x∗D])− V ′A(m[x,x∗D])(x−m[x,x∗D]) > (<) 0 if x < (>)x∗A. (11)

For illustration consider Figure 2. Party A chooses a cutoff x, so that the state is

revealed when in [0, x] and pooled when in (x, x∗D]. Party A’s indirect utility VA
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(depicted by the solid curve) is S-shaped, and τA is its inflection point. Function

rA(x) can be seen as the difference at point x between VA and the dashed line that

is tangent to VA at the expected state m[x,x∗D] of the pooling interval (x, x∗D]. Figure

2(a) shows the case where x = τA is too high, so rA(x) < 0, and thus the optimal

cutoff must be below x. Figure 2(b) shows the opposite case where x is too low,

so rA(x) > 0, and thus the optimal cutoff must be above x. Figure 3(a) shows the

optimal cutoff x∗A at the place where the dashed tangency line crosses VA, and thus

r(x∗A) = 0.

Similarly to (11), by (5) and Lemma 2 applied to [a, b] = [x∗A, 1] (the interval where

the state is pooled by party A), party D’s best-reply threshold must satisfy

rD(y) = VD(m[x∗A,y]
) +V ′D(m[x∗A,y]

)(x−m[x∗A,y]
)−VD(y), > (<) 0 if y < (>)x∗D. (12)

We now show that rA(x) is strictly decreasing on [0, x∗D] under the constraint that

x∗D is endogenously determined as the unique best-reply threshold, i.e., x∗D = x∗D(y)

satisfies (11). It will then follow that there exists a unique pair (x∗A, x
∗
D) that satisfies

both (11) and (12). Because VA is strictly S-shaped by Lemma 1, it follows that

rA(τA) < 0, as illustrated in Figure 2(a). Thus, we only need to consider x ∈ [0, τA).

Fix an arbitrary x ∈ [0, τA). Observe that, as follows from Lemma 2, rD(y) is strictly

single-crossing from above on [a, b] = [x, 1]. So there is a unique x∗D = x∗D(x) ∈ [x, 1]

that satisfies (12). We have assumed τA < τD, so x < τD. Thus, by Lemma 2 with

[a, b] = [x, 1], either rD(y) ≥ 0 for all y ∈ [x, 1], so x∗D(x) = 1, or x∗D(x) solves

rD(y) = 0. Moreover,

x < m[x,x∗D(x)] < τD ≤ x∗D(x). (13)

We are now ready to prove that rA(x) is strictly decreasing in x ∈ [0, τA) when

x∗D = x∗D(x) as defined above. By (11) we have

d

dx
rA(x) = V ′A(x)− V ′A(m[x,x∗D])

+ V ′′A(m[x,x∗D])(m[x,x∗D] − x)

(
∂m[x,x∗D]

∂x
+
∂m[x,x∗D]

∂x∗D

dx∗D
dx

)
,
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Using Lemma 2 applied to the interval [a, b] = [0, x∗D], by (7) we have

V ′A(x)− V ′A(m[x,x∗D]) < 0 and V ′′A(m[x,x∗D]) < 0.

Next, because m[x,x∗D] = E[ω|ω ∈ [x, x∗D]], we have

∂m[x,x∗D]

∂x
=
f(x)(m[x,x∗D] − x)

F (x∗D)− F (x)
> 0 and

∂m[x,x∗D]

∂x∗D
=
f(x∗D)(x∗D −m[x,x∗D])

F (x∗D)− F (x)
> 0, (14)

where the inequalities are by (13) and the assumption that f is strictly positive. Thus

it remains to establish that

1 +

∂
∂x∗D

m[x,x∗D]

∂
∂x
m[x,x∗D]

· dx∗D
dx
≥ 0.

If x∗D = x∗D(x) = 1, then dx∗D/dx = 0. We thus obtain drA(x)/dx < 0.

Alternatively, suppose that x∗D = x∗D(x) solves rD(x∗D) = 0 on [x, 1]. Taking the full

differential of rD(x∗D), by (12) we have(
V ′D(m[x,x∗D])− V ′D(x∗D) + V ′′D(m[x,x∗D])(x

∗
D −m[x,x∗D])

∂m[x,x∗D]

∂x∗D

)
dx∗D

+ V ′′D(m[x,x∗D])(x
∗
D −m[x,x∗D])

dm[x,x∗D]

dx
dx = 0

Thus,

dx∗D
dx

= −
V ′′D(m[x,x∗D])(x

∗
D −m[x,x∗D])

∂
∂x
m[x,x∗D]

V ′D(m[x,x∗D])− V ′D(x∗D) + V ′′D(m[x,x∗D])(x∗D −m[x,x∗D])
∂

∂x∗D
m[x,x∗D]

< 0. (15)

To see why
dx∗D
dx

< 0, observe that by (9) in Lemma 2 applied to the interval [a, b] =

[x, 1] we have V ′D(m[x,x∗D]) < V ′D(x∗D) and V ′′D(m[x,x∗D]) < 0. By (13), x∗D −m[x,x∗D] > 0.

By (14), ∂m[x,x∗D]/∂x > 0 and ∂m[x,x∗D]/∂x
∗
D > 0. We thus obtain

dx∗D
dx

< 0. Now,
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using (14) and (15), we obtain

1+

∂
∂x∗D

m[x,x∗D]

∂
∂x
m[x,x∗D]

· dx∗D
dx

= 1−
∂m[x,x∗D]

∂x∗D
·

V ′′D(m[x,x∗D])(x
∗
D −m[x,x∗D])

V ′D(m[x,x∗D])− V ′D(x∗D) + V ′′D(m[x,x∗D])(x∗D −m[x,x∗D])
∂

∂x∗D
m[x,x∗D]

=
V ′D(m[x,x∗D])− V ′D(x∗D)

V ′D(m[x,x∗D])− V ′D(x∗D) + V ′′D(m[x,x∗D])(x∗D −m[x,x∗D])
∂

∂x∗D
m[x,x∗D]

> 0,

where the inequality is by both the numerator and the denominator being negative.

We thus have shown that drA(x)/dx < 0.

We now show inequality (2). By (15), when x∗D(x) is in the interior, it is strictly

decreasing in x. As follows from the first-order condition (12), when x∗D(x) is at the

boundary, x∗D(x) = 1, then it is locally constant. That is, if party A chooses a higher

cutoff x = x∗A, the best reply of party D is to choose a weakly lower cutoff x∗D. The

symmetric argument applies to establish that x∗A(y) is weakly decreasing in y = x∗D.

Observe that the information monopoly of party A is equivalent to the debate where

D’s strategy is no disclosure, so x∗D = 1. We thus obtain x∗A(x∗D) ≥ x∗A(1) for x∗D < 1.

That is, party A reveals the state on a larger interval when it is competing with party

D than when it holds the information monopoly. This is illustrated in Figure 3. Pane

(a) shows the optimal cutoff x∗A when party D reveals the state in the interval (x∗D, 1].

Pane (b) shows the optimal cutoff x∗A when party D is uninformative, so party A

is the information monopolist. The symmetric argument holds for the best reply of

party D. �

A.7. Proof of Proposition 4. By (3) we have

u′′A(q)

u′A(q)
+
u′′D(1− q)
u′D(1− q) ≥ 0 for all q ∈ [0, 1]. (16)

Let τA and τD be the inflection points of VA(x) = uA(G(x) and VD(x) = uD(1−G(x)),

respectively, so V ′′i (τi) = 0, i = A,D. As established in the proof of Lemma 1, by
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(10), using u′A > 0 and g > 0, we obtain that V ′′A(τA) = 0 holds if and only if

u′′A(G(τA))

u′A(G(τA))
+

g′(τA)

(g(τA))2
= 0. (17)

Consider point x = τA. Substituting (17) into (16) with q = G(τA), we obtain

− g′(τA)

(g(τA))2
+
u′′D(1−G(τA))

u′D(1−G(τA))
≥ 0.

Using u′D > 0 and g > 0, the above inequality is equivalent to

u′′D(1−G(τA)) (g(τA))2 − u′D(1−G(τA))g′(τA) ≥ 0,

which holds if and only if V ′′D(τA) ≥ 0, so, loosely speaking, VD(x) is linear or convex

at τA. By Lemma 1, VD(x) is strictly concave for x < τD and strictly convex for

x > τD. It follows that τA ≥ τD. The proof is complete by Corollary 3. �
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