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ABSTRACT. We introduce a solution concept for extensive-form games of incom-
plete information in which players can have multiple priors. Players’ choices are
based on the notions of complaints and compromises. Complaints come from
hypothetical assessors who have different priors and evaluate the choices of the
players. Compromises are choices that aim to make these complaints small. The
resulting solution concept is called perfect compromise equilibrium and general-
izes perfect Bayesian equilibrium. We use this concept to provide insights into
how ambiguity influences Cournot and Bertrand markets, public good provision,
markets for lemons, job market signaling, bilateral trade with common value,

and forecasting.

JEL Classification: D81, D83

Keywords: compromise, multiple priors, loss, robustness, perfect Bayesian equi-

librium, perfect compromise equilibrium, solution concept, ambiguity

Date: June 28, 2023.

Schlag: Department of Economics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090

Vienna, Austria. F-mail: karl.schlag@Qunivie.ac.at.

Zapechelnyuk: School of Economics, University of Edinburgh, 31 Buccleuch Place, Edinburgh,

EH8 9JT, UK. E-mail: azapech@gmail.com.

The authors thank for helpful comments to Pierpaolo Battigalli, Jeffrey Ely, Simon Grant,
Clara Ponsati, Roland Strausz, participants of various seminars where this paper has been
presented, and anonymous referees. For the purpose of open access, the authors have applied a
Creative Commons Attribution (CC BY) licence to any Author Accepted Manuscript version

arising from this submission.

1



2 SCHLAG AND ZAPECHELNYUK
1. INTRODUCTION

We wish to add to the research on economic models in which players do not
necessarily have a unique prior and hence face ambiguity. We would like to capture
settings where players can have different degrees of ambiguity. On the one hand,
we want to allow players to have a single prior or a few different priors. On the
other hand, we are particularly interested in modeling so-called genuine ambiguity
where players have no probabilistic assessment of what they do not know. The
objective under genuine ambiguity is to be able to formally model realistic agents
who only focus on which states are possible, without assessing their likelihoods.

We present a new solution concept to capture strategic choices of ambiguous
players in extensive-form games. We apply it in several prominent economic ex-
amples, the majority of which involve genuine ambiguity. Our approach leads to
tractable analyses and parsimonious solutions. While the existing literature of-
fers several solution concepts for extensive-form games with multiple priors, these
concepts are not suitable to deal with genuine ambiguity. Moreover, economic
examples in this literature have very simple parametric uncertainty as tractability
issues arise quickly when uncertainty becomes richer.

The solution concept introduced in this paper is based on the everyday notion
of complaints and compromises. It features a particular way of reasoning under
uncertainty that simplifies tradeoffs and thereby can lead to tractable solutions.
Imagine that each player has to justify each of her choices in front of a set of
hypothetical assessors. Each assessor has a single prior. Typically, the player
will not be able to find a choice that is best from the perspective of all of the
assessors. Consequently, some of the assessors complain about the choice of the
player. Confronted by these complaints we postulate that the player wishes to find
a compromise. This compromise is an action under which none of the complaints
of the assessors is too large. With this in mind, the player chooses an action that
makes the largest complaint as small as possible. This methodology is applied to
each decision separately, assuming common knowledge of the equilibrium profile of
strategies. In particular, this means that the player anticipates the future choices
of herself and others.

We hasten to point out three consequences of our approach. First of all, the
way in which a compromise is found given the complaints is rooted in minmax
regret (Savage, 1951). Second of all, each assessor updates his prior based on
what has happened in the past. The player’s aim to find a compromise among
all the assessors leads to a solution concept that is based on prior-by-prior up-
dating, also known as full Bayesian updating (Pires, 2002)). Finally, we model
the choices of players under common knowledge of the equilibrium profile. Con-

sequently, each player takes strategies of all players including herself as given and
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anticipates future choices when making a decision. In the behavioural literature,
this assumption is called sophisticated behaviour and is related to consistent plan-
ning (Strotz, 1955; |0’ Donoghue and Rabin, |1999; Siniscalchi, [2011). In summary,
the need to find compromises leads to an equilibrium concept built on minmax
regret, full Bayesian updating, and sophisticated behavior.

Our solution concept is called perfect compromise equilibrium (PCE). It gener-
alizes perfect Bayesian equilibrium (PBE), and it exists in finite games. Formally,
it specifies for each player a strategy and a belief mapping. The strategy iden-
tifies the action the player chooses at each of her information sets according to
the compromise criterion. The belief mapping maps each prior of the player to a
belief over decision nodes in each of her information sets by applying Bayes rule,
prior by prior, whenever possible.

PCE relies on common knowledge of the equilibrium profile of strategies, just
like PBE does. So there is strategic certainty. Players have a common belief of
how others react to their information in equilibrium, they are only uncertain about
what information others actually have. We hasten to point out that our concept
can be used to incorporate strategic uncertainty, as outlined in Section 2.2.

PCE is a flexible concept as it can adapt to the mindset of each player by
appropriately choosing her set of priors. When there is a single prior, then this
player is Bayesian. When all priors are close to each other, then this player
is concerned with robustness of her decisions to a slight misspecification of the
prior. When the set of priors is large and dispersed, then the model captures
the reasoning of a player who is very ambiguous. In the extreme case, when all
priors are degenerate, we obtain the model of genuine ambiguity. As priors are
degenerate, Bayes’ rule no longer needs to be applied, one only checks if states are
feasible or not.

Genuine ambiguity is a setting we are particularly interested in. Here we con-
sider realistic people who have difficulty forming priors. Instead they only need
to consider which states are possible, without assessing their likelihoods. For in-
stance, it seems unlikely that firms conjecture a specific probability distribution
when they think about what demand they will be facing. Yet it seems plausible
that they put bounds on the uncertain demand. These bounds can come from
the most optimistic and pessimistic scenarios provided by expertise. This way of
modeling uncertainty without using priors comes with numerous advantages in
comparison to PBE. It is easier to specify, justify, or estimate a set of possible
states than to do this for a distribution (prior) over these states. This often makes
solutions easier to obtain and more parsimonious. It also enables better under-
standing of how results depend on inputs. These advantages are demonstrated in

our examples.
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We investigate seven salient economic examples. We consider Cournot compe-
tition with unknown demand, where firms postulate bounds on the true demand.
We consider Bertrand competition where firms assess lower and upper bounds
on the marginal costs of their rivals. We consider public good provision where
beneficiaries of a public good do not know each others’ values and hypothesize an
interval where these values can be. We consider Akerlof’s market for “lemons” in
which the buyer is ambiguous about the quality of the car. We consider Spence’s
job market where employers are uncertain about the cost of education and the
productivity of workers, and conjecture bounds on these parameters. We consider
bilateral trade with common value where each party knows an interval that con-
tains the true value. Finally, we consider forecasting of a random variable with
unknown distribution.

These examples highlight the value of the PCE concept. Novel realistic set-
tings can be investigated, as we no longer have to confine ourselves to simplistic
parametric models of uncertainty, such as when there are only two states (high
and low). Realism enters as we can capture uncertainty without explicitly refer-
ring to distributions. Tractability is maintained by shifting the focus away from
distributions to the worst-case analysis. New insights appear. We find that re-
placing priors by bounds on uncertain parameters has little impact on profits in
Cournot and Bertrand competition settings where compromise values are small.
In these contexts it makes little sense to think in more detail about which state is
really the true one, as payoffs would only be slightly higher in some states when
playing PCE. Yet loosening these bounds causes firms to react differently. They
become more competitive under Cournot competition and less competitive under
Bertrand competition. In Akerlof’s market for lemons, the buyer implicitly hes-
itates, by using a mixed strategy, when deciding whether or not to buy the car.
In the public good game, we show the ease of comparing policies and the simplic-
ity of the beneficiaries’ contribution strategies. In the separating equilibrium of
Spence’s job market signaling game, better educated workers are not necessarily
more productive, unlike in the classic model with two types (Spence, 1973). In
bilateral trade with common value, we find that trade is possible. The possibility
that the trading partners have different valuations leads to trade with positive
probability in a PCE, as ignoring this possibility generates losses that the traders
want to minimize. This is true even though, unlike other papers that study trade
with multiple priors (Billot et al., 2000; |Kajii and Ui, 2006; Rigotti, Shannon and
Strzalecki, 2008), we allow that the buyer makes inference from the price set by
the seller. Finally, when forecasting a random variable with a known mean and
unknown distribution based on a noisy signal, the best-compromise forecast is a

weighted average of the mean and the signal.
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Related Literature. Our paper contributes to the literature on robustness and
ambiguity in games. The main contribution of this paper is that we offer an
operationalizable solution concept for extensive-form games with ambiguity that
can allow for simple analysis in problems with rich state spaces that often have
tractability issues under PBE.

Two closely related papers are Hanany, Klibanoff and Mukerji| (2020) and, con-
currently with our paper, [Pahlke| (2022). Both papers consider extensive-form
games with ambiguity. In Hanany, Klibanoff and Mukerji (2020), players have
smooth ambiguity preferences (see also [Klibanoff, Marinacci and Mukerji, [2005) []
Specifically, a player aggregates expected utilities calculated under different priors
using a distribution over these priors and a concave aggregator function. In|Pahlke
(2022), players have maxmin utility preferences and, like in our setting, update
the priors individually, one-by-one. The central focus of both papers is sequential
optimality, which means that a player’s ex-ante optimal strategy remains optimal
conditional on reaching every information set where that player moves. [Hanany,
Klibanoff and Mukerji (2020) show that their way of smooth aggregation of mul-
tiple priors is necessary and sufficient to have sequential optimality for general
sets of priors, whereas Pahlke| (2022)) guarantees sequential optimality by restrict-
ing the sets of priors to have the rectangularity property similar to Epstein and
Schneider| (2003)).

Our paper complements Hanany, Klibanoff and Mukerji| (2020) and |Pahlke
(2022) in two respects, allowing for distinct results in applications, such as our
examples. First, in our paper the players have minmax-regret-type preferences,
which can be more suitable than maxmin utility and smooth ambiguity for some
applications. Second, we do not bind ourselves by the constraint of sequential
optimality. Instead, we apply a weaker requirement: our players make optimal
choices when anticipating their own future choices, so they have sophisticated be-
havior. The difference of our approach from the above papers becomes apparent in
the context of genuine ambiguity, where players only have degenerate priors over
states. The set of degenerate priors generally fails the rectangularity property of
Pahlke (2022). Smooth ambiguity requires to assign specific weights to priors,
which collapses to a single prior when all these priors are degenerate. Thus, in the
genuine ambiguity setting, the approach of Hanany, Klibanoff and Mukerji (2020))
collapses to PBE with a given prior over states.

Let us compare the compromise (maxmin regret) approach used in our paper
and a popular alternative approach, maxmin utility (e.g., Wald, 1950; Gilboa and
Schmeidler, 1989; |[Epstein and Wang, 1996; Kajii and Ui, 2005} |Azrieli and Te-
per}, |2011). On an intuitive level, maxmin utility is applicable when players are

1See also [Battigalli et al.| (2019) who study players with smooth ambiguity preferences, but in
the context of repeated population games.



6 SCHLAG AND ZAPECHELNYUK

pessimistic, while best compromises make more sense when players are interested
in making decisions that are good in different contingencies. The underlying phi-
losophy is very different. The maxmin choice is best when payoffs are the lowest,
without taking into account the performance in other situations. The best com-
promise choice is the closest possible to the optimum in all situationsf] In the
salient examples investigated in this paper, the maxmin approach leads to unin-
tuitive results. For instance, in Bertand duopoly with ambiguity about the rival’s
cost, maxmin utility leads firms to shut down. In contrast, our approach reveals
economically relevant insights, and does this in a simple manner with minimal
structural assumptions.

The concept of best compromise has origins in minmax regret (Savage, 1951))
and connects to approximate optimality. Our optimization criterion differs from
minmax regret as evaluation occurs at each information set, while minmax regret
traditionally evaluates regret ex-post. Furthermore, PCE retains the strategic
reasoning of PBE, as players have certainty about each others’ strategies. For an
investigation of minmax regret under strategic uncertainty see Linhart and Radner
(1989), and under partial strategic uncertainty see Renou and Schlag (2010).

In simultaneous-move games, PCE can be considered as a generalization of ex-
post Nash equilibrium (Cremer and McLean, [1985). It can be thought of as an
g-ex-post Nash equilibrium in which the smallest possible value of ¢ is chosen for
each player. In the context of e-Nash equilibrium (Radner, [1980) the value of ¢ is
interpreted a minimal level of improvement necessary to trigger a deviation. Our
interpretation is different. The value of € measures the compromise needed to
accommodate all beliefs. In particular, the threshold ¢ is endogenous in a PCE.

PCE can be interpreted as a robust version of PBE where robustness in the
sense of Huber| (1965) means to make choices that also perform well if the model
is slightly misspecified. Being a compromise, our suggested strategies perform
well under each prior given how others make their choices, never doing too badly
relative to what could be achieved under that prior. Stauber (2011)) analyzes the
local robustness of PBE to small degrees of ambiguity about player’s beliefs. In
particular, players do not adjust their play to this ambiguity, unlike in our paper.

We proceed as follows. In Section [2 we introduce our solution concept, prove
existence, and discuss its properties. In Section |3| we illustrate PCE in seven self-
contained economic examples. Section [4] concludes. All proofs are in Appendix A.

An alternative forecasting example is in Appendix B.

2This difference can be illustrated in a laboratory game studying the Ellsberg paradox. A
respondent who worries about the lowest payoff chooses the bet with a known probability. On
the other hand, a respondent who is concerned that she could have done better may potentially
choose the bet with an ambiguous probability. Different motives can lead to different behavior
in this laboratory experiment.
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2. PERFECT COMPROMISE EQUILIBRIUM

We introduce a solution concept called perfect compromise equilibrium (PCE).
The concept is formally defined in Section and discussed in Section A
reader who wishes to be spared with the formalities and seeks to understand the
essence of PCE and its applicability can jump to Section [3| that presents self-

contained economic examples.

2.1. Formal Setting. Consider a finite extensive-form game described by (N, G,
Q, (I, ..., I1,), (uq, ..., up)), where N = {1,...,n} is a set of players, G is a finite
game tree, () is a finite set of states, IT; C A(Q) is a finite set of priors of player i,
and u; is a payoff function of player ¢. In particular, this embeds a nonprobabilistic
view of uncertainty by letting II; contain only degenerate priors that put all weight
on one of the states. We refer to this case as genuine ambiguity. Also note that
we allow players to have different sets of priors.

The game tree G describes the order of players’ moves, their information sets,
and actions that are available at each information set. It is defined by a set of
linked nodes that form a tree. The game starts with the initial node ¢q assigned
to nature, followed by decision nodes assigned to players and terminal nodes that
describe payoffs. Fach decision node is assigned three elements: a player i, an
information set ¢;, and a set of actions %7, available to player ¢ at that information
set. Information set ¢; is a set of all the decision nodes that player ¢ cannot
distinguish. Information sets and action sets satisfy the standard assumptions of
games with perfect recall. Let ®; be the set of all information sets of player ¢ for
each 7 € N, and let 7 be the set of terminal nodes of the game. In the canonical
case, the set of actions o7, is a set of mixed actions A(Ay,) where Ay, is a finite
set of pure actions. This corresponds to the typical model of a finite sequential
game. Of interest for applications is also the case where mixed actions are ruled
out. In this case, 7, contains only the set of pure actions available at ¢;.

Motivated by Harsanyi (1967)), all incomplete information is captured by a move
of nature at the beginning of the game without loss of generality. At the initial
node ¢q, nature chooses a state w from the set of states 2. The set of priors
IT; describes alternative beliefs (theories) of player i for how the state has been
determined. Note that if each player has a single prior, then this constitutes a
standard Bayesian game with heterogeneous priors.

The game terminates after finitely many moves at some terminal node where
players obtain payoffs. A payoff function of each player ¢ € N specifies the payoff
u;(7) of player i at each terminal node 7 € T.

A strategy profile s describes the behavior of all players throughout the game.
It prescribes to each player ¢ € N in each of her information sets ¢; € ®; an action
Sp, € Ay,



8 SCHLAG AND ZAPECHELNYUK

Like in Bayesian games, we also specify posterior beliefs of the players in their
information sets. We do this for each prior separately. We specify a posterior
belief at each information set for each prior using Bayes’ rule whenever possible.
Thus, there are potentially as many posteriors at each information set of player
1 as there are priors in II;. This procedure can be found in the literature in a
different context under the name of full Bayesian updating (Pires, 2002]).

Formally, for each player i and each information set ¢; € ®;, let 5y, : II; = A(¢;)
be a belief mapping that associates each prior m; € Il; of player ¢ with a posterior
probability distribution 34, over the decision nodes in ¢;. Thus, in the information
set ¢;, player i faces a set By, () of posterior beliefs derived from the set of priors
II;, where

By, (8) = {8y, (mi) : m € I}
We will refer to By, () as the set of beliefs at ¢;, and to the profile 5 = (84,)p;cd;.ien
as the belief system.

Like in PBE, we will require consistency of beliefs.

Definition 1. A belief mapping 3y, is called consistent under a strategy profile s
if for each prior 7; € II; such that the information set ¢; is reached with a strictly
positive probability under strategy profile s, the belief 3, (7;) is derived by Bayes
rule from ;.

A belief system [ is consistent under a strategy profile s if for each i € N and
each ¢; € ®; the belief mapping [, is consistent under s.

Note that our definition of consistency does not impose any discipline on the
out-of-equilibrium beliefs. If an information set ¢; cannot be reached under a
given prior m; and a given strategy profile s, then every belief 5y, (m;) € A(¢;)
is consistent under s. Of course, not all out-of-equilibrium beliefs are sensible in
applications. For example, if needed, it is natural to refine the concept of PCE
in the same way as sequential equilibrium (Kreps and Wilson, [1982) refines the
concept of PBE. We do not provide more details on this refinement in order not to
distract the reader from the main messages of the paper. Yet we hasten to point
out that Theorem [1| also applies to this refinement, and that all PCE found in our
examples below satisfy this refinement.

Next we define how players choose their strategies. When making a choice at
a given information set, the choices at all other information sets are treated as
given according to the players’ strategies. The difficulty of making a decision at
¢; is that the player does not know which belief in the set of beliefs By, (3) should
be used to evaluate the expected payoff. We resolve this issue by assuming the
player chooses a best compromise. This is an action that is never too far from the
best action under each belief in By, (3).
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Formally, consider a pair (s, ). Denote by u;(s4,|¢s, s, b;) the expected payoff of
player ¢ from choosing an action s,, € 7, in an information set ¢; under the belief
b; over the decision nodes in ¢;, assuming that the play is given by s elsewhere in
the game. The payoff difference

sup ;i (z;|¢i, 8, b;) — Ui (84,| P4, S, bi)
ZBZ'E@Q,Z,

is called player ¢’s loss from choosing action s4, at information set ¢; given belief
b;. It describes how much better off player ¢ could have been at this information
set given this belief if, instead of choosing s, she had chosen the best action,
assuming that the choices in all other information sets are prescribed by s. The

mazimum loss of player 4 from choosing action s,, in an information set ¢; under

(s, ) is given by

[(s¢;|¢i,s,0) = max < sup ;i (z;|¢i, 5, b;) — U;i(s4, (bi,s,bi)> )
$i€<45{¢i

b;€By, (B)
So the maximum is evaluated over all beliefs of player i at ¢;.
Player ¢ makes a decision that minimizes the maximum loss. Such a choice is
called a best compromise. Formally she chooses an element of
arg min (s, |, s, ) (1)
So; EVQ{%
at each of her information sets ¢;. In equilibrium s*, this means that she chooses
sy, € argming ¢, | (S,
finding the best compromise, each player assumes that the behavior is given by

¢i,s*, B). Hence, when computing the maximum loss and

s* at all other information sets, including her own. Thus the players anticipate
their own choices at subsequent information sets, which is known as sophisticated
behavior and is closely related to consistent planning (Strotz, 1955; |O’Donoghue
and Rabin| |1999; [Siniscalchi, [2011). Each player deals with her ambiguity about
the true state by choosing best compromises. At the same time, a player ac-
knowledges the fact that she will be facing ambiguity at later information sets,
and hence anticipates her equilibrium choices there. This leads to our equilibrium

concept that is motivated by complaints and compromises.

Definition 2. A pair (s*, 5*) is called a perfect compromise equilibrium (PCE) if
(a) each player chooses a best compromise in each of her information sets;
(b) the belief system * is consistent under the strategy profile s*.

We begin by establishing the existence of PCE in finite extensive-form games.
A game (N, G, Q, (I, ..., I1,,), (u1, ..., uy,)) is called finite if N and 2 are finite, II; is
finite for each ¢ € N, and every information set ¢; of the game tree G is associated
with a finite set of pure actions Ay,. The set of actions available to player ¢ in

that information set comprises all the mixed actions, so o7, = A(Ay,).
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Theorem 1. In a finite game, a perfect compromise equilibrium exists.

The proof is in Appendix [A.]]

2.2. Discussion. We highlight some properties of PCE.

Best Compromise. Our decision making criterion for how to make choices at a
given information set captures the intuitive notion of making a compromise. As
a compromise, the performance should be satisfactory in all potential situations,
as opposed to being best under some and possibly very bad under others. The
concept of best compromise identifies the smallest maximal distance from first best
as a measure of how large the compromise has to be. Compromises are valuable
when decisions have to be justified in front of others who have heterogeneous
perceptions about the environment.

The concept of a best compromise follows the tradition of decision making under
minmax regret, thus having an axiomatic underpinning (Milnor, (1954; Hayashi,
2008; Puppe and Schlag), 2009; Stoye, |2011)). Traditionally, minmax regret is eval-
uated ex-post after all uncertainty is resolved. In contrast, to model a compromise
in the face of several beliefs, we consider the loss attained at the interim (at a given
information set) for a given belief. Stoye’s (2011) axioms continue to hold from
this interim viewpoint. Furthermore, our concept retains the strategic reasoning
of PBE, as players know each others’ strategies. This is unlike |[Linhart and Radner
(1989) who reduce the game to an individual decision problem, where the behavior
of the others is treated as a move of nature.

Clearly, instead of best compromise, any other decision making criterion under
ambiguity could be used for determining choices at information sets. For instance,
the maxmin utility criterion can be used to model pessimism or cautiousness, a

world in which the player always anticipates the worst outcome.

Planning and Updating. By nature of a sequential game, a player’s perspective
can change during the game. Future choices that look optimal today might not
be optimal when the actual choice has to be made. To account for the changing
perspectives, we assume that the players plan ahead what they and the others will
do. The players’ strategies are taken as given, and future choices are determined
by these strategies.

An alternative approach would be to design a solution concept where a player’s
plan of actions does not depend on when this plan is made. This has been an
objective in the related literature on maxmin utility and related ambiguity mod-
els (e.g., [Epstein and Schneider} 2003; [Wang, 2003; Hanany and Klibanoff, |2007;
Hanany, Klibanoff and Mukerji, 2020; |[Pahlke, |2022)). However, the insights of
that literature are that this leads to substantial constraints to what priors are
allowed, as in [Pahlke| (2022)), or dictate a specific way of aggregating expected
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utilities under multiple priors, as in [Hanany, Klibanoft and Mukerji (2020)), that
collapses back to PBE when the ambiguity is genuine (that is, when all the priors
are degenerate).

Strategic Certainty. PCE assumes common knowledge of the equilibrium profile
of strategies, just like PBE does. So there is strategic certainty. Players have a
common belief of how others react in equilibrium to their information, they are
only ambiguous about what information others actually have. However, PCE can
be also used to incorporate strategic uncertainty as follows. The situation where
a player, call her A, is ambiguous about the strategy of another player, call him
B, is interpreted as ambiguity of A about some information that is private to B.
That is, had A known everything about B, she would have had certainty about B’s
strategy. This way, any strategic uncertainty can be reinterpreted as informational
uncertainty or ambiguity about the state of the world.

PCFE vs PBE. Our definition of PCE generalizes the concept of PBE to games
where some players may be ambiguous about what they do not know. When
there is no ambiguity, so there is a single belief at each information set, then our
setting describes a standard game of incomplete information. In this case, the
loss minimization objective, as described in , reduces to the standard utility
maximization objective. So, an action minimizes the maximum loss of a player if
and only if it is a best response. Moreover, whenever there is only a single belief,
the consistency requirement introduced in Definition [1| reduces to the standard
Bayesian consistency of beliefs. Hence, PCE becomes PBE.

The difference between PCE and PBE emerges in models where some players
are ambiguous about the state of the world. The standard PBE approach forces
players to quantify the uncertainty by specifying a unique belief at each informa-
tion set, and then assuming that the players optimize with respect to these beliefs.
Our approach sidesteps this issue by letting the players have multiple beliefs at
each information set and find compromises with respect to these beliefs.

Ex-post Nash Equilibrium. In simultaneous move games PCE is related to ex-post
Nash equilibrium. Ex-post Nash equilibria are profiles that are Nash equilibria in
the game in which the state is observed by all players at the outset of the game.
This means that the maximum loss of each player at her single information set is
equal to zero. Consequently, any ex-post Nash equilibrium is also a PCE. Note,

however, that ex-post Nash equilibria often do not exist.

Dominance. A PCE survives the elimination of strictly dominated strategies, as
we now demonstrate. We say that an action a; € 47, at an information set ¢; is
strictly dominated for player ¢ if there exists another action z; € 4/, such that
player ¢’s payoff from choosing a; is strictly worse than that from choosing z;,
regardless of the state w € {2 and of the choices of other players at any of their
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information sets. Iterated dominance is defined as usual. After having excluded
actions that were strictly dominated in previous rounds, one checks the dominance
condition w.r.t. the remaining actions of each player. Now observe that if an
action a; at some information set ¢; is strictly dominated, then it cannot be a
best compromise at this information set. This is because the action that strictly
dominates a; will achieve a strictly lower loss for each belief, and hence its maximal
loss will be strictly smaller. Thus, a strictly dominated action cannot be a part of
a PCE. This argument can be iterated, so any iterated strictly dominated action
cannot be a part of a PCE.

3. EXAMPLES

We illustrate our solution concept with a few economic examples that are promi-
nent in the literature. We consider Cournot and Bertrand duopoly, public good
provision, Akerlof’s market for “lemons”, Spence’s job market signaling, bilateral
trade with common value, and forecasting.rf] The examples presented in this section
are self-contained as they do not require knowledge of the formalities presented in
Section

We are particularly interested in understanding strategic play under uncertainty
when the players cannot or are unwilling to assess the likelihood of different states
of the world at the beginning of the game. Formally, players can only have degen-
erate priors that put probability one on a single state of the world. We call this
genuine ambiguity.

Apart from the market for “lemons” and forecasting, the examples presented
below deal with genuine ambiguity. Therein, ambiguity is specified in terms of
bounds on what the players do not know. Probability distributions do not play a
role. Players do not have beliefs. Instead, they speculate about which state is true
or about what decision node within an information set they are at. In addition,
we assume that players do not use mixed strategies. They search among their pure
strategies for a best compromise. Thus we perform a strategic analysis without

using probabilities.

3.1. Cournot Duopoly with Unknown Demand. We investigate two firms
that compete in quantities when neither firm knows the demand. We show that
in a perfect compromise equilibrium the firms respond by slight increase of their
quantities when they face such uncertainty. Each firms’ potential loss is small
relative to the case when it knows the demand exactly.

Consider two firms that produce a homogeneous good. For clarity of exposition,

we assume that there are no costs of production. Each firm ¢ = 1,2 chooses a

3An alternative forecasting model is presented in Appendix B.
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number of units ¢; > 0 to produce. Choices are made simultaneously. The firms
face an inverse demand function P(q; + ¢2). Firm ¢’s profit is given by

ui(gi, q-i; P) = P(¢; + q-i)qi, 1=1,2.

Neither firm knows the inverse demand P, but they know that it belongs to a set
P given as follows. Let

P(q) =a—bg and P(q):d—l_)q, where @ >a >0 and EL/I_)ZQ/L)>0.

Let P be the set of inverse demand functions that satisfy
P(q) is continuously differentiable in ¢,

P(q) < Plg) < Plq) and P'(q) < Pq) < P'lg). @

A firm 7’s maximum loss of choosing quantity ¢; when the other firm chooses
quantity ¢_; is given by

li(gi, q—;) = sup (SUP wi(q;, q—i; P) — wi(qs, q—i; P)) -

PeP \ ¢;>0
The maximum loss describes how much more profit firm ¢ could have obtained if it
had known the inverse demand P when anticipating that the other firm produces
q—;. Firm ’s best compromise given a choice ¢*; of the other firm is a quantity ¢
that achieves the lowest maximum loss, so
q; € argminl;(q;, ¢ ;).
q:>0

A strategy profile (¢, ¢3) is a perfect compromise equilibrium (PCE) if each firm
chooses a best compromise given the choice of the other firm.

Proposition 1. There exists a unique perfect compromise equilibrium. In this
PCE, the strategy profile (¢}, q3) is given by
1 ( a a ) _
= (et g), =12 3)
s (Vi Vi) VBV

The associated maximum losses are

(ab — ab)”

Lilgr, q%) =

The proof is in Appendix [A.2]

Remark 1. It is generally intractable to find a PBE in this game with such a
rich set of possible inverse demand functions. It can only be done under very
specific priors about the inverse demand. For example, PBE can be found if a
prior describes the uncertainty about the parameters of the linear inverse demand
function P(q) = a — bq (Vives, 1984).
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Let us discuss the strategic concerns underlying the PCE in this game. Consider
firm ¢ who faces unknown demand and is deciding about how much to produce.
This firm worries about two possible situations. It could be that the inverse
demand is actually very high, so the firm is losing profit by producing too little.
The greatest such loss occurs when the inverse demand is the highest, so P = P.
Alternatively, it could be that the inverse demand is actually very low, so the firm
is losing profit by producing too much. The greatest such loss occurs when the
inverse demand is the lowest, so P = P. The best compromise ¢/ balances these
two losses, assuming that the other firm follows its equilibrium strategy ¢*,.

Our equilibrium analysis can shed light on how the firms respond to increasing
uncertainty. For comparative statics, let us consider as a benchmark a linear
inverse demand function Py(q) = ag — bpg. We normalize constants ag and by so
that the monopoly profit is equal to 1, that is,

a5
rglzagi(ao —bog)q = T L.
Suppose that there is a small uncertainty. Specifically, for ¢ > 0 let P(q) satisfy
(2) where
P(q) = (1 — E) ag — (1 + E) bog and P(q) = (1 + E) ag — (1 - E) bog.
2 2 2 2
Denote by ¢° = (¢5, ¢5) the strategies of the PCE as given by Proposition . We
then obtain
dg;  2e

_ =€ 3
i —3a0+0(6)>0.

So the firms optimally respond to a growing uncertainty about the demand by
increasing their quantities. There is a pressure to increase the quantity to account
for the possibility of higher demand, and to decrease it to account for the possibility
of lower demand. As a result, the quantity does not change very much. In fact, it
increases slightly due to a larger pie size when the demand is high.

Next, consider the associated maximum losses as shown in . Then

LG, ¢ =2+ 0(eh), i=1,2.

So the maximum losses in the PCE increase very slowly as uncertainty increases.
For example, if ¢ = 0.1, then /;(¢f,¢°;) ~ 0.01. So the firms lose no more than
about 1% of the maximum profit when allowing for a 10% error in the demand
specification. Thus, uncertainty does not have a substantial impact on perfor-

mance.

3.2. Bertrand Duopoly with Private Costs. We investigate two firms that
compete in prices when the cost of the competitor is unknown. We show that in a

perfect compromise equilibrium the firms charge prices above their marginal cost
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and hence make profits when they face such uncertainty. Moreover, the markup
of each firm is decreasing in its own cost.

Consider two firms ¢ = 1,2 that produce a homogeneous good. They choose
prices p; and po simultaneously. The consumers only buy from the firm that offers
a lower price. The quantity that firm ¢ sells is given by

Qpi), it p; < p_,
¢i(pip—i) = Q(p)/2, if pi=p_i,
O, 1f Di > P—i,

where Q(p) is the demand function. For clarity of exposition we assume that the
demand function is given by

Q(p) = maX{a;p,O}

The cost of producing ¢; units is ¢;q;. Each firm s profit is given by

wi(pi, p—is i) = (pi — ci)@i(pi, p—i), ©=1,2.

Each firm knows its own marginal cost but not that of its competitor. It is

common knowledge that the marginal costs belong to a given interval, so
¢1,09 € [c,¢], where 0 <c¢<é<a/2.

A firm ¢’s pricing strategy s;(c;) describes its choice of the price given its marginal
cost ¢;.

For each marginal cost ¢;, firm ’s mazimum loss of choosing a price p; when
facing pricing strategy s_; of the other firm is given by

li(pi, s—i;¢;) = sup (SUP u; (P, s_i(c—q); ci) — wi(ps, S—i(c—i);ci)> .
c_i€le,d] \pi>0

The maximum loss describes how much more profit ¢ could have obtained if it had

known the other firm’s marginal cost ¢_;, anticipating the other firm to follow the

pricing strategy s_;. Firm i’s best compromise given ¢; is the price pf = s7(¢;) that

achieves the lowest maximum loss for a given strategy s*, of the other firm:

si(¢;) € argminl;(p;, 85 ¢;).
pi=0
A strategy profile (s, s3) is a perfect compromise equilibrium (PCE) if each firm 4
chooses a best compromise given its marginal cost ¢; when facing the strategy s*,

of the other firm.
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Proposition 2. There exists a unique perfect compromise equilibrium. In this
PCE, the pricing strategies are given by
1
sf(ci):§<a+ci—\/(a—é)2+(é—cl~)2), i=1,2. (5)
The associated mazimum losses are

li(si(ci), s, ¢) = (a—e)e—¢) (a—c)(c—c)

2b 2b ’
The proof is in Appendix [A.3]

IN

Remark 2. It is generally intractable to find a PBE in this application under any
reasonable prior, even in this simplest setting with linear demand and constant
marginal costs. The PBE strategy profile for this simplest setting is implicitly
defined by a differential equation with no closed form solution (see |Spulber, [1995)).

Let us discuss the strategic concerns underlying the PCE in this game. For the
sake of argument, suppose that the PCE price is strictly increasing in the cost.
Each firm 7 that chooses a price above its marginal cost worries about two possible
situations. It could be that the competitor has a weakly lower cost, and hence
charges a weakly lower price p_; < p;. Thus, firm ¢ could have obtained more
profit by undercutting p_;. The greatest such loss occurs when the competitor’s
price marginally undercuts p;. Alternatively, it could be that the competitor has
a higher cost and hence charges a higher price, p_; > p;. Thus, unless p; is already
profit maximizing, firm ¢ is losing profit by charging too little. The greatest such
loss occurs when the competitor’s price is the highest possible (attained when
c_; = ¢). The best compromise p; = s}(¢;) balances these two losses, assuming
that the competitor follows its equilibrium strategy.

Note that the firm’s worry about losing profit when the competitor happens to
have high cost leads to best compromise pricing above marginal cost. It is the
upper bound on the competitor’s possible cost that influences pricing. The lower
bound plays no role, as the worst case for the firm is attained when the competitor’s
cost (and thus price) is only marginally lower. This leads to an upward pressure
on pricing, the more so the higher the upper bound on the competitor’s cost and
the smaller the firm’s cost. In particular, we obtain that the markup, sf(¢;) — ¢,
is decreasing in cost c¢;.

Our equilibrium analysis can shed light on how the firms’ behavior changes in
response to increasing uncertainty. For comparative statics, let us consider as
a benchmark marginal cost ¢y = a/4 (recall that we require 0 < ¢; < a/2, so
co = a/4 is the midpoint). We normalize the constants a and b of the demand
function Q(p) = (a — p)/b so that the monopoly profit is equal to 1, that is,

_ya-p (a-c)
max(p —co)——=—p— =1
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Suppose that there is a small uncertainty. Specifically, for 0 < e < 1 let ¢; € [¢, 7],

€ _ €
g:(l—é)co and c:<1+§)co.

Denote by s° = (s5,s5) the PCE strategy profile as given by Proposition 2, We
then obtain

1= 1,2, where

dsj(ci) (a+c¢; —2¢)c
de ~afla— o+ (e— P
because, using our assumptions on the parameters,

> 0,

a—}—ci—262(1—26:400—2<1—|—§>00:(2—5)00>0.
Moreover, for small € we obtain

dss(co) o
: = —+0(e).
de 4 +0(e)
Thus, the firms optimally respond to the growing uncertainty about the demand

by increasing their prices. The rate of increase is substantial as it does not vanish
when ¢ tends to 0.
Next, consider the associated maximum losses as shown in @ We find

2 2
Li(s5(ci), 855, ¢) < 3 g 1= 1,2.
The maximum losses increase approximately linearly as the uncertainty increases.
For example, if € = 0.1, then the maximum losses are bounded by 0.07. So the
firms lose no more than about 7% of the maximum profit when allowing for a 10%

error about the rival’s marginal cost.

3.3. Public Good Provision. Here we investigate how to provide a discrete
public good when beneficiaries of the good are uncertain about the valuations of
others. We assume that the beneficiaries fund the cost of provision with their
own contributions. There are no external subsidies, and thus the Vickrey-Clarke-
Groves (VCG) mechanism is not feasible in our setting (e.g., |d’Aspremont and
Gérard-Varet, 1979). Without making any distributional assumptions, we are
able to analyze several focal mechanisms. Interestingly, our analysis of the perfect
compromise equilibrium shows that these mechanisms can be applied under even
less information than we assume. One does not depend on the number of players,
one does not depend on the cost of the public good, and one does not depend on
either of these parameters.

Consider n agents. Each agent has a private value v; € [0,7] for a public good.
Agents know their own values of the good, but not those of the others. Each agent
i chooses how much to contribute for the public good provision. Let x; € [0, 7] be

agent ¢’s contribution. The agents make their choices simultaneously.
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A commonly known cost of providing the public good is ¢ > 0. To avoid

considering multiple cases, we assume that this cost is not too high, specifically,
c v
< —

n—17-2 (7)

The payoffs are as follows. If the sum of the contributions does not cover

the cost, so >, x; < ¢, then the public good is not provided, and the agents’
contributions are returned to them. In this case each agent ¢ obtains zero payoft.
Otherwise, if >  x; > ¢, then the public good is provided, and each agent
obtains the value of the good net of the contribution. In addition, the agents may
be refunded the excess contribution, Y " | z; — ¢. The payoff of each agent i is

v; — X; + ri(x),

where r;(z) is a refund to agent ¢ that depends on the profile of contributions
x = (x1,...,7,). We compare three simple refund rules.

(i) No-refunds rule. The excess contribution is not refunded to the agents, so
ri(x) =0, i=1,..,n. (8)
(ii) Equal-split rule. The excess contribution is divided equally among to the

ri(z) = 1 <Zn T; — c) . 1=1,....n. (9)

n Jj=1
(iii) Proportional rule. The excess contribution is divided proportionally to the

agents, so

agents’ individual contributions, so

ri(z) = (1 - ﬁ) v, i=1,..n (10)

Let s;(v;) be a strategy of agent i, so x; = s;(v;) specifies the contribution
of agent ¢+ whose private value is v;. We restrict attention to strategies that are

symmetric and undominated. Specifically, we assume that
si(v) = sj(v) and s;(v) <o for all v € [0,9] and all i,j € {1,...,n}. (11)

The assumption that the strategies are symmetric is substantive, as we rule out
potential asymmetric equilibria. The assumption that the strategies are undomi-
nated is inconsequential for the results and introduced for notational convenience.

An agent i’s maximum loss of choosing contribution x; when the other agents
choose a profile of contributions s_;(v_;) describes how much more payoff agent
1 could have obtained if she had known the true values of everybody else, antici-
pating that they follow their strategies. To determine the maximum loss, observe
that agent ¢ worries about two possible situations. It could be that the total con-
tribution is marginally below ¢, so x; + Z#i sj(vj) = c¢—e for a small ¢ > 0. The
good is not provided, but had i contributed € more it would have been provided.
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As e — 0, agent i’s loss is v; — z;. Alternatively, it could be that all other agents
contribute enough to cover ¢, so » ., s;(v;) > ¢. Thus the agent could have con-
tributed nothing and still received the good. In this case the loss is the amount
of contribution net of the refund, x; — r;(z;, s_;(v_;)). Agent ¢’s maximum loss is
thus given by
li(zi,s_;v;) = sup  max{v; — x;, x; — ri(zi, s_i(v_y))}.

v_;€[0,p]7—1
Agent i’s best compromise given v; is a strategy sf(v;) that achieves the lowest
maximum loss for a given strategy profile s_; of the other agents:

s (v;) € argmin l;(z;, s_; v;).

x;€[0,v4]

A strategy profile s* = (s7,...,s}) is a perfect compromise equilibrium (PCE) if
each agent ¢ chooses a best compromise given her value v; when facing the strategy
profile s*; of the other agents.

In this application we are interested in how the agents’ equilibrium behavior
and total efficiency (welfare) changes in PCE induced by different refund rules.
We measure the efficiency of a strategy profile s by the maximum welfare loss as
compared to the complete information case. Because s;(v) < v by assumption
(L1), the welfare loss only emerges in the case of Y., s;(v;) < ¢ < Y, v; where
the good is not provided when it is efficient to do so. Our inefficiency measure is
denoted by L(s) and is given by

Ls)= sup 3 v
(v1,...,0n ) €[0,0]™ =1 (12)

subject to Z;l si(v;) < ¢ < Z;l V;.

We now characterize the PCE and the associated welfare losses for each of the
three refund rules.

Proposition 3. For each of the three refund rules there is a unique PCE strategy
profile s* = (s},...,s%) that satisfies assumption (11)). For each i = 1,...,n and
each v; € [0, 0],
(i) if ri(z) is the no-refunds rule, then
si(v;) = % and L(s*) = ¢
(iii) if r;(x) is the equal-split rule, then
n n—1

s (v;) = 5 1Y and L(s*) = -

=

(71) if r;(x) is the proportional rule, then

i 1
si(v;) = % —c+ 5\/1},-2 +4c¢® and L(s*) = nilc‘
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The proof is in Appendix [A.4]
Note that under each rule the player contributes at least half of her value. Note

also that
n n—1
c> c > C.
n+1 n

So, the equal split rule confers a smaller welfare loss as compared to the other two

rules. However, this difference between the mechanisms is small, and the welfare
loss is close ¢ when the number of beneficiaries is large. This is reminiscent of the
VCG mechanism in this problem where the expected subsidy of the designer is
close to ¢ when n is large.

To summarize, we have investigated the behavior in a PCE when players have
little information about the values of others. We find for each of the refund rules
that even less information is needed. The equal-split rule leads to equilibrium
behavior that requires no information about the cost ¢. Hence this rule can also
be applied when the cost is unknown. The proportional rule leads to equilibrium
behavior that does not depend on the number of players n and hence can also
be applied when n is unknown. The no-refund rule leads to equilibrium behavior
that does not depend on either of these two parameters. This reliance on min-
imal information makes these refund rules, and our solution concept in general,

practically appealing.

3.4. Market for “Lemons”. The following example presents a variation of the
market for “lemons” (Akerlof, [1970]) where a buyer is ambiguous about the quality
of a car offered by a seller. We show that trade can only occur in a perfect
compromise equilibrium if the car is offered at a (pooling) price that does not
depend on the quality of the car. Whenever there is trade, the buyer randomizes
between buying or not buying the car. This behavior reflects the buyer’s desire
to balance his losses from buying a low-quality car and not buying a high-quality
car. This example highlights the difference between a PCE and a PBE. Namely,
in a PBE the buyer’s best response is a pure strategy, except when the buyer is
exactly indifferent between buying and not buying.

Consider a seller (she) and a buyer (he). The seller has a car whose quality is
either high (6y) or low (A1). She observes the quality of the car and decides at
what price p € [0, 1] to offer it for sale. The buyer observes the price but not the
quality, and decides whether or not to buy the car at this price. Let vy and vy, be
the buyer’s value of high and low quality car, respectively, and let cy and ¢y, be
the seller’s cost of high and low quality car, respectively. Assume that

vy =0<1<wvyg and 0<e¢p <cyg < 1. (13)

In words, no matter which price in [0, 1] is asked, the buyer always wants to buy a

high quality car and never wants to buy a low quality car. In contrast, depending
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on the price, the seller might be willing to sell both types of car, only a low quality
car, or neither type of car.

The buyer’s ambiguity about the quality of the car is captured by a set of K
priors IT = [y, ..., k], where 0 < m; < ... < mg < 1. When K = 1, the buyer has
a single prior, so this model becomes the classic market of lemons with standard
uncertainty of the buyer.ﬁ

The seller’s strategy o : {0m,0.} — A([0,1]) specifies for each type 6 €
{01,0n} a discrete probability distribution o%(-|#) over prices in [0,1]f] The
buyer’s strategy o} : [0,1] — [0, 1] specifies for each price p € [0,1] a proba-
bility ¢%(p) that the buyer buys the car. The beliefs are as follows. The seller
knows the type of the car, so her beliefs are trivial. The buyer does not know the
type but observes the price. So, for each price p € [0, 1], the buyer has a distinct
information set, denoted by ¢,. In this information set, the buyer updates each
of his priors to obtain a set of posterior beliefs {8} (7)}rem, where 85 () denotes
the posterior belief in the information set ¢, given a prior m € II. The buyer’s
belief system is given by 8% = (85 )pefo,1)-

We now define the conditions that a profile (%, o5, %) of strategies and beliefs
must satisfy to be called a perfect compromise equilibrium. Because the seller has
no ambiguity, the seller’s choice of price must be her best response. The seller
chooses with a positive probability only those prices that maximize the expected
payoff given the buyer’s strategy o3. Formally,

Supp(og(+10;)) C arg{m&}xx(p —¢;j)op(p) for each j = H, L. (14)
pel0,1

Next, we define the buyer’s maximum loss and the associated best compromise
strategy. For each probability b € [0,1] that the car has high quality, the buyer
obtains bvy —p if he buys the car and zero if he does not. Thus, given a belief b and
a price p, the optimal choice yields the payoff of max {bvy — p,0}. The buyer’s
loss from a strategy og(p) describes how much more payoff the buyer could have
obtained if he made the optimal choice under b instead of o (p). This loss is given
by

max {bvy — p,0} — (bvyr — p)og(p)
= max { (bvg — p)(1 — 05(p)), (p — bvw)op(p) }-

4To streamline the exposition, we consider a continuum of prices [0, 1], rather than a finite set as
assumed in Section [2.1} The insights of this illustrative example do not change if we discretize
the set of prices.

SWe restrict attention to discrete probability distributions to simplify the derivation of posterior
beliefs.
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Consequently, the buyer’s mazimum loss from the choice o (p) in the information
set ¢, given the seller’s strategy o¢ and the belief system §* is

1o (p)l0 03,8 = max  max {(bos = p)(1 = 05(0)). (0 = bo) 7 (p) .
ép well

Observe that among the set of the buyer’s beliefs, only two — the highest and the
lowest — are relevant for the calculation of this maximum loss. Let
b(p) = min 33 (7) and b(p) = max 7 ().

On the one hand, the probability of high quality can be high, so the buyer makes
a loss by rejecting the offer. The greatest such loss occurs when the posterior
belief is the highest, namely, when the prior 7 € II is such that 5} () = b(p). On
the other hand, the probability of high quality can be low, so the buyer makes
a loss by buying the car. The greatest such loss occurs when the belief is the
lowest, namely, when the prior m € Il is such that S3j (m) = b(p). Consequently,

the maximum loss can be summarized as

(03P 6y, 75, B7) = max { (B(p)ur — )(1 = 73(p), (0 — b(B)o)oh(p) .

The buyer’s best-compromise strategy oj minimizes the maximum loss, so for

each p € [0, 1] the probability of buying the car satisfies
op(p) € arg[m}n <max {(5(p)vH —p)(1—q),(p— b(p)vH)Q}) : (15)

q€l0,1

Next, consider the buyer’s beliefs. For any price p € [0,1], the buyer has,
potentially, multiple beliefs in his information set ¢,. In order to be a part of a
PCE, the buyer’s belief mapping must be consistent with the strategy o§ of the
seller. Specifically, each prior m € II is transformed into a posterior belief ﬂ:{)p (m)

using Bayes’ rule whenever possible, so

705(p|0n)
(1 —=m)og(plfr) + mos(p|0r)

and otherwise 37 (7) can have any value in [0, 1.

B, (m) = if (1 —m)os(ploL) + mog(pl0u) > 0, (16)

In summary, a profile (c§, 0}, 5*) of strategies and beliefs is a perfect compro-

mise equilibrium if it satisfies conditions , , and .

Before characterizing the PCE, we introduce the following notation. We say
that a PCE involves no-trade if the buyer does not buy the car at any price that
can be offered in equilibrium. Specifically, for each p € [0, 1],

if mo5(p|lfr) + (1 —m)os(pldr) > 0 then o5 (p) = 0.

We say that a PCE is pooling on a single price if the seller offers the car at a fixed,
nonrandom price irrespective of the car quality. Formally, a profile (%, o5, %) is
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a PCE that is pooling on single price p* if
o5(p"|0n) = o5(p*|0L) = 1.

Observe that in such a PCE the buyer’s beliefs must satisfy the following. When
observing p*, the buyer’s set of posterior beliefs is equal to the set of priors,
SO 5;;1)* (m) = 7 for each m € II. When observing p # p*, the buyer’s beliefs and
behavior are such that no type of seller has incentive to deviate to p. For example,
the buyer is certain that the car has low quality and does not buy it.

In addition, given such beliefs, the buyer’s probability to buy the car at the
equilibrium price p* can be easily derived from . When there is a single prior,
so IT = {7}, it satisfies

{1} if p* < Ty,
op(P’) € {[0,1] if p* = 7, (17)
{0} if p* > Tog.

When there are multiple priors, so IT = {7y, ..., 7k} with K > 1, it is given by

1 if p* < mopg,
op(p’) = % if mog < p* < TRvp, (18)
0 if p* > mugy.

Note that the probability that the buyer buys the car at price p* is also equal to
the probability that trade takes place. In particular, such a PCE need not involve
trade.

Proposition 4. Fvery PCE either involves no trade, or is pooling on a single
price, or has both of these properties.

The proof is in Appendix [A.5] Intuitively, suppose by contradiction there is a
PCE that has trade and is not pooling on a single price. Specifically, suppose that
there are at least two prices that can be offered in equilibrium by the seller such
that the buyer buys with positive probabilities at these prices. Because c;, < cg,
so the low-type car is cheaper than the high-type car, it follows that whenever the
seller of one type is indifferent among several prices and plays a mixed strategy, the
seller of the other type strictly prefers a single price in this set. This means that
all but one equilibrium prices reveal the car type to the buyer. If the revealed type
is low, then the buyer does not buy. If the revealed type is high, then the buyer
buys with probability one, but then the low-type seller would want to deviate and
choose that price to pretend to be the high type.

Proposition [ has established that every PCE that has trade must be pooling

on a single price. We now characterize the set of equilibrium prices for such PCE,
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both for the case of a single prior where it coincides with a PBE and for the more
general case of multiple priors.

Proposition 5.

(a) Suppose that there is a single prior, so Il = {w}. There exists a PBE that has
trade and is pooling on price p* if and only if p* € [cy, Tvg].

(b) Suppose that there are multiple priors, so Il = {m,..,mx} with K > 1.
There exists a PCE that has trade and is pooling on price p* if and only if

p* € ey, TrUR).

The proof is in Appendix [A.6]

0 cy T™VH TVH Trvg 1 P

F1GURE 1. Trade under different pooling equilibrium prices in the
market of “lemons”. Dashed line shows the probability of trade
under PBE with a single prior 7. Solid line shows the probability
of trade under PCE with a set of priors IT = {my, ..., Tk }.

The crucial difference between the PCE under multiple priors and the PBE
(that has a single prior) is in the equilibrium behavior of the buyer. Figure
illustrates how the buyer’s equilibrium behavior ¢} (p*), which is equal to the
probability of trade, depends on the equilibrium price p* in the continuum of the
pooling equilibria as the price increases from cy to mgvy. The dashed line, which
corresponds to equation , shows what happens in the PBE under a single prior
7. The buyer compares the price p* with the expected value 7mvg, and then buys
the car when p* < vy, is indifferent when p* = 7vy, and does not buy the car
when p* > mvg. In contrast, the probability of trade is different in the PCE under
a set of priors II. This is described by equation and depicted by the solid
line in Figure When the price is below the most pessimistic expected value,

so p* < muy, then the buyer buys the car. Otherwise, as long as the price does
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not exceed the most optimisitic expected value, mvy < p* < mgvy, the buyer
smoothes out his response by randomizing his choice, where the probability of
buying decreases as p* goes up. This shows the feature of PCE that captures
the buyer’s hesitancy or the desire to balance losses under different contingencies
when facing multiple priors.

3.5. Job Market Signaling. Here we investigate Spence’s job market signaling
(Spence, 1973)) when the worker’s productivity and cost of education are unknown
to the firms. We find that, unlike in the classic setting with a single prior, there is
no longer a clear separation between workers with different levels of productivity.

Consider a single worker and two firms. The worker has productivity 6 € [0, 1].
The worker publicly chooses a level of education e, either low (e;) or high (ey),
to signal her productivity to the firms. The cost of low education is zero. The
cost of high education is ¢ with ¢ > 0. The firms observe the worker’s education
level e and simultaneously offer wages w; and ws. The worker chooses the better
of the two wages. Her payoff is given by

0, ife=ep,

v(wy, wa, e;¢) = max{wy, we} — '
c, ife=ey.

Each firm ¢’s payoff is given by

Q—wi, if w; > wW_;,
Ui(wia w_i; 0,7) = (9 - wi)%’, if w, = w_;,
0, if w; < w—;,

where ~; is the probability that the worker chooses firm ¢ when she is indifferent
between the offers of two firms. We refer to v = (y1,72) as tie-breaking type, where

v €Ay ={(v,7) € 0,1 : 1 +7 =1}

The worker knows her productivity type 6, her cost of high education ¢, and her tie-
breaking type . The firms know none of these. They only know that the worker
can have any productivity # in [0, 1] and that her cost of high education ¢ lies
between two linearly decreasing functions of 6. Specifically, ¢ is between a —0—¢/2
and a — 0 + /2, where a and ¢ are commonly known parameters. Parameter a
is interpreted as the benchmark cost of education of the lowest productivity type
0 = 0, and ¢ is related to the amount of uncertainty about the cost of education
for a given productivity. Formally, the firms know that (6, ¢, ) belongs to the set
Q) given by

Q:{(@,c,»y)e[0,1]xR+xA2;a—9—%gcga—9+§}. (19)
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We assume that
€ 1  3e

a€(l,3/2],e€[0,1/3],and 0<a—1—-<—-——. (20)
The last condition implies that the lower bound on the cost of education for the
highest productivity type 8 = 1, which is given by a —0 —¢/2 = a—1—¢/2, is
nonnegative but not too large. We impose this condition to reduce the number of
cases to consider, thus simplifying the exposition.

The worker’s strategy e*(0, c,v) describes her choice of the education level for
each profile (0,c,v) € Q. Each firm ¢’s strategy w(e) describes its wage offer
conditional on each education level e € {er,eq}.

Consider how a firm makes inference from the observed level of education of the
worker. This is formalized with the notion of speculated states. Formally, these are
the firms’ degenerate beliefs that put probability one on specific states. Speculated
states are the profiles (0, ¢,~) that a firm thinks are possible after observing the
education level of the worker. The set of speculated states is denoted by S;(e).
This set is consistent with the worker’s equilibrium strategy e* if it includes all
pairs (6, c) under which the worker chooses e € {er,en}, so (0,¢c,v) € Si(e) if
e*(0,c,v) =e.

For each education level e, firm ¢’s mazimum loss of choosing wage w; when the

other firm chooses the wage according to its strategy w*, is given by

li(w;,w";;e) = sup (sup wi(wi, w*,(€);0) — u;(w;, w*,(e); 9)) .
(0,c,v)eSi(e) \w;>0

The maximum loss describes how much more profit firm 7 could have obtained if it

had known the true productivity and cost of education of the worker, anticipating

that the other firm follows its strategy w”,. Firm i’s best compromise given e is a

wage w; (e) that achieves the lowest maximum loss for a given strategy w*; of the

other firm:

*
%

(e) € argmin [;(w;, w* ;; e). (21)
w; >0

w

Observe that the worker has complete information. There is no need for a com-
promise. So, the worker simply chooses a best response:
e*(0,c,v) € argmaxv(wi(e), wy(e),e; 0, c). (22)
ec{er,en}

A profile (e*, w}, w3, S1,Ss) of strategies and speculated states is a perfect com-
promise equilibrium (PCE) if two conditions hold. First, the strategies satisfy
and , so each firm i chooses a best compromise, and the worker chooses a best
response to the strategies of the others. Second, the firms’ sets of speculated states
are consistent with the worker’s strategy e*.
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A PCE is pooling if the worker chooses the same level of education for all
(0,c,v) € Q. A PCE is separating if the set ) can be partitioned into two sub-
sets such that worker types belonging to the same subset choose the same level of
education, but these levels differ between the two subsets.

Proposition 6.
(i) There ezists a pooling PCE in which the worker chooses low education, so

e*(0,¢c,v) =er forall (0,c,v) € Q,

and the firms’ wages are given by
1
w;(eg) = wi(ey) = 2 i=1,2.
After each observed education level e, each firm i’s set of speculated states S;(e)

contains all states.

(ii) There exists a separating PCE in which the worker chooses high education if

and only if her cost ¢ is at most %, so for all (0,c,7) € Q

. 1
en, ZfCS§7

(0, ¢,7) =
€r, ch> %7

and the firms’ wages are given by
2 1 2a — 1
ot and w}(er) = QTH, i=1,2. (23)

After each observed education level e, each firm i’s set of speculated states S;(e)

w; (ex) =

contains each state (0, c,vy) € Q that satisfies
1 1
96{0,&—§+5] ife=-er, and 96{@—5,1] if e =epy. (24)

The proof is in Appendix [A.7]

Let us discuss the strategic concerns underlying these PCE. Each firm ¢, when
facing unknown productivity of the worker and deciding about the wage offer
w;, worries about two possible situations. It could be that the productivity is
high, so offering a wage that is marginally greater than that of the competitor
would improve profit. The greatest such loss occurs when the productivity is
the highest possible. Alternatively, it could be that the productivity is low, so
offering a wage that is smaller than the competitor’s would prevent employing a
worker whose productivity is below the wage. The greatest such loss occurs when
the productivity is the lowest possible. The firm thus offers the best compromise
wage that balances these the losses of not hiring a productive worker and hiring an
unproductive worker, assuming that the other firm follows its equilibrium strategy.

The particular wage offer depends on the greatest and smallest productivities

that are inferred from the level of education e that the worker chooses. In the
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pooling equilibrium, e = ey, or e = ey do not provide any useful information, so
all productivity types are possible. However, in the separating equilibrium, the
firms believe that the productivity belongs to different intervals when observing
different levels of education. For example, if @ = 7/6 and ¢ = 1/3, then the firms
believe that 6 € [0, 1] if the education is low, and that 6 € [2/3, 1] if the education
is high. This leads to different wages charged in the separating equilibrium. In
anticipation of the difference between wages associated with high and low educa-
tion, the workers base their choice of education on their own cost, independent
of their own productivity. Due to the heterogeneity in costs and productivity, a
worker who chooses high education might be less productive than another worker
who chooses low education, just because the cost of the former worker is lower.
Without knowing the cost, one cannot predict which education level a worker with
productivity between a — 1/2 and a — 1/2 + ¢ will choose.

Parameter ¢ captures the degree of uncertainty about the productivity condi-
tional on the cost of education, and thus, conditional on the chosen education level
that reveals information about the cost. The higher the uncertainty, the less reli-
ably the education level signals about productivity. This results in a higher wage
to low educated workers and a smaller wage gap, making the differentiation of
higher and lower productivity types less effective. To see why this occurs, observe
that an increase in ¢ expands the sets of speculated states conditional on each
education level. The threshold @, increases and fy decreases, so both [0,6;] and
[0r, 1] expand. This results in a higher wage to low educated workers and a lower
wage to higher educated workers. In turn, this reduction in the wage gap makes
more types of workers prefer low education, thus shifting both thresholds 8;, and
0 upward. This leads to even higher wages for low educated workers, although it
partially offsets the initial negative effect on the wage for high educated workers.

In summary, our analysis shows that Spence’s insights carry over to this novel
setting that does not rely on probabilities and distributions. It also shows how
easy the analysis captures richer uncertainty about workers than that in the classic
Spence’s framework. A particular consequence of richer uncertainty is that, unlike
in the traditional model, the strict separation between the productivity of the
workers choosing different education levels in the separating equilibrium no longer
holds in our setting.

3.6. Bilateral Trade with Common Value. In this example we consider how
prices emerge in bilateral trade when two traders value the good the same and have
uncertainty about this value. Bilateral trade is modeled by assuming that the seller
sets the price and then the buyer decides whether to buy at this price. This yields
a signaling game where the price set by the seller may reveal information about

the value to the buyer. We show that in a perfect compromise equilibrium trade
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can occur, even though the buyer makes inference about the seller’s information
from observing the price.

The fact that trade can occur stands in stark contrast to the no-trade theorem
under common values as predicted by PBE (Milgrom and Stokey, 1982)). This
extends the insights on the possibility of trade with common value under multiple
priors found by [Billot et al.| (2000), Kajii and Ui (2006), and Rigotti, Shannon
and Strzalecki (2008). Our novelty is that we have an explicit sequential move
game that describes how trade takes place. Thus the occurrence of trade has to
incorporate the information revealed when the traders take actions. In contrast,
the existing literature on trade under multiple priors has identified whether there
are allocations of goods that benefit both traders. However, it remains unclear
whether this trade would take place in a market game where offers are being made.
The worry is that information revealed by the choice of an offer might eliminate
the incentive to trade.

Consider the following model of bilateral trade. A seller wants to sell an indi-
visible good to a buyer. The value of the good is the same for each of the traders,
it is denoted by v. If the good is traded at some price p, then the buyer obtains
v — p and the seller obtains p — v. If the good is not traded, then both traders
obtain zero[d

The traders commonly know an upper and a lower bound on the possible val-
ues. These will be normalized to be 0 and 1, so v € [0, 1]. Each trader also has
private information about this value. Specifically, the seller knows the value be-
longs to [xg, 1], and the buyer knows it belongs to [yo, y1]. As both have correct
information, it follows that

v € [zo, x1] N [yo, 11 (25)

An interpretation is that each trader privately consults an independent expert.
The expert privately informs the trader about the most pessimistic and the most
optimistic assessments of the true value.

The traders have no prior beliefs about each other’s information. Instead, all
they know is the setting. Specifically, the seller with private information [x¢, 1]
knows that the buyer’s private information [yo,y;] has a nonempty intersection
with [z, x1], and the buyer holds symmetric knowledge.

Trade occurs according to the following take-it-or-leave-it protocol. First, the
seller chooses a price p € [0,1]. Then, the buyer decides whether or not to trade
at this price, and the game is over.

Let us describe the traders’ strategies. The seller’s strategy p*, referred to
as pricing rule, specifies a price p*(zg,z1) € [0, 1] given the seller’s information

6The same analysis applies if the seller obtains p when the good is sold and v when the good is
not sold.
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[zg,x1]. The buyer’s strategy a*, referred to as acceptance rule, specifies a de-
cision a*(p,yo0,y1) € {0, 1} whether or not to trade at price p given the buyer’s
information [yo, 1], where a*(p,vo,y1) = 1 means to buy, and a*(p,yo,y1) = 0
means not to buy.

Next we describe how the buyer makes inference from the price chosen by the
seller. This is formalized with the concept of speculated values. These are the
values of v that the buyer thinks are possible after he observes the price chosen
by the seller. Formally, a set of speculated values, denoted by V,(p, y0,v1), is a
nonempty subset of [yo, y1] that depends on the price p.

In equilibrium, the set of speculated values comprises the values that can emerge
under a given pricing rule p* of the seller. Formally, for given [yo,y1] C [0,1]
and p € [0,1], we say that Vi(p,yo,y1) is consistent with pricing rule p* if the
following conditions hold. If price p can occur under the pricing rule p*, that is, if
there exists [zg, z1] C [0, 1] whose intersection with [yg, y1] is nonempty such that

P* (Yo, 1) = p, then

Vi (0, 4o, y1) = [Yo, y1]N

( U {[zo, z1] : p* (20, 21) = p and [xo, z1] N [yo, y1] # @}) . (26)

0<z0<z1<1

Otherwise, if p cannot occur under the pricing rule p*, then V,(p, v, y1) can be an
arbitrary nonempty subset of [yo, y1].

The buyer’s maximum loss from his choice a € {0, 1} given price p and specu-
lated values Vi (p, yo, 1) is

b p,yo,y1) =  sup  (max{v—p,0} — (v—p)a).
vEVp(P,yo,y1)

It describes how much more the buyer could have obtained if he knew the true
value v. The seller’s maximum loss of asking price p, given the buyer’s acceptance

rule o, is

ls(p;xo,21) = sup ( sup (p' —v) " (p', yo. y1) — (p — v) " (p, yo,y1)> :
(v,50,51)€[0,1]%: \P'€[0,1]
ve€[zo,x1]N[yo,y1]
It describes how much more the seller could have obtained if she knew both v and
the buyer’s private information [y, y;], anticipating that the buyer would follow
the acceptance rule a*. Each trader’s best compromise is a choice that achieves the
lowest maximum loss for a given strategy of the other trader. A profile (p*, o*, V3)
is a perfect compromise equilibrium (PCE) if each trader chooses a best compromise
given the strategy of the other trader, and the buyer’s set of speculated values

Vi(p,yo,y1) is consistent with the seller’s pricing rule p*.
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Proposition 7. For each lower bound on the price py € [1/2,1], a perfect com-
promise equilibrium is given as follows. The seller asks

o 1-
p*(zg, 1) = max{xo 5 T + 4x1,pg}. (27)

If the seller asks p > po, then the buyer speculates that

v e %(p7 y07y1) = [max{y072p - 1}791]

and accepts this price if and only if

Yo + U1
< .
P="

If the seller asks p < po, then the buyer speculates that v € Viy(p,vo,v1) = {yo}

and accepts this price if and only if p < yp.

The formal proof is in Appendix [A.8|

Let us discuss the strategic concerns underlying this PCE. Note that in absence
of any strategic interaction, the buyer would buy if and only if the price is below
his midpoint (yo + y1)/2. This is because the buyer is balancing two worst cases
where the true value is at the extreme points of the interval [yo, 31]. Similarly, the
seller would sell if and only if the price is above her midpoint (o + x1)/2.

In the strategic trade setting, the seller would want to sell the good at least
at her midpoint. However, she is worried that the buyer might be extremely
optimistic and willing to accept even higher price. Hence, as a compromise, she
optimally sets the price above her midpoint.

In equilibrium, the buyer agrees to trade when the price is below his midpoint.
He does not take into account the information contained in the price as this in-
formation is coarser that what he already knows when the price is above a given
lower bound py > 1/2. This leads to a range of equilibrium prices, [po, 1], which is
narrow enough so that the seller who anticipates the behavior of the buyer never
reveals information that the buyer would want to use. Note that when pg = 1, we
obtain the no-trade equilibirum where the seller always sets p = 1 and the buyer
rejects it (except when he is certain that the value is 1).

We obtain the possibility of trade under common values when py < 1. The
trade is possible because the traders do not want to miss out on a good trade
opportunity, but also they do not want to make an unprofitable deal. They make
compromise decisions so that they do not lose too much either way.

3.7. Forecasting. In this final example we are interested in how to forecast a
random variable with known mean but unknown dispersion based on a signal with
known distribution. This is a classical updating problem under multiple priors. We
find that the best compromise forecast is given by a convex combination between

the signal and the known mean. The weights depend on the precision of the signal
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and on the bound on the dispersion of the random variable. For instance, it is
close to the midpoint between the signal and the known mean when the random
variable is very dispersed.

Consider an agent who has to forecast a random variable 6 that belongs to [0, 1].
The agent’s payoff is the quadratic loss given by

u(a, ) = —(a — 0)?,

where a € [0, 1] denotes a forecast.

The true distribution of 6 is denoted by F'. However, the agent does not know
F'. She only knows the mean 6, of F', and that F' admits a density f such that
d < f(0) < 1/0 for some § € (0,1). This assumption on the density excludes holes
in the support and point masses. Parameter § can be interpreted as a lower bound
on the degree of dispersion of . The set of such distributions is

Fs={F e A(0,1]) : Ex[0] = 0 and § < f(0) < 1/5 for all § € [0,1]} .

The agent bases her forecast on a noisy signal z of the parameter of interest
0. She knows how this signal is generated. Specifically we assume that signal z
reveals the true value 6 with probability 1 — ¢ and is drawn uniformly from [0, 1]
with probability . So, the conditional distribution of z given 6 is

£z, if 2 <80,

Ge(210) = (28)

l—e+ez, ifz>0.
Let Erg,[-|z] denote the conditional mean of § when the agent speculates that
0 is distributed according to F'. The mazimum loss of a forecast a € [0, 1] given a
signal z € [0, 1] is

l(a;2) = sup | sup Epg.[—(a —0)°|2] —Erg.[~(a—0)*z] | .
FeFs \a’€[0,1]

It describes how much greater payoff the agent could have obtained if she knew
the distribution F'. A forecast a*(z) is a best compromise if it achieves the smallest
maximum loss,
a*(z) € argminl(a; 2).
a€[0,1]
Proposition 8. The best compromise forecast is given by

a*(z) = (1 — ANz + Ao,

where

The proof is in Appendix [A.9]
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Let us present some intuition behind Proposition [§] Due to the quadratic
penalty of making inaccurate forecasts, the loss of a forecast is equal to its distance
from the expected mean conditional on the signal. The forecaster is worried about
two possible situations, namely, when this conditional mean is high and when it
is low. Consequently, the best compromise involves a forecast at the midpoint of
these two extreme conditional means. Solving for this midpoint yields the formu-
lae given in the statement of the proposition. In particular, the best compromise
forecast lies between the ex-ante mean 6y and the signal z.

Note that the best compromise forecast depends on the signal’s precision ¢ and
on the degree of dispersion 0 of the variable of interest. We now show how each
of these two parameters influences the best compromise forecast.

Fix the degree of dispersion . On the one hand, when the signal is very precise,
then the best compromise forecast is close to the signal. This is because a* is
continuous in ¢ and lim.,pa*(z) = z. On the other hand, when the signal is
very noisy, then the best compromise forecast is close to the ex-ante mean, as
lim,_,; a*(z) = 6.

Now we fix the precision ¢ of the noise and vary the bound ¢ on the degree of
dispersion of #. As we relax the constraints on F' imposed by ¢, we obtain that the
forecast approximates the midpoint between 6y and z. Formally, lims_,oa*(z) =
(0o + z)/2. This is because the best compromise balances two extreme situations.
It could be that F' has very high dispersion, thus making the signal extremely
valuable. On the other hand, it could that F' has very low dispersion, in which
case the signal has very little value. The agent seeks the best compromise between
these two situations and selects the midpoint.

Note that the above analysis and discussion reveals a discontinuity in the fore-
cast a* at e =9 = 0.

In summary, when using a signal to update information about a random variable
with known mean but unknown dispersion, the best compromise forecast has a
simple form. It is a convex combination of the known mean and the observed
signal. Under extreme uncertainty where the imposed bounds on the density
vanish, the forecast is particularly simple, namely, it is equal to the midpoint
between the mean and the signal.

In Appendix B we consider an alternative setting, where the agent knows the
distribution of the random variable but she does not know the conditional distri-
bution of the noisy signal. We also deal with the case where the agent is ambiguous
about both distributions (Remark [3).
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4. CONCLUSION

This paper adds to the literature aimed at a better understanding of how play-
ers can deal with uncertainty in dynamic contexts without necessitating a single
prior. We are particularly interested in allowing players to have only an intu-
itive understanding of uncertainty that can be expressed in terms of bounds. The
uncertainty of a player is modeled by confronting the player with multiple “asses-
sors”, each of whom holding a different prior. The assessors process information
and compute posterior beliefs independently, leading to updating prior by prior
using Bayes’ rule whenever possible. The player searches for a compromise among
all the assessors anticipating future moves of her own and the other players. This
leads to the best compromise choices and sophisticated behavior.

Our objective is to present a solution concept that is as close as possible to
perfect Bayesian Equilibrium while allowing for multiple priors. The proximity to
PBE should facilitate the understanding and acceptance of the new concept and
simplify the interpretation of new insights. This design objective also allows us to
build on the discipline underlying the concept of PBE.

We identify six reasons that motivated us to create this new solution concept,
each of them is associated with contexts where PBE has deficiencies. These rea-
sons are robustness, ambiguity, non-probabilistic reasoning, parsimony, tractabil-
ity, and accessibility. We explain each of these in more detail.

Robustness. The PCE concept can be used to investigate the robustness of
insights gained by PBE analyses when players are not willing to commit to a
specific prior. Similarly it can be used to understand how predictions depend on
the degree of understanding of the different players.

Ambiguity. Preferences that allow for decision makers to care about ambiguity
have become popular. Our concept allows us to include players with such prefer-
ences and to estimate the degree of ambiguity of players in the data. The formalism
we introduce is not limited to the use of best compromises as the solution concept.
We could have also inserted any alternative concept for decision making under am-
biguity. The most prominent alternative is maxmin utility preferences that leads
to a pessimistic mindset. We prefer the flavor of finding compromises. Compro-
mises seems necessary in a globalizing world where decision making is made in
front of growing audiences and when there is less willingness to base decisions on
specific distributional assumptions.

Non-probabilistic reasoning. Uncertainty per se seems to mean that details
are hard to describe. And yet traditional models often focus on two types of
workers, high and low, or capture the uncertainty by a small number of parameters.

Uncertainty seems to preclude that players agree on likelihoods of events, and yet
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this is done in PBE. We introduce PCE to open the door to understanding more
realistic uncertainty:.

Parsimony. The traditional PBE framework reveals a different solution for
each prior. Such flexibility can be useful to fit data. But flexibility in terms
of a multitude of different answers gives little guidance to those who need to
make choices. One easily loses the big picture if there are many details that
determine what happens. To achieve clear and transparent results, one often
gives up realism and adapts simplistic uncertainty with only a few types for each
player. In contrast, the PCE concept under genuine ambiguity is by design very
parsimonious. Making best compromises across many different situations allows
to abstract from many details.

Tractability. The usefulness of our solution concept is demonstrated in relevant
economic examples where uncertainty is rich. This richness can prevent a tractable
analysis of PBE. In our examples, PCE is shown to yield tractable results with
simple proofs, as players focus on extreme situations, allowing them to ignore
intermediate constellations.

Accessibility. The PCE concept under genuine ambiguity is undemanding and
easy to teach. Uncertainty can be described with bounds. There is no need for
probabilities, and Bayes’ rule can be put back on the shelf.

Of course, there are several alternative approaches to learning under ambiguity.
We hope to add to this literature, and to see more future work on economics
applications, and empirical testing and comparison of different theories.

APPENDIX A. PROOFS.

A.1. Proof of Theorem [l Consider a game I' = (N, G, Q, (I, ..., IL,), (w1, ...,
uy,)). Let @ be the set of information sets excluding the initial node ¢q, so & =
Uien ®i- Recall that A, is the set of pure actions of the player who moves at
information set ¢ € ®. A strategy profile s associates with each information set ¢
a mixed action sy € @ = A(A,) at ¢.

We now define an e-perturbed game. Let € be a small enough positive number.
Let A.(A(¢)) be the set of mixed actions at information set ¢ such that each
pure action in A(¢) is played with probability at least e. Let S. be the set of
strategy profiles such that s, € A.(A(¢)) for each ¢ € ®. So the strategies in S;
are completely mixed. An e-perturbed game T, is the original game I' where the
players’ strategies are confined to S..

Consider a strategy profile s € S.. Because s is fully mixed, the belief system
that is consistent with s is uniquely defined by Bayes’ rule. Denote this belief
system by [(s), and let (,(7; s) is the posterior probability distribution over the
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decision nodes in the information set ¢ derived from a prior w. Let
B@(ﬂ) S) = {/8¢1(7T17 S) T € HZ}

be the set of beliefs at each ¢; € ®; for each player i € N. Let Uy, (s) be the
negative of player i’s maximum loss at ¢; € ®; when player i follows her strategy
S, SO

U¢i(s) = —1(8@’8,,8(8), Qb)
= inf (ui(s¢i|s,gbi, b;) — sup ui(ai|s,¢>i,bi)> . (29)

bi€Bgy, (8,5) a;€A(¢;)

Two observations are in order. First, Uy, (s) = Uy, (S4,;, S—¢;) 1s continuous in s, .
This is because « is continuous, and the set By, (3, s) of beliefs at ¢; is independent
of s4, (it only depends on the choices in the information sets preceding ¢;). Second,
Uy (Sp;s S—g;) 1s also continuous in s_,, when s € S;, so the strategies are fully
mixed. This is because By, (3, s) is a continuous correspondence w.r.t. s € S;, as
it is derived by Bayes’ rule from the set of priors pointwise, and Bayes’ rule is a
well defined and continuous operator for s € S,. In addition, both By, (8, s) and
A(¢;) are compact. The continuity of Uy, (s4,, S—¢,) in s_p, then follows from the
Maximum Theorem (Berge, 1963).

We now construct an augmented game (®,G,Q, my,U) as follows. Let each
information set ¢ € ® be associated with a different player, so the set of players
is the set of information sets ®. The game tree G and the set of states {2 remain
unchanged. Let my be a common prior over the states, and assume that my has
full support over (2. Nature moves first by choosing a state w € €2 according to
the prior my. Each player ¢ € & moves only once, at her information set ¢, by
choosing a mixed action from the set A.(A(¢)). The interim payoff of each player
¢ € ® at the information set ¢ is given by Uy(s). Let U = (Uy) pea-

The augmented game (®,G, Q) m, U) can be seen as a game of incomplete in-
formation with a nonstandard specification of the players’ payoffs. While in a
standard game the payoffs are specified ex-post at each terminal node, in this
augmented game the payoft U, of each player ¢ € ® is specified in the interim, at
the information set where the player makes a move. Because each player moves
only once, the specification of the interim payoffs is sufficient to apply the concept
of PBE or sequential equilibrium to the augmented game.

Another nonstandard feature of the augmented game is that each player’s in-
terim payoff U, (s) depends on the set of beliefs By(s) at ¢, but it is independent
of the state w itself. So, the prior my does not affect the best-response actions by
the players, it only affects the likelihood of reaching different information sets in

the game tree.
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Let (s;,s_¢) € S. denote the strategy profile where sj is played by player ¢
and s_g4 is the profile of strategies at all other players. Observe that maximizing
Uy (8}, s—¢) with respect to player ¢’s own decision s, € A:(A(¢)) is the same as
minimizing the maximum loss at ¢ in the perturbed game I'.. Consequently, if 3 is
a strategy profile in a sequential equilibrium of the augmented game, then (s, 5(3))
is a PCE of I'.. The existence of PCE follows from the existence of sequential
equilibrium for finite games. We refer the reader to |(Chakrabarti and Topolyan
(2016) for the backward-induction proof of existence of sequential equilibrium
that uses interim payoffs at information sets to determine players’ best-response
correspondences.

Thus we have shown the existence of a PCE in every perturbed game I'.. It
remains to show the existence of a PCE in the original, unperturbed game I.
Consider a sequence (g5,)52, such that limy . e = 0. Let (s*, 8%) be a PCE for the
perturbed game I';,. By Bolzano-Weierstrass theorem there exists a subsequence
(k)2 such that (s*, 3%) converges to some (s*,3*) as t — oo. Observe that
the belief system [* is consistent with s*. This is because for each player i, each
information set ¢; € ®;, and each prior m; € II;, either 3 (m;) is derived by Bayes
rule that is continuous as (s*t, 5%) approaches (s*, 3*), or Bayes rule is undefined
in the limit, in which case §;, (m;) is also consistent by definition. Next, for all
e >0, all ¢ such that € > ¢y, and all s}, € A_(Ay) we have

t—o00

0 <U(st, s,) = Uplsly, ™) = —1(s[sh, %, @) + U(s} 5™, B, ) 25
—U(s3ls*, 5%, 0) + Usls™, 57, 6) = Up(s3 5") — Us(sly, %),

where the inequality is by s];t being a best response in the augmented game, the
first equality is by (29), the limit is by the continuity of I(se|s, 8,¢) in s and 3,
and the second equality is because the set B¢(skt) of beliefs at ¢ is independent
of the mixed action sfjf at ¢. It follows that sj is a best response to s*,. So s*
is a best compromise strategy profile in the unperturbed game I'. We thus have
shown that (s*,5*) is a PCE of T O

A.2. Proof of Proposition [1. To prove the existence of a unique PCE, we find
a unique profile of best-compromise strategies and a unique profile of beliefs that
satisfy Definition [I}

First, we find the beliefs. The firms have genuine ambiguity, so the set of priors
IT; of firm 7 is equal to the set of degenerate beliefs over P. By Definition (1| and
the consistency requirement in PCE, the set B;(¢;) of beliefs of firm 7 at its unique
information set ¢; must be equal to the set of priors, so B;(¢;) = II;.

Next, we find each firm’s equilibrium quantity. For derivations, we assume that
the quantities and the price are always nonnegative, and then we verify that this

is indeed the case in equilibrium.
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Let 27(q_;, P) be a best response strategy of player i given the knowledge of ¢_;
and the inverse demand function P. The loss of firm ¢ from choosing quantity ¢;,
given q_; and P, is denoted by Aw;(¢;, q_;; P) and given by

Aui(qi, q—i; P) = P(x7(q-i, P) + q-i)7;(q—i, P) — P(¢i + q-i) G-
By , the marginal revenue of firm ¢ satisfies
P(gi+q-))+P(q¢i+q-i)qi < P(gi+q-i)+ P (qi+q-i)q < p(q¢+Q—i)+Pl(Qi+Q—i)Qi-

Therefore, for given ¢; and P, the best-response quantity z}(q_;, P) of firm ¢
always lies between z7(q_;, P) and z}(q_;, P). While the profit function need not
be concave in general, it is concave when P = P or when P = P. So the highest

loss will always be attained in one of these two extreme cases:

li(qz‘aqﬂ‘) = Sl}J;p Aui(%qﬂ'; P) = maX{Aui(qwqfi; P), A’Ui(qz‘,qﬂ‘; P)}

It is easy to see that the maximum loss is minimized by balancing the two expres-

sions under the maximum:
Aui(gi, q-i; P) = Aui(gi, ¢-i; P).
Substituting P and P and simplifying the expressions yields the equation

% —(a—b(g; +q-i))q; = %

Solving for ¢; yields the unique best compromise quantity:

avbt+ah g

— (@ —b(g +q-i))a (30)

T B
Solving this pair of equations for (¢7, g3 ), we find . It is easy to verify that under
our assumptions, ¢ > 0, and moreover, P(q} +¢5) > P(q} +¢;) > 0. Substituting
the solution into yields the maximum loss of each firm . U

A.3. Proof of Proposition [2} Similarly to the proof of Proposition [T}, to prove
the existence of a unique PCE, we find a unique profile of best-compromise strate-
gies and a unique profile of beliefs that satisfy Definition [I}

First, we determine the beliefs. The firms have genuine ambiguity, so the set of
priors IT; of firm 7 is equal to the set of degenerate beliefs over [c, ¢]?. By Definition
and the consistency requirement in PCE, firm ¢ with cost ¢; must have the set
Bi(c;) of beliefs equal to the set of priors, so B;(¢;) = II;.

Next, we find each firm’s equilibrium quantity. For derivations, we assume that
each firm prices at or above marginal cost, and then we verify that this is indeed
the case in equilibrium.

Consider firm ¢ with type ¢; € [c, ¢]. Let s™(¢;) be the profit-maximizing pricing

strategy if firm ¢ were the monopoly, so s™(¢;) = (a + ¢;)/2. Since we have
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assumed that ¢ < a/2, this means that s™(¢;) > ¢ for all ¢;. The monopoly profit
is (a — ¢;)%/(4b).

Fix the other firm’s strategy s*,(c_;) and let p be the maximum price of the
other firm, so p = sup, ,¢.q5%;(c—i). Given the other firm’s cost c_;, and thus
the price p_; = s*,(c_;), firm 4’s maximum profit is

0, lf P—i S Ci,
uy (p—i; ¢;) = sup wi(@;, p—is; ¢;) = S (p_i — c)==, if e <p; < s™(a),
x; >0
%, if p_; > s"(¢;)
a—pi (a—c)
= O — — U 3 .

Let p; be a price of firm . We now find the maximum loss of firm ¢ from choosing
pi, given its marginal cost ¢; and the strategy s*, of the other firm. There are
three cases.

First, suppose that p_; < ¢; < p;. Then firm ¢ cannot make positive profit, so p;
is a best response. Thus, firm ¢ behaves optimally in this case, so the loss is zero.

Second, suppose that ¢; < p_; < p;. Then firm i could have been better off by

marginally undercutting p_;. Maximizing the loss over p_; € (¢;, p;], we obtain

. (pi — )52, if pi < 5™ (),
sup  (u; (p—s; &) — wi(pi, p—i; ci)) = (a—c;)? ’ X
p-i€(cipi) 7 if p; > s"(c;).

(31)

Third, suppose that p; < p_;. Then firm i could have made more profit by

increasing its price, so its maximum loss is

sup  (u;(p—i; i) — wi(pi, p—i; i) = w; (p.c;) — ui(pi, P; ;)
P—i€(ps,D)

a—p; (p— )52, if p < s™(c),

=—(pi—a) + e b
b (a Cz)

T

(32)
if p; > s™(¢;).

To minimize the maximum loss, we need to minimize the greater of the expressions
in (1) and (32). Observe that, by the definition of s™(¢;), the right-hand side
in is constant and the right-hand side in is strictly increasing in p; for
pi > s"(¢;). So we only need to consider p; < s™(¢;). Under this assumption, the
greater of the expressions in and can be simplified to

x a—pi a—p a—pi
zi(pi,s_i;c»=max{<pi—ci> (- =L i ) }

b b b
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Because one expression is increasing and the other is decreasing in p; for p; <
s"™(¢;), the maximum loss is minimized at the solution of
a—p; _ a—p a—p;
Solving the above for p; and assigning s}(c¢;) = p;, we obtain .
To see that s} (c;) > ¢;, observe that
1
si(c) —c = 5 (a—ci— \/(a—5)2+(5—c¢)2) >0

by the triangle inequality and a > ¢ > ¢;. Moreover, sf(¢;) > ¢; when ¢; < ¢, and

—(pi— ¢ : (33)

si(¢) = ¢. Finally, substituting s}(c¢;) into the maximum loss expression in ((33)

yields @ U

A.4. Proof of Proposition (3. We prove only part (iii) of Proposition [3| for the
proportional rule given by (10). The proof of parts (i) and (ii) for the other two
rules is analogous but easier, and thus omitted.

Let the refunds r; be given by the proportional rule (10). First we derive an
agent ¢’s best compromise strategy s;. Agent ¢ who chooses x; worries about two
possible situations. It could be that the total contribution is marginally below c,
80 @ + ). 8j(v;) = ¢ — ¢ for a small € > 0. The good is not provided, but had
1 contributed € more it would have been provided. As ¢ — 0, agent ¢’s loss is
v; — x;. Alternatively, it could be that all other agents contribute enough to cover
¢, 50 Y _,;8i(v;) > ¢ Thus the agent could have contributed nothing and still
received the good. In this case the loss is the amount of contribution net of the
refund, z; — r;(z). This loss is maximized when the other agents’ contributions
exactly equal to the cost, so »_.; s;(v;) = ¢, so by we have

CT; Cx;

o Ti+ D 8i(v) T wite
The loss in the first case is weakly decreasing and the loss in the second case is
strictly increasing in z;. To find x; that minimizes the maximum loss, we solve

the equation
Cx;

x; +c
for x;. Denote the solution by s*(v;). It is easy to verify that it is as given in

Vi — Xy =

part (iii) of the statement of Proposition . Note that it is symmetric across the
players, so we drop the subscript .

The above argument requires that there exist values v; € [0,7] such that
>z 8"(v;) = c. Observe that s*(0) = 0 and s*(v;) is increasing in v;. So, we
only need to verify that >, ; s*(v) > ¢, which holds under condition [@.

It remains to determine the maximum welfare loss L(s*) as defined in (12). As

s*(v;) is increasing in v;, the constraint . | s*(v;) < ¢ must be binding. Moreover,
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it is easy to verify that s*(v;) is convex in v;. Thus, by Jensen’s inequality we have

n 1 n
* i > * - i .
E 1 (vj) > ns (n g - vj)
Thus, the maximum is attained for v; = ... = v, = z for z € [0,7] such that

ns*(z) = c. Solving the equation

1
n<§—c+§\/z2+402> =c

for z yields

2n+1
=—c.
n(n+1)
We thus obtain o4 1
L(s*)=nz—c= P =" O
n+1 n+1

A.5. Proof of Proposition 4} Let (0%,05, 5*) be a PCE, and let P* be the set
of equilibrium prices, so

P* = Supp(a(-1611)) U Supp(o (-19,).

Recall that o%(:|-) is discrete, so P* is countable. By contradiction, suppose that

P* contains at least two prices and that there is a positive probability of trade, so

|P*| > 2 and ZUE}(p) > 0.
pEpP*
Consider a price p € P* that might be offered by the low-type seller, so o§(p|fL) >
0. Then p must also be offered with a positive probability by the high-type seller,

and the trade must be possible at p, so
o5(plfr) > 0 implies o5(p|fn) > 0 and oj(p) > 0. (34)

Otherwise, if o%(p|fy) = 0, then the buyer would have inferred that the car
had low quality with certainty, and therefore would not buy it at that price, so
o5(p) = 0. But if o(p) = 0, then the low-type seller’s payoff from choosing p
would be zero, and thus she would have had a profitable deviation to another price
p’ such that o (p’) > 0.

By and the definition of P*, it follows that Supp(c&(-|0r)) = P*, so the
high-type seller randomizes over all prices in P*. Hence she must be indifferent
among them all, so

(¥ — cn)os (W) = (0 — cu)o(p") for all pl,p" € P (35)

However, because ¢;, < cg, the low-type seller cannot be indifferent between the

prices in P*, in fact, she strictly prefers the smallest of these prices, so

(' —cr)op() > (0" —cr)op(p”) forall p,p” € P p" < p".
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Hence the low-type seller assigns probability one on the smallest price in P*, so

Supp(03(101)) = {p.}, where p, = min{p : p € P'}.

Consequently, for each price p’ € P* such that p’ > p,, the buyer infers that that
the type is high with certainty, irrespective of the prior. That is, B;;p, (r) =1 for
all 7 € II. In this case, by (L5]), the buyer buys with certainty, so oj(p') = 1. But
then we have

(0" —ca)op(p) =p" —ca > pe —ca > (pe — cu)op(ps),
which contradicts . Thus we have reached a contradiction. O

A.6. Proof of Proposition Here we only prove claims for PCE, as this is
equivalent to a PBE when there is a single prior. Consider a PCE (0%, 0%, %)
that involves trade and thus, by Proposition [d] is pooling on a single price p*. So,

os(p"0u) = o5(p*|0L) =1, and op(p*) > 0. (36)

Moreover, when observing p*, the buyer’s set of posterior beliefs is equal to the
set of priors, so
5:;?* (m) = & for each 7 € II. (37)

We show that p* necessarily satisfies the conditions on its range that are specified
in Proposition [5

First, in case of single prior, so IT = {7}, by (|15 . and . o5 (p*) must satisfy
(17) when p* < 7wy, and of(p*) = 0 when p* > 7vy. Thus, 1f there exists
a buyer’s strategy oy that satisfies and , then p* < 7wvy. In case of
multiple priors, so Il = {m,...,mx} with K > 2, by and (37), op(p*) must
satisfy when p* < mgvy, and og(p*) = 0 when p* > mgvy. Thus, if there
exists a buyer’s strategy o}, that satisfies and , then p* < mxvy.

Second, by , when p* < cy, the seller would not want to sell a high-quality
car. So, as o(p*) > 0, this seller would want to deviate to another p’ such that
ox(p’) = 0, for instance, p" = 1. Thus, if the seller’s strategy o¥ satisfies and
, then p* > cy.

It remains to show that for every p* € [cy, Tvy| in the case of II = {7} and for
every p* € [cy, Tgvy) in the case of Il = {my, ..., 7k} with K > 2, we can find the
buyer’s out-of-equilibrium beliefs and behavior to support the PCE that is pooling
on p*. Indeed, when observing any p # p*, let the buyer be certain that the car
has low quality, and let o}(p) = 0. Given that p* > cy and oj(p*) > 0, by .,
the seller will prefer p* to any price p # p* irrespective of the car type.

A.7. Proof of Proposition @. First we find the equilibrium wages w? and w”

after the worker’s level of education ey and ej. For each j = L, H, each firm ¢
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has the set of speculated states S;(e;) C €. Let this set be the same for each firm.
Denote this set by S(e;), so S(e;) = Si(e;) = Sa(e;).
Let 6; and 6; be the lowest and highest productivity levels given e;, so

0, =inf{0:(0,c,7) € S(e;)}, 0, =sup{f:(0,¢c,7) € S(e;)}, j=L,H. (38)
Consider a firm 7, some wages w; and w_;, and a state (0, ¢,7y). Firm i’s maximum

profit u}(w_;; #) is obtained by marginally outbidding w_; when it is below €, and
by choosing the wage below w_; and thus not hiring the worker if § < w_;, so

wi(w_s;0) = sup u;(w;, w_;;0,v) = max{f —w_;,0}.
w; >0

Observe that we only need to consider w; and w_; in [6;,60;]. A wage above 0,
is dominated and cannot be a best compromise; a wage below ¢; will always be
overbid by the rival’s wage, as there is common knowledge that ¢ > 0;.
Suppose that w; < w_;, 80 u;(w;, w_;;0,7) = 0. Then the largest loss is obtained
when 6 is the greatest conditional on e;, so
sup  (u) (w_i; 0) — us(wi, w_i;0,7)) = sup max{d —w_;,0} = 0; — w_;.
0:(0,¢,7)€S(e5) 0€l0;,05]

Next, suppose that w; > w_;, so u;(w;, w_;;0,7) = 0 — w;. Then the largest loss
is obtained when ¢ is the smallest conditional on e;, so

sup  (ufw_is8) — wilww_is84) = sup (max{f—w_i, 0} — (6 — w))
0:(0,c,v)€S(ej) 96[,9]':9_]']

:wl—ej

Finally, suppose that w; = w_;, so u;(w;, w_;;6,7v) = (0 — w;)7y;. Then

sup  (uj (w—i; 0) — ui(wi,w;6,7)) = sup  (max{f —w_;,0} — (0 — w;)v;)
0:(0,c,v)ES(€j) 0€(0;,0,],7€A2

= Inax {gj — W_;,W; — Qj} 3
Consequently, the maximum loss [;(w;, w_;) is given by
li(wi, ’U,)_i) = Imax {éj — W_;,W; — QJ} .
Clearly, in the best compromise equilibrium, w; = w_;, and no one can reduce the
loss by deviating to w; above or below w_;, so the best compromise w;(e;) is the
solution of
w;(e;) — 05 = 0; — wi(e;).

Solving the above equation yields

wi(e;) = =12 (39)
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The associated maximum losses are

li(w (e5), whi(e;)) = wi(eg) — 0; = ==

Next, observe that the worker operates under complete information. Given each

.

= (40)

choice of e;, she anticipates the wages w/ = wj(e;) = wi(e;), j € {L,H}. So,
given a state (6, c,), the worker chooses e = ey if and only i]ﬂ

cng—wL.

Pooling PCE. If w? < w*, then every type chooses low level of education ey, so
the equilibrium is pooling. After observing e = ey, the consistent set of speculated
states S(eyr,) is thus the entire set of states, so S(ez) = €. By (19), the highest and
lowest 6 in S(ez) are §;, = 1 and §;, = 0. By , we obtain the equilibrium wages
w;(er) = 1/2. After observing an out-of-equilibrium education e = ey, the set of
speculated states S(ey) must induce the wage wf(ey) < wj(er). In particular, we
can assume S(ey) = €, and thus w(ey) = 1/2.

Substituting the upper and lower productivity bounds §; = 1 and 6; = 0 into
(40)), we obtain the maximum loss for each firm 4,

1
li(w;‘(ej),wii;ej) = 5, 1, = 1,2, j = L, H

Separating PCE. Consider now w > w’”, so that the worker with cost ¢ <

wf — w¥ chooses high education. Let

Sler) ={(0,¢,7) € Q:c>w" —wh} and S(ey) ={(0,¢,7) € Q:c < w —w}

be the sets of beliefs of each firm when the level of education is e; and ey, re-
spectively. So, S(er) and S(ey) contain all profiles (6, ¢,v) such that low and
high education is chosen, respectively. These sets thus satisfy the consistency
requirement (Definition [I).

By and (38), the highest and lowest 6 in S(ey) are given by

fg =1 and QH:a—g—wH—i—wL. (41)

So, S(ey) is nonempty when 0y = a — § —w"” +w” < 1.

Similarly, the highest and lowest 6 in S(ey) are given by
H_L:max{a+g—wH+wL,1} and 6 =0. (42)

H

Because w — w’ <1 and by assumption a + 5 > 1, we have 0, > 0. So S(er) is

always nonempty.

"The tie breaking is arbitrary, because the set of types is a continuum.
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From (39)), we have
w = On + 0 and wh = o +§L. (43)
2 2
Solving the system of six equations in , , and with six unknowns (w?,
w”, Oy, Oy, 01, and 01) when taking into account the condition , we obtain
the unique equilibrium wages and the bounds on the productivity types as shown

in and .

Finally, substituting the upper and lower productivity bounds 6; and 6; into

into (40f), we obtain firm i’s maximum loss when e = ey,

* * Oy — 0 3 a
and the maximum loss when e = ¢,
éL -0 a 1 ¢
= - — — —. D
2 2 4 + 2

A.8. Proof of Proposition [7} Consider how a buyer who knows that v is in

li(w;(er), w”(er);er) =

[Y0, 1] reacts when the seller asks p. Let py € [1/2,1]. Suppose that p < py.
Assume that the buyer speculates that v in {yo}. This is consistent with the
strategy of the seller as p < pg is out of equilibrium. Given this speculation,
accepting p if and only if p < yp is a best compromise.

Now suppose that p > py. The largest interval [xq, z1] C [0, 1] that satisfies
is [2p — 1,1]. So the buyer concludes that

v € VoD, Yo, 1) = (Yo, 11] N [2p — 1,1] = [max{yo, 2p — 1}, y1].

Given this information about the set of possible values, the buyer now compares
her maximum losses when accepting (o = 1) and rejecting (o = 0) the price p.
The maximum loss from rejecting p is
(05 p, Yo, y1) = sup (v—p) =41 —p
ve[max{yo,2p—1},y1]
The maximum loss from accepting p is

L(1;p, y0, 1) = sup (p —v) = min{p — yo, 1 — p}.
v€[max{yo,2p—1},y1]

Because y; < 1, it is easy to verify that 1,(0; p, vo, y1) > lp(1; D, Yo, y1) if and only if
p < %(yo—I—yl). Thus, it is the best compromise to buy the good when p < %(yo +y1)
and not to buy it otherwise.

Let us consider the first stage of the game. Anticipating the buyer’s equilibrium
behavior a*, the seller chooses a price that minimizes his maximal loss. Observe
that choosing a price p < pg is dominated by p = py. This is because when p < py,
the buyer accepts p if and only if the value v is guaranteed to be at least as high
as the price p. In this case, the seller’s payoff cannot be positive.
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Let p > po. Suppose first that p > %(yo +y1) > v. So p is rejected, but it would
be optimal to reduce the price so that the buyer accepts it, specifically, to ask
P = (yo +v1)/2, and thus gain p’ — v. The supremum of this loss is given by

<Z/0+Z/1 )_
sup = —v| =p— .

(v,90,y1): P> % (yo+u1)>v, 2
v€[zo,x1]N[yo,y1]

Second, suppose that p < %(yo +11) < v. So pis accepted, but it would be optimal
not to sell, and thus gain v — p. The supremum of this loss is given by
sup (v—p)=z1—p.

(v,90,91): <L (yo+u1) <v,
veE[zo,x1]N[yo,y1]

Third, suppose that p < $(yo + y1) and v < L(yo + y1). So p is accepted, but it
would be optimal to sell at a higher price, specifically, at p’ = 3 (yo +y1), and thus

gain p’ — p. The supremum of this loss is given by

Yo + 1 a1
w o \Tyor)=T e

(U»yoyyl):P,US%(y0+y1):
v€[zo,z1]N[yo,y1]

Finally, suppose that p > %(yo +11) and v > %(yo +11). So, p is rejected, but any
price p’ > v would have been rejected too, so the loss is zero in this case.

The maximum loss associated with the price p > pg is the largest of the four
losses computed above, so

T+ 1 T+ 1
ls(p; w0, 1) = max ¢ p — To, T1 — P, 5 —p,0 p = max < p — o, —py.

The best compromise price minimizes the maximum loss ls(p; zo, 1) among all

prices p > po, leading to the seller’s equilibrium strategy . U

A.9. Proof of Proposition [8 Before proving Proposition [§, we present a simple
lemma on how the loss of a forecast is computed.

Lemma 1. I(a; 2) = suppcr, (a — Epe, [0]2])%.

The intuition is as follows. The variance of # conditional on a signal z enters
the payoffs additively, and thus cancels out when computing the loss. As a result,
the maximum loss [(a; z) is simply the maximum quadratic distance between a

forecast a and the mean value of § conditional on z.

Proof of Lemma(l Fix G.. Let ap(z) = Erg_[0]z]. Observe that

ar(z) € argmaxEpg, [—(a’ — 0)?|z]. (44)

a’€l0,1]
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So, we have
s Erc.[(d' = 0)*|z] = Erg.[~(a—0)*|2] = Erg.[~(ar(z) —0)* +(a—0)*|z]
a’€l0,1
=Erc.[(a—ar(2))(a+ap(z) — 20)|z] = (a — ap(2))*,
where the first equality is by and the last equality is by Ep ¢ [0]2] = ar(2).

Thus,

(a;2) = sup (a - ap(2))* = sup (o~ Erg, [6]2])%. O
S 5

We now prove Proposition [§ Different distributions F' € F; induce different
conditional means Ep¢_[0|z]. Let H(z) and L(z) be the highest and lowest con-
ditional means, respectively, so

H(z) = sup Epg.[0|z] and L(z) = inf Epq.[0]z]. (45)
FeFs FeFs

The loss of a forecast a given a signal z is

l(a;z) = }Egﬁ) (a —Epg. [0]2])* = max {(a — H(2)), (a— L(z))Q}

where the first equality is by Lemma [1, and the last equality is by the convexity
of the expression. Thus, the best compromise forecast is the midpoint between
the highest and lowest conditional means, so

a*(z) = aélﬁfl] l(a;z) = 5 (H(z)+ L(z)) .

It remains to find H(z) and L(z). Suppose that z > 6. Observe that
By (ol = LT ()2 e fy 0£(0)d0 (1 —e)f(2)z + by
F,G- = =
(1—)f(2) +¢ [, f(6)do (1—e)f(z) +e¢
is increasing in f(z). Using the assumption that f(z) < 1/0, we have

B (1—e)f(z)z+eby (1 —¢)f(2)z+ by (1 —¢€)z+ edby
T2 o/ ~ (-9 + [—eted

Using the assumption that f(z) > ¢, we have

f(z)=1/s

. (=) f(x)z+eby  (1—e)f(2)z +eby (1 —€)dz + &by
L(z) = inf = -
rers (1—e)f(z) +¢ (1=2e)f(z) +¢e |i2)=s (1—¢€)d+¢
Analogously, for z < §y we obtain H(z) = (1(_15);5—;1200 and L(z) = (1_15);%?90. Thus
we obtain
1 1 /((1—¢)z+e0by (1—e)oz+eby
() = = (H(z) + L(2)) = - .
¢ (6) = g )+ 1) = 5 (T2, Br s
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APPENDIX B. ALTERNATIVE MODEL OF FORECASTING

This section considers an alternative an alternative forecasting model to the one
presented in Section (3.7, Here we are interested in how to forecast a random vari-
able with a known distribution after receiving a noisy signal that has an unknown
distribution.

Suppose that the agent knows the distribution F' of 8, but is uncertain about
how the noisy signal z is generated. The following assumptions are made about
this signal. The signal z is known to be not too far from the true value of 8, where
a parameter 0 > 0 describes the maximal distance. So ¢ can also be interpreted as
the precision of the signal. Let y = z — 0 be called the noise. So it is known that
ly| < 4. The distribution of the noise y has a certain and an uncertain component.
Let £ € [0, 1] be a known parameter. With probability 1 — e the noise y is drawn
from a known distribution Gy and with probability ¢ it is drawn from an unknown
distribution G;. So € measures how uncertain the agent is about how the noise
is generated. Given the support restrictions on vy, it follows that Gy and G both
have support contained in [—d,d]. Let G5 be the set of all distributions of y that
satisfy the above description.

Let Epg,c[-|2] denote the conditional mean of 6 given z for G5 € Gs. The

maximum loss associated with a forecast a € [0, 1] given a signal z € [0, 1] is
l(a;z) = sup ( sup Epg,c[—(d —0)*2] — Epg,[—(a — 0)2|z]> :
Gs€Gs \ a’€[0,1]

Let H(z) and L(z) be the highest and lowest conditional means, so

H(z) = sup Epg,0|z2] and L(z) = inf Epg,[0]7].
Gs5€Gs Gs€0s

It is straightforward to verify that
B ef(z—2)(z—x)+ (1 —e) [*5(z — v)f(z — y)dGi(y)
H(z)= sup 5
2€[—6,] ef(z—2)+ (1 —¢) [5; f(z — y)dGo(y)

with an analogous expression for L(z). We obtain the following result.

Proposition 9. The agent’s best compromise is
. 1
a’(2) = 5 (H(z) + L(2)) .
The proof is analogous to that of Proposition |8 and thus omitted.
The best compromise is the midpoint between the highest and lowest conditional
means. The agent’s best compromise forecast depends on the precision ¢ of her
signal, as well as on the degree € of her uncertainty. We show how each of these

two parameters independently influences the best compromise forecast.
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Fix the degree of uncertainty €. If the signal is very precise in the sense that ¢ is
very small, then each of the two extreme conditional means are close to z. Hence,
the best compromise forecast will also be close to z. Formally, lims_,oa*(z) = 2.

Fix the precision § of the signal. As the degree of uncertainty e vanishes, both
extreme conditional means converge to the conditional mean under the benchmark
distribution Gy. Formally, lim. .o a*(z) = Ep¢,0[f]2]. For instance, if G¢ is the
uniform distribution, then the best compromise forecast converges to the expected
value of 6 conditional on € being within ¢ of the signal.

As the degree of uncertainty € becomes large, the role of the benchmark G,
diminishes and almost any noise within [—d, §] becomes possible. When ¢ = 1, it
could be that Gy puts all mass on —4, in which case Epg, .[0|2] = z + d. This is
the highest conditional mean given z, so H(z) = z + d. It could also be that G;
puts all mass on ¢, in which case Erg, [f]|2] = z—0. This is the lowest conditional
mean given z, so L(z) = z — §. Consequently, the best compromise forecast is
close to the signal z when the agent is very uncertain about how z is generated.

Formally, a*(z) — z as € — 1.

Remark 3. Note that the distribution F' of the underlying variable of interest
plays no role when the degree of uncertainty is extreme, so ¢ = 1. Consequently,
we obtain that if the agent knows neither F' nor the distribution of the noise, then
the best compromise forecast is to choose the signal.
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