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1. Introduction

We wish to add to the research on economic models in which players do not

necessarily have a unique prior and hence face ambiguity. We would like to capture

settings where players can have different degrees of ambiguity. On the one hand,

we want to allow players to have a single prior or a few different priors. On the

other hand, we are particularly interested in modeling so-called genuine ambiguity

where players have no probabilistic assessment of what they do not know. The

objective under genuine ambiguity is to be able to formally model realistic agents

who only focus on which states are possible, without assessing their likelihoods.

We present a new solution concept to capture strategic choices of ambiguous

players in extensive-form games. We apply it in several prominent economic ex-

amples, the majority of which involve genuine ambiguity. Our approach leads to

tractable analyses and parsimonious solutions. While the existing literature of-

fers several solution concepts for extensive-form games with multiple priors, these

concepts are not suitable to deal with genuine ambiguity. Moreover, economic

examples in this literature have very simple parametric uncertainty as tractability

issues arise quickly when uncertainty becomes richer.

The solution concept introduced in this paper is based on the everyday notion

of complaints and compromises. It features a particular way of reasoning under

uncertainty that simplifies tradeoffs and thereby can lead to tractable solutions.

Imagine that each player has to justify each of her choices in front of a set of

hypothetical assessors. Each assessor has a single prior. Typically, the player

will not be able to find a choice that is best from the perspective of all of the

assessors. Consequently, some of the assessors complain about the choice of the

player. Confronted by these complaints we postulate that the player wishes to find

a compromise. This compromise is an action under which none of the complaints

of the assessors is too large. With this in mind, the player chooses an action that

makes the largest complaint as small as possible. This methodology is applied to

each decision separately, assuming common knowledge of the equilibrium profile of

strategies. In particular, this means that the player anticipates the future choices

of herself and others.

We hasten to point out three consequences of our approach. First of all, the

way in which a compromise is found given the complaints is rooted in minmax

regret (Savage, 1951). Second of all, each assessor updates his prior based on

what has happened in the past. The player’s aim to find a compromise among

all the assessors leads to a solution concept that is based on prior-by-prior up-

dating, also known as full Bayesian updating (Pires, 2002). Finally, we model

the choices of players under common knowledge of the equilibrium profile. Con-

sequently, each player takes strategies of all players including herself as given and
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anticipates future choices when making a decision. In the behavioural literature,

this assumption is called sophisticated behaviour and is related to consistent plan-

ning (Strotz, 1955; O’Donoghue and Rabin, 1999; Siniscalchi, 2011). In summary,

the need to find compromises leads to an equilibrium concept built on minmax

regret, full Bayesian updating, and sophisticated behavior.

Our solution concept is called perfect compromise equilibrium (PCE). It gener-

alizes perfect Bayesian equilibrium (PBE), and it exists in finite games. Formally,

it specifies for each player a strategy and a belief mapping. The strategy iden-

tifies the action the player chooses at each of her information sets according to

the compromise criterion. The belief mapping maps each prior of the player to a

belief over decision nodes in each of her information sets by applying Bayes rule,

prior by prior, whenever possible.

PCE relies on common knowledge of the equilibrium profile of strategies, just

like PBE does. So there is strategic certainty. Players have a common belief of

how others react to their information in equilibrium, they are only uncertain about

what information others actually have. We hasten to point out that our concept

can be used to incorporate strategic uncertainty, as outlined in Section 2.2.

PCE is a flexible concept as it can adapt to the mindset of each player by

appropriately choosing her set of priors. When there is a single prior, then this

player is Bayesian. When all priors are close to each other, then this player

is concerned with robustness of her decisions to a slight misspecification of the

prior. When the set of priors is large and dispersed, then the model captures

the reasoning of a player who is very ambiguous. In the extreme case, when all

priors are degenerate, we obtain the model of genuine ambiguity. As priors are

degenerate, Bayes’ rule no longer needs to be applied, one only checks if states are

feasible or not.

Genuine ambiguity is a setting we are particularly interested in. Here we con-

sider realistic people who have difficulty forming priors. Instead they only need

to consider which states are possible, without assessing their likelihoods. For in-

stance, it seems unlikely that firms conjecture a specific probability distribution

when they think about what demand they will be facing. Yet it seems plausible

that they put bounds on the uncertain demand. These bounds can come from

the most optimistic and pessimistic scenarios provided by expertise. This way of

modeling uncertainty without using priors comes with numerous advantages in

comparison to PBE. It is easier to specify, justify, or estimate a set of possible

states than to do this for a distribution (prior) over these states. This often makes

solutions easier to obtain and more parsimonious. It also enables better under-

standing of how results depend on inputs. These advantages are demonstrated in

our examples.
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We investigate seven salient economic examples. We consider Cournot compe-

tition with unknown demand, where firms postulate bounds on the true demand.

We consider Bertrand competition where firms assess lower and upper bounds

on the marginal costs of their rivals. We consider public good provision where

beneficiaries of a public good do not know each others’ values and hypothesize an

interval where these values can be. We consider Akerlof’s market for “lemons” in

which the buyer is ambiguous about the quality of the car. We consider Spence’s

job market where employers are uncertain about the cost of education and the

productivity of workers, and conjecture bounds on these parameters. We consider

bilateral trade with common value where each party knows an interval that con-

tains the true value. Finally, we consider forecasting of a random variable with

unknown distribution.

These examples highlight the value of the PCE concept. Novel realistic set-

tings can be investigated, as we no longer have to confine ourselves to simplistic

parametric models of uncertainty, such as when there are only two states (high

and low). Realism enters as we can capture uncertainty without explicitly refer-

ring to distributions. Tractability is maintained by shifting the focus away from

distributions to the worst-case analysis. New insights appear. We find that re-

placing priors by bounds on uncertain parameters has little impact on profits in

Cournot and Bertrand competition settings where compromise values are small.

In these contexts it makes little sense to think in more detail about which state is

really the true one, as payoffs would only be slightly higher in some states when

playing PCE. Yet loosening these bounds causes firms to react differently. They

become more competitive under Cournot competition and less competitive under

Bertrand competition. In Akerlof’s market for lemons, the buyer implicitly hes-

itates, by using a mixed strategy, when deciding whether or not to buy the car.

In the public good game, we show the ease of comparing policies and the simplic-

ity of the beneficiaries’ contribution strategies. In the separating equilibrium of

Spence’s job market signaling game, better educated workers are not necessarily

more productive, unlike in the classic model with two types (Spence, 1973). In

bilateral trade with common value, we find that trade is possible. The possibility

that the trading partners have different valuations leads to trade with positive

probability in a PCE, as ignoring this possibility generates losses that the traders

want to minimize. This is true even though, unlike other papers that study trade

with multiple priors (Billot et al., 2000; Kajii and Ui, 2006; Rigotti, Shannon and

Strzalecki, 2008), we allow that the buyer makes inference from the price set by

the seller. Finally, when forecasting a random variable with a known mean and

unknown distribution based on a noisy signal, the best-compromise forecast is a

weighted average of the mean and the signal.
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Related Literature. Our paper contributes to the literature on robustness and

ambiguity in games. The main contribution of this paper is that we offer an

operationalizable solution concept for extensive-form games with ambiguity that

can allow for simple analysis in problems with rich state spaces that often have

tractability issues under PBE.

Two closely related papers are Hanany, Klibanoff and Mukerji (2020) and, con-

currently with our paper, Pahlke (2022). Both papers consider extensive-form

games with ambiguity. In Hanany, Klibanoff and Mukerji (2020), players have

smooth ambiguity preferences (see also Klibanoff, Marinacci and Mukerji, 2005).1

Specifically, a player aggregates expected utilities calculated under different priors

using a distribution over these priors and a concave aggregator function. In Pahlke

(2022), players have maxmin utility preferences and, like in our setting, update

the priors individually, one-by-one. The central focus of both papers is sequential

optimality, which means that a player’s ex-ante optimal strategy remains optimal

conditional on reaching every information set where that player moves. Hanany,

Klibanoff and Mukerji (2020) show that their way of smooth aggregation of mul-

tiple priors is necessary and sufficient to have sequential optimality for general

sets of priors, whereas Pahlke (2022) guarantees sequential optimality by restrict-

ing the sets of priors to have the rectangularity property similar to Epstein and

Schneider (2003).

Our paper complements Hanany, Klibanoff and Mukerji (2020) and Pahlke

(2022) in two respects, allowing for distinct results in applications, such as our

examples. First, in our paper the players have minmax-regret-type preferences,

which can be more suitable than maxmin utility and smooth ambiguity for some

applications. Second, we do not bind ourselves by the constraint of sequential

optimality. Instead, we apply a weaker requirement: our players make optimal

choices when anticipating their own future choices, so they have sophisticated be-

havior. The difference of our approach from the above papers becomes apparent in

the context of genuine ambiguity, where players only have degenerate priors over

states. The set of degenerate priors generally fails the rectangularity property of

Pahlke (2022). Smooth ambiguity requires to assign specific weights to priors,

which collapses to a single prior when all these priors are degenerate. Thus, in the

genuine ambiguity setting, the approach of Hanany, Klibanoff and Mukerji (2020)

collapses to PBE with a given prior over states.

Let us compare the compromise (maxmin regret) approach used in our paper

and a popular alternative approach, maxmin utility (e.g., Wald, 1950; Gilboa and

Schmeidler, 1989; Epstein and Wang, 1996; Kajii and Ui, 2005; Azrieli and Te-

per, 2011). On an intuitive level, maxmin utility is applicable when players are

1See also Battigalli et al. (2019) who study players with smooth ambiguity preferences, but in
the context of repeated population games.
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pessimistic, while best compromises make more sense when players are interested

in making decisions that are good in different contingencies. The underlying phi-

losophy is very different. The maxmin choice is best when payoffs are the lowest,

without taking into account the performance in other situations. The best com-

promise choice is the closest possible to the optimum in all situations.2 In the

salient examples investigated in this paper, the maxmin approach leads to unin-

tuitive results. For instance, in Bertand duopoly with ambiguity about the rival’s

cost, maxmin utility leads firms to shut down. In contrast, our approach reveals

economically relevant insights, and does this in a simple manner with minimal

structural assumptions.

The concept of best compromise has origins in minmax regret (Savage, 1951)

and connects to approximate optimality. Our optimization criterion differs from

minmax regret as evaluation occurs at each information set, while minmax regret

traditionally evaluates regret ex-post. Furthermore, PCE retains the strategic

reasoning of PBE, as players have certainty about each others’ strategies. For an

investigation of minmax regret under strategic uncertainty see Linhart and Radner

(1989), and under partial strategic uncertainty see Renou and Schlag (2010).

In simultaneous-move games, PCE can be considered as a generalization of ex-

post Nash equilibrium (Cremer and McLean, 1985). It can be thought of as an

ε-ex-post Nash equilibrium in which the smallest possible value of ε is chosen for

each player. In the context of ε-Nash equilibrium (Radner, 1980) the value of ε is

interpreted a minimal level of improvement necessary to trigger a deviation. Our

interpretation is different. The value of ε measures the compromise needed to

accommodate all beliefs. In particular, the threshold ε is endogenous in a PCE.

PCE can be interpreted as a robust version of PBE where robustness in the

sense of Huber (1965) means to make choices that also perform well if the model

is slightly misspecified. Being a compromise, our suggested strategies perform

well under each prior given how others make their choices, never doing too badly

relative to what could be achieved under that prior. Stauber (2011) analyzes the

local robustness of PBE to small degrees of ambiguity about player’s beliefs. In

particular, players do not adjust their play to this ambiguity, unlike in our paper.

We proceed as follows. In Section 2 we introduce our solution concept, prove

existence, and discuss its properties. In Section 3 we illustrate PCE in seven self-

contained economic examples. Section 4 concludes. All proofs are in Appendix A.

An alternative forecasting example is in Appendix B.

2This difference can be illustrated in a laboratory game studying the Ellsberg paradox. A
respondent who worries about the lowest payoff chooses the bet with a known probability. On
the other hand, a respondent who is concerned that she could have done better may potentially
choose the bet with an ambiguous probability. Different motives can lead to different behavior
in this laboratory experiment.
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2. Perfect Compromise Equilibrium

We introduce a solution concept called perfect compromise equilibrium (PCE).

The concept is formally defined in Section 2.1 and discussed in Section 2.2. A

reader who wishes to be spared with the formalities and seeks to understand the

essence of PCE and its applicability can jump to Section 3 that presents self-

contained economic examples.

2.1. Formal Setting. Consider a finite extensive-form game described by (N,G,
Ω, (Π1, ...,Πn), (u1, ..., un)), where N = {1, ..., n} is a set of players, G is a finite

game tree, Ω is a finite set of states, Πi ⊂ ∆(Ω) is a finite set of priors of player i,

and ui is a payoff function of player i. In particular, this embeds a nonprobabilistic

view of uncertainty by letting Πi contain only degenerate priors that put all weight

on one of the states. We refer to this case as genuine ambiguity. Also note that

we allow players to have different sets of priors.

The game tree G describes the order of players’ moves, their information sets,

and actions that are available at each information set. It is defined by a set of

linked nodes that form a tree. The game starts with the initial node φ0 assigned

to nature, followed by decision nodes assigned to players and terminal nodes that

describe payoffs. Each decision node is assigned three elements: a player i, an

information set φi, and a set of actions Aφi available to player i at that information

set. Information set φi is a set of all the decision nodes that player i cannot

distinguish. Information sets and action sets satisfy the standard assumptions of

games with perfect recall. Let Φi be the set of all information sets of player i for

each i ∈ N , and let T be the set of terminal nodes of the game. In the canonical

case, the set of actions Aφi is a set of mixed actions ∆(Aφi) where Aφi is a finite

set of pure actions. This corresponds to the typical model of a finite sequential

game. Of interest for applications is also the case where mixed actions are ruled

out. In this case, Aφi contains only the set of pure actions available at φi.

Motivated by Harsanyi (1967), all incomplete information is captured by a move

of nature at the beginning of the game without loss of generality. At the initial

node φ0, nature chooses a state ω from the set of states Ω. The set of priors

Πi describes alternative beliefs (theories) of player i for how the state has been

determined. Note that if each player has a single prior, then this constitutes a

standard Bayesian game with heterogeneous priors.

The game terminates after finitely many moves at some terminal node where

players obtain payoffs. A payoff function of each player i ∈ N specifies the payoff

ui(τ) of player i at each terminal node τ ∈ T .

A strategy profile s describes the behavior of all players throughout the game.

It prescribes to each player i ∈ N in each of her information sets φi ∈ Φi an action

sφi ∈ Aφi .
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Like in Bayesian games, we also specify posterior beliefs of the players in their

information sets. We do this for each prior separately. We specify a posterior

belief at each information set for each prior using Bayes’ rule whenever possible.

Thus, there are potentially as many posteriors at each information set of player

i as there are priors in Πi. This procedure can be found in the literature in a

different context under the name of full Bayesian updating (Pires, 2002).

Formally, for each player i and each information set φi ∈ Φi, let βφi : Πi → ∆(φi)

be a belief mapping that associates each prior πi ∈ Πi of player i with a posterior

probability distribution βφi over the decision nodes in φi. Thus, in the information

set φi, player i faces a set Bφi(β) of posterior beliefs derived from the set of priors

Πi, where

Bφi(β) = {βφi(πi) : πi ∈ Πi} .
We will refer toBφi(β) as the set of beliefs at φi, and to the profile β = (βφi)φi∈Φi,i∈N

as the belief system.

Like in PBE, we will require consistency of beliefs.

Definition 1. A belief mapping βφi is called consistent under a strategy profile s

if for each prior πi ∈ Πi such that the information set φi is reached with a strictly

positive probability under strategy profile s, the belief βφi(πi) is derived by Bayes

rule from πi.

A belief system β is consistent under a strategy profile s if for each i ∈ N and

each φi ∈ Φi the belief mapping βφi is consistent under s.

Note that our definition of consistency does not impose any discipline on the

out-of-equilibrium beliefs. If an information set φi cannot be reached under a

given prior πi and a given strategy profile s, then every belief βφi(πi) ∈ ∆(φi)

is consistent under s. Of course, not all out-of-equilibrium beliefs are sensible in

applications. For example, if needed, it is natural to refine the concept of PCE

in the same way as sequential equilibrium (Kreps and Wilson, 1982) refines the

concept of PBE. We do not provide more details on this refinement in order not to

distract the reader from the main messages of the paper. Yet we hasten to point

out that Theorem 1 also applies to this refinement, and that all PCE found in our

examples below satisfy this refinement.

Next we define how players choose their strategies. When making a choice at

a given information set, the choices at all other information sets are treated as

given according to the players’ strategies. The difficulty of making a decision at

φi is that the player does not know which belief in the set of beliefs Bφi(β) should

be used to evaluate the expected payoff. We resolve this issue by assuming the

player chooses a best compromise. This is an action that is never too far from the

best action under each belief in Bφi(β).
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Formally, consider a pair (s, β). Denote by ūi(sφi |φi, s, bi) the expected payoff of

player i from choosing an action sφi ∈ Aφi in an information set φi under the belief

bi over the decision nodes in φi, assuming that the play is given by s elsewhere in

the game. The payoff difference

sup
xi∈Aφi

ūi(xi|φi, s, bi)− ūi(sφi |φi, s, bi)

is called player i’s loss from choosing action sφi at information set φi given belief

bi. It describes how much better off player i could have been at this information

set given this belief if, instead of choosing sφi , she had chosen the best action,

assuming that the choices in all other information sets are prescribed by s. The

maximum loss of player i from choosing action sφi in an information set φi under

(s, β) is given by

l(sφi |φi, s, β) = max
bi∈Bφi (β)

(
sup
xi∈Aφi

ūi(xi|φi, s, bi)− ūi(sφi |φi, s, bi)

)
.

So the maximum is evaluated over all beliefs of player i at φi.

Player i makes a decision that minimizes the maximum loss. Such a choice is

called a best compromise. Formally she chooses an element of

arg min
sφi∈Aφi

l(sφi |φi, s, β) (1)

at each of her information sets φi. In equilibrium s∗, this means that she chooses

s∗φi ∈ arg minsφi∈Aφi
l(sφi |φi, s∗, β). Hence, when computing the maximum loss and

finding the best compromise, each player assumes that the behavior is given by

s∗ at all other information sets, including her own. Thus the players anticipate

their own choices at subsequent information sets, which is known as sophisticated

behavior and is closely related to consistent planning (Strotz, 1955; O’Donoghue

and Rabin, 1999; Siniscalchi, 2011). Each player deals with her ambiguity about

the true state by choosing best compromises. At the same time, a player ac-

knowledges the fact that she will be facing ambiguity at later information sets,

and hence anticipates her equilibrium choices there. This leads to our equilibrium

concept that is motivated by complaints and compromises.

Definition 2. A pair (s∗, β∗) is called a perfect compromise equilibrium (PCE) if

(a) each player chooses a best compromise in each of her information sets;

(b) the belief system β∗ is consistent under the strategy profile s∗.

We begin by establishing the existence of PCE in finite extensive-form games.

A game (N,G,Ω, (Π1, ...,Πn), (u1, ..., un)) is called finite if N and Ω are finite, Πi is

finite for each i ∈ N , and every information set φi of the game tree G is associated

with a finite set of pure actions Aφi . The set of actions available to player i in

that information set comprises all the mixed actions, so Aφi = ∆(Aφi).
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Theorem 1. In a finite game, a perfect compromise equilibrium exists.

The proof is in Appendix A.1.

2.2. Discussion. We highlight some properties of PCE.

Best Compromise. Our decision making criterion for how to make choices at a

given information set captures the intuitive notion of making a compromise. As

a compromise, the performance should be satisfactory in all potential situations,

as opposed to being best under some and possibly very bad under others. The

concept of best compromise identifies the smallest maximal distance from first best

as a measure of how large the compromise has to be. Compromises are valuable

when decisions have to be justified in front of others who have heterogeneous

perceptions about the environment.

The concept of a best compromise follows the tradition of decision making under

minmax regret, thus having an axiomatic underpinning (Milnor, 1954; Hayashi,

2008; Puppe and Schlag, 2009; Stoye, 2011). Traditionally, minmax regret is eval-

uated ex-post after all uncertainty is resolved. In contrast, to model a compromise

in the face of several beliefs, we consider the loss attained at the interim (at a given

information set) for a given belief. Stoye’s (2011) axioms continue to hold from

this interim viewpoint. Furthermore, our concept retains the strategic reasoning

of PBE, as players know each others’ strategies. This is unlike Linhart and Radner

(1989) who reduce the game to an individual decision problem, where the behavior

of the others is treated as a move of nature.

Clearly, instead of best compromise, any other decision making criterion under

ambiguity could be used for determining choices at information sets. For instance,

the maxmin utility criterion can be used to model pessimism or cautiousness, a

world in which the player always anticipates the worst outcome.

Planning and Updating. By nature of a sequential game, a player’s perspective

can change during the game. Future choices that look optimal today might not

be optimal when the actual choice has to be made. To account for the changing

perspectives, we assume that the players plan ahead what they and the others will

do. The players’ strategies are taken as given, and future choices are determined

by these strategies.

An alternative approach would be to design a solution concept where a player’s

plan of actions does not depend on when this plan is made. This has been an

objective in the related literature on maxmin utility and related ambiguity mod-

els (e.g., Epstein and Schneider, 2003; Wang, 2003; Hanany and Klibanoff, 2007;

Hanany, Klibanoff and Mukerji, 2020; Pahlke, 2022). However, the insights of

that literature are that this leads to substantial constraints to what priors are

allowed, as in Pahlke (2022), or dictate a specific way of aggregating expected
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utilities under multiple priors, as in Hanany, Klibanoff and Mukerji (2020), that

collapses back to PBE when the ambiguity is genuine (that is, when all the priors

are degenerate).

Strategic Certainty. PCE assumes common knowledge of the equilibrium profile

of strategies, just like PBE does. So there is strategic certainty. Players have a

common belief of how others react in equilibrium to their information, they are

only ambiguous about what information others actually have. However, PCE can

be also used to incorporate strategic uncertainty as follows. The situation where

a player, call her A, is ambiguous about the strategy of another player, call him

B, is interpreted as ambiguity of A about some information that is private to B.

That is, had A known everything about B, she would have had certainty about B’s

strategy. This way, any strategic uncertainty can be reinterpreted as informational

uncertainty or ambiguity about the state of the world.

PCE vs PBE. Our definition of PCE generalizes the concept of PBE to games

where some players may be ambiguous about what they do not know. When

there is no ambiguity, so there is a single belief at each information set, then our

setting describes a standard game of incomplete information. In this case, the

loss minimization objective, as described in (2), reduces to the standard utility

maximization objective. So, an action minimizes the maximum loss of a player if

and only if it is a best response. Moreover, whenever there is only a single belief,

the consistency requirement introduced in Definition 1 reduces to the standard

Bayesian consistency of beliefs. Hence, PCE becomes PBE.

The difference between PCE and PBE emerges in models where some players

are ambiguous about the state of the world. The standard PBE approach forces

players to quantify the uncertainty by specifying a unique belief at each informa-

tion set, and then assuming that the players optimize with respect to these beliefs.

Our approach sidesteps this issue by letting the players have multiple beliefs at

each information set and find compromises with respect to these beliefs.

Ex-post Nash Equilibrium. In simultaneous move games PCE is related to ex-post

Nash equilibrium. Ex-post Nash equilibria are profiles that are Nash equilibria in

the game in which the state is observed by all players at the outset of the game.

This means that the maximum loss of each player at her single information set is

equal to zero. Consequently, any ex-post Nash equilibrium is also a PCE. Note,

however, that ex-post Nash equilibria often do not exist.

Dominance. A PCE survives the elimination of strictly dominated strategies, as

we now demonstrate. We say that an action ai ∈ Aφi at an information set φi is

strictly dominated for player i if there exists another action xi ∈ Aφi such that

player i’s payoff from choosing ai is strictly worse than that from choosing xi,

regardless of the state ω ∈ Ω and of the choices of other players at any of their
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information sets. Iterated dominance is defined as usual. After having excluded

actions that were strictly dominated in previous rounds, one checks the dominance

condition w.r.t. the remaining actions of each player. Now observe that if an

action ai at some information set φi is strictly dominated, then it cannot be a

best compromise at this information set. This is because the action that strictly

dominates ai will achieve a strictly lower loss for each belief, and hence its maximal

loss will be strictly smaller. Thus, a strictly dominated action cannot be a part of

a PCE. This argument can be iterated, so any iterated strictly dominated action

cannot be a part of a PCE.

3. Examples

We illustrate our solution concept with a few economic examples that are promi-

nent in the literature. We consider Cournot and Bertrand duopoly, public good

provision, Akerlof’s market for “lemons”, Spence’s job market signaling, bilateral

trade with common value, and forecasting.3 The examples presented in this section

are self-contained as they do not require knowledge of the formalities presented in

Section 2.

We are particularly interested in understanding strategic play under uncertainty

when the players cannot or are unwilling to assess the likelihood of different states

of the world at the beginning of the game. Formally, players can only have degen-

erate priors that put probability one on a single state of the world. We call this

genuine ambiguity.

Apart from the market for “lemons” and forecasting, the examples presented

below deal with genuine ambiguity. Therein, ambiguity is specified in terms of

bounds on what the players do not know. Probability distributions do not play a

role. Players do not have beliefs. Instead, they speculate about which state is true

or about what decision node within an information set they are at. In addition,

we assume that players do not use mixed strategies. They search among their pure

strategies for a best compromise. Thus we perform a strategic analysis without

using probabilities.

3.1. Cournot Duopoly with Unknown Demand. We investigate two firms

that compete in quantities when neither firm knows the demand. We show that

in a perfect compromise equilibrium the firms respond by slight increase of their

quantities when they face such uncertainty. Each firms’ potential loss is small

relative to the case when it knows the demand exactly.

Consider two firms that produce a homogeneous good. For clarity of exposition,

we assume that there are no costs of production. Each firm i = 1, 2 chooses a

3An alternative forecasting model is presented in Appendix B.
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number of units qi ≥ 0 to produce. Choices are made simultaneously. The firms

face an inverse demand function P (q1 + q2). Firm i’s profit is given by

ui(qi, q−i;P ) = P (qi + q−i)qi, i = 1, 2.

Neither firm knows the inverse demand P , but they know that it belongs to a set

P given as follows. Let

¯
P (q) =

¯
a−

¯
bq and P̄ (q) = ā− b̄q, where ā ≥

¯
a > 0 and ā/b̄ ≥

¯
a/

¯
b > 0.

Let P be the set of inverse demand functions that satisfy

P (q) is continuously differentiable in q,

¯
P (q) ≤ P (q) ≤ P̄ (q) and

¯
P ′(q) ≤ P ′(q) ≤ P̄ ′(q).

(2)

A firm i’s maximum loss of choosing quantity qi when the other firm chooses

quantity q−i is given by

li(qi, q−i) = sup
P∈P

(
sup
q′i≥0

ui(q
′
i, q−i;P )− ui(qi, q−i;P )

)
.

The maximum loss describes how much more profit firm i could have obtained if it

had known the inverse demand P when anticipating that the other firm produces

q−i. Firm i’s best compromise given a choice q∗−i of the other firm is a quantity q∗i
that achieves the lowest maximum loss, so

q∗i ∈ arg min
qi≥0

li(qi, q
∗
−i).

A strategy profile (q∗1, q
∗
2) is a perfect compromise equilibrium (PCE) if each firm

chooses a best compromise given the choice of the other firm.

Proposition 1. There exists a unique perfect compromise equilibrium. In this

PCE, the strategy profile (q∗1, q
∗
2) is given by

q∗i =
1

3
(√

¯
b+
√
b̄
) ( ¯

a√
¯
b

+
ā√
b̄

)
, i = 1, 2. (3)

The associated maximum losses are

li(q
∗
i , q
∗
−i) =

(
¯
ab̄− ā

¯
b)2

4
¯
bb̄
(√

¯
b+
√
b̄
)2 , i = 1, 2. (4)

The proof is in Appendix A.2.

Remark 1. It is generally intractable to find a PBE in this game with such a

rich set of possible inverse demand functions. It can only be done under very

specific priors about the inverse demand. For example, PBE can be found if a

prior describes the uncertainty about the parameters of the linear inverse demand

function P (q) = a− bq (Vives, 1984).
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Let us discuss the strategic concerns underlying the PCE in this game. Consider

firm i who faces unknown demand and is deciding about how much to produce.

This firm worries about two possible situations. It could be that the inverse

demand is actually very high, so the firm is losing profit by producing too little.

The greatest such loss occurs when the inverse demand is the highest, so P = P̄ .

Alternatively, it could be that the inverse demand is actually very low, so the firm

is losing profit by producing too much. The greatest such loss occurs when the

inverse demand is the lowest, so P =
¯
P . The best compromise q∗i balances these

two losses, assuming that the other firm follows its equilibrium strategy q∗−i.

Our equilibrium analysis can shed light on how the firms respond to increasing

uncertainty. For comparative statics, let us consider as a benchmark a linear

inverse demand function P0(q) = a0 − b0q. We normalize constants a0 and b0 so

that the monopoly profit is equal to 1, that is,

max
q≥0

(a0 − b0q)q =
a2

0

4b0

= 1.

Suppose that there is a small uncertainty. Specifically, for ε > 0 let P (q) satisfy

(2) where

¯
P (q) =

(
1− ε

2

)
a0 −

(
1 +

ε

2

)
b0q and P̄ (q) =

(
1 +

ε

2

)
a0 −

(
1− ε

2

)
b0q.

Denote by qε = (qε1, q
ε
2) the strategies of the PCE as given by Proposition 1. We

then obtain
dqεi
dε

=
2ε

3a0

+O(ε3) > 0.

So the firms optimally respond to a growing uncertainty about the demand by

increasing their quantities. There is a pressure to increase the quantity to account

for the possibility of higher demand, and to decrease it to account for the possibility

of lower demand. As a result, the quantity does not change very much. In fact, it

increases slightly due to a larger pie size when the demand is high.

Next, consider the associated maximum losses as shown in (4). Then

li(q
ε
i , q

ε
−i) = ε2 +O(ε4), i = 1, 2.

So the maximum losses in the PCE increase very slowly as uncertainty increases.

For example, if ε = 0.1, then li(q
ε
i , q

ε
−i) ≈ 0.01. So the firms lose no more than

about 1% of the maximum profit when allowing for a 10% error in the demand

specification. Thus, uncertainty does not have a substantial impact on perfor-

mance.

3.2. Bertrand Duopoly with Private Costs. We investigate two firms that

compete in prices when the cost of the competitor is unknown. We show that in a

perfect compromise equilibrium the firms charge prices above their marginal cost
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and hence make profits when they face such uncertainty. Moreover, the markup

of each firm is decreasing in its own cost.

Consider two firms i = 1, 2 that produce a homogeneous good. They choose

prices p1 and p2 simultaneously. The consumers only buy from the firm that offers

a lower price. The quantity that firm i sells is given by

qi(pi, p−i) =


Q(pi), if pi < p−i,

Q(pi)/2, if pi = p−i,

0, if pi > p−i,

where Q(p) is the demand function. For clarity of exposition we assume that the

demand function is given by

Q(p) = max

{
a− p
b

, 0

}
The cost of producing qi units is ciqi. Each firm i’s profit is given by

ui(pi, p−i; ci) = (pi − ci)qi(pi, p−i), i = 1, 2.

Each firm knows its own marginal cost but not that of its competitor. It is

common knowledge that the marginal costs belong to a given interval, so

c1, c2 ∈ [
¯
c, c̄], where 0 ≤

¯
c ≤ c̄ ≤ a/2.

A firm i’s pricing strategy si(ci) describes its choice of the price given its marginal

cost ci.

For each marginal cost ci, firm i’s maximum loss of choosing a price pi when

facing pricing strategy s−i of the other firm is given by

li(pi, s−i; ci) = sup
c−i∈[

¯
c,c̄]

(
sup
p′i≥0

ui(p
′
i, s−i(c−i); ci)− ui(pi, s−i(c−i); ci)

)
.

The maximum loss describes how much more profit i could have obtained if it had

known the other firm’s marginal cost c−i, anticipating the other firm to follow the

pricing strategy s−i. Firm i’s best compromise given ci is the price p∗i = s∗i (ci) that

achieves the lowest maximum loss for a given strategy s∗−i of the other firm:

s∗i (ci) ∈ arg min
pi≥0

li(pi, s
∗
−i; ci).

A strategy profile (s∗1, s
∗
2) is a perfect compromise equilibrium (PCE) if each firm i

chooses a best compromise given its marginal cost ci when facing the strategy s∗−i
of the other firm.
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Proposition 2. There exists a unique perfect compromise equilibrium. In this

PCE, the pricing strategies are given by

s∗i (ci) =
1

2

(
a+ ci −

√
(a− c̄)2 + (c̄− ci)2

)
, i = 1, 2. (5)

The associated maximum losses are

li(s
∗
i (ci), s

∗
−i, ci) =

(a− c̄)(c̄− ci)
2b

≤ (a− c̄)(c̄−
¯
c)

2b
, i = 1, 2. (6)

The proof is in Appendix A.3.

Remark 2. It is generally intractable to find a PBE in this application under any

reasonable prior, even in this simplest setting with linear demand and constant

marginal costs. The PBE strategy profile for this simplest setting is implicitly

defined by a differential equation with no closed form solution (see Spulber, 1995).

Let us discuss the strategic concerns underlying the PCE in this game. For the

sake of argument, suppose that the PCE price is strictly increasing in the cost.

Each firm i that chooses a price above its marginal cost worries about two possible

situations. It could be that the competitor has a weakly lower cost, and hence

charges a weakly lower price p−i ≤ pi. Thus, firm i could have obtained more

profit by undercutting p−i. The greatest such loss occurs when the competitor’s

price marginally undercuts pi. Alternatively, it could be that the competitor has

a higher cost and hence charges a higher price, p−i > pi. Thus, unless pi is already

profit maximizing, firm i is losing profit by charging too little. The greatest such

loss occurs when the competitor’s price is the highest possible (attained when

c−i = c̄). The best compromise pi = s∗i (ci) balances these two losses, assuming

that the competitor follows its equilibrium strategy.

Note that the firm’s worry about losing profit when the competitor happens to

have high cost leads to best compromise pricing above marginal cost. It is the

upper bound on the competitor’s possible cost that influences pricing. The lower

bound plays no role, as the worst case for the firm is attained when the competitor’s

cost (and thus price) is only marginally lower. This leads to an upward pressure

on pricing, the more so the higher the upper bound on the competitor’s cost and

the smaller the firm’s cost. In particular, we obtain that the markup, s∗i (ci)− ci,
is decreasing in cost ci.

Our equilibrium analysis can shed light on how the firms’ behavior changes in

response to increasing uncertainty. For comparative statics, let us consider as

a benchmark marginal cost c0 = a/4 (recall that we require 0 ≤ ci ≤ a/2, so

c0 = a/4 is the midpoint). We normalize the constants a and b of the demand

function Q(p) = (a− p)/b so that the monopoly profit is equal to 1, that is,

max
p≥0

(p− c0)
a− p
b

=
(a− c0)2

4b
= 1.
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Suppose that there is a small uncertainty. Specifically, for 0 < ε < 1 let ci ∈ [
¯
c, c̄],

i = 1, 2, where

¯
c =

(
1− ε

2

)
c0 and c̄ =

(
1 +

ε

2

)
c0.

Denote by sε = (sε1, s
ε
2) the PCE strategy profile as given by Proposition 2. We

then obtain
dsεi (ci)

dε
=

(a+ ci − 2c̄)c0

4
√

(a− c̄)2 + (c̄− ci)2
> 0,

because, using our assumptions on the parameters,

a+ ci − 2c̄ ≥ a− 2c̄ = 4c0 − 2
(

1 +
ε

2

)
c0 = (2− ε) c0 > 0.

Moreover, for small ε we obtain

dsεi (c0)

dε
=
c0

4
+O(ε).

Thus, the firms optimally respond to the growing uncertainty about the demand

by increasing their prices. The rate of increase is substantial as it does not vanish

when ε tends to 0.

Next, consider the associated maximum losses as shown in (6). We find

li(s
ε
i (ci), s

ε
−i, ci) ≤

2ε

3
− ε2

9
, i = 1, 2.

The maximum losses increase approximately linearly as the uncertainty increases.

For example, if ε = 0.1, then the maximum losses are bounded by 0.07. So the

firms lose no more than about 7% of the maximum profit when allowing for a 10%

error about the rival’s marginal cost.

3.3. Public Good Provision. Here we investigate how to provide a discrete

public good when beneficiaries of the good are uncertain about the valuations of

others. We assume that the beneficiaries fund the cost of provision with their

own contributions. There are no external subsidies, and thus the Vickrey-Clarke-

Groves (VCG) mechanism is not feasible in our setting (e.g., d’Aspremont and

Gérard-Varet, 1979). Without making any distributional assumptions, we are

able to analyze several focal mechanisms. Interestingly, our analysis of the perfect

compromise equilibrium shows that these mechanisms can be applied under even

less information than we assume. One does not depend on the number of players,

one does not depend on the cost of the public good, and one does not depend on

either of these parameters.

Consider n agents. Each agent has a private value vi ∈ [0, v̄] for a public good.

Agents know their own values of the good, but not those of the others. Each agent

i chooses how much to contribute for the public good provision. Let xi ∈ [0, v̄] be

agent i’s contribution. The agents make their choices simultaneously.
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A commonly known cost of providing the public good is c > 0. To avoid

considering multiple cases, we assume that this cost is not too high, specifically,

c

n− 1
≤ v̄

2
. (7)

The payoffs are as follows. If the sum of the contributions does not cover

the cost, so
∑n

i=1 xi < c, then the public good is not provided, and the agents’

contributions are returned to them. In this case each agent i obtains zero payoff.

Otherwise, if
∑n

i=1 xi ≥ c, then the public good is provided, and each agent

obtains the value of the good net of the contribution. In addition, the agents may

be refunded the excess contribution,
∑n

i=1 xi − c. The payoff of each agent i is

vi − xi + ri(x),

where ri(x) is a refund to agent i that depends on the profile of contributions

x = (x1, ..., xn). We compare three simple refund rules.

(i) No-refunds rule. The excess contribution is not refunded to the agents, so

ri(x) = 0, i = 1, ..., n. (8)

(ii) Equal-split rule. The excess contribution is divided equally among to the

agents, so

ri(x) =
1

n

(∑n

j=1
xj − c

)
, i = 1, ..., n. (9)

(iii) Proportional rule. The excess contribution is divided proportionally to the

agents’ individual contributions, so

ri(x) =

(
1− c∑n

j=1 xj

)
xi, i = 1, ..., n. (10)

Let si(vi) be a strategy of agent i, so xi = si(vi) specifies the contribution

of agent i whose private value is vi. We restrict attention to strategies that are

symmetric and undominated. Specifically, we assume that

si(v) = sj(v) and si(v) ≤ v for all v ∈ [0, v̄] and all i, j ∈ {1, ..., n}. (11)

The assumption that the strategies are symmetric is substantive, as we rule out

potential asymmetric equilibria. The assumption that the strategies are undomi-

nated is inconsequential for the results and introduced for notational convenience.

An agent i’s maximum loss of choosing contribution xi when the other agents

choose a profile of contributions s−i(v−i) describes how much more payoff agent

i could have obtained if she had known the true values of everybody else, antici-

pating that they follow their strategies. To determine the maximum loss, observe

that agent i worries about two possible situations. It could be that the total con-

tribution is marginally below c, so xi +
∑

j 6=i sj(vj) = c− ε for a small ε > 0. The

good is not provided, but had i contributed ε more it would have been provided.
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As ε→ 0, agent i’s loss is vi − xi. Alternatively, it could be that all other agents

contribute enough to cover c, so
∑

j 6=i sj(vj) ≥ c. Thus the agent could have con-

tributed nothing and still received the good. In this case the loss is the amount

of contribution net of the refund, xi − ri(xi, s−i(v−i)). Agent i’s maximum loss is

thus given by

li(xi, s−i; vi) = sup
v−i∈[0,v̄]n−1

max {vi − xi, xi − ri(xi, s−i(v−i))} .

Agent i’s best compromise given vi is a strategy s∗i (vi) that achieves the lowest

maximum loss for a given strategy profile s−i of the other agents:

s∗i (vi) ∈ arg min
xi∈[0,vi]

li(xi, s−i; vi).

A strategy profile s∗ = (s∗1, ..., s
∗
n) is a perfect compromise equilibrium (PCE) if

each agent i chooses a best compromise given her value vi when facing the strategy

profile s∗−i of the other agents.

In this application we are interested in how the agents’ equilibrium behavior

and total efficiency (welfare) changes in PCE induced by different refund rules.

We measure the efficiency of a strategy profile s by the maximum welfare loss as

compared to the complete information case. Because si(v) ≤ v by assumption

(11), the welfare loss only emerges in the case of
∑

i si(vi) < c ≤
∑

i vi where

the good is not provided when it is efficient to do so. Our inefficiency measure is

denoted by L(s) and is given by

L(s) = sup
(v1,...,vn)∈[0,v̄]n

∑n

i=1
vi − c

subject to
∑n

i=1
si(vi) < c ≤

∑n

i=1
vi.

(12)

We now characterize the PCE and the associated welfare losses for each of the

three refund rules.

Proposition 3. For each of the three refund rules there is a unique PCE strategy

profile s∗ = (s∗1, ..., s
∗
n) that satisfies assumption (11). For each i = 1, ..., n and

each vi ∈ [0, v̄],

(i) if ri(x) is the no-refunds rule, then

s∗i (vi) =
vi
2

and L(s∗) = c;

(iii) if ri(x) is the equal-split rule, then

s∗i (vi) =
n

2n− 1
vi and L(s∗) =

n− 1

n
c;

(iii) if ri(x) is the proportional rule, then

s∗i (vi) =
vi
2
− c+

1

2

√
v2
i + 4c2 and L(s∗) =

n

n+ 1
c.
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The proof is in Appendix A.4.

Note that under each rule the player contributes at least half of her value. Note

also that

c >
n

n+ 1
c >

n− 1

n
c.

So, the equal split rule confers a smaller welfare loss as compared to the other two

rules. However, this difference between the mechanisms is small, and the welfare

loss is close c when the number of beneficiaries is large. This is reminiscent of the

VCG mechanism in this problem where the expected subsidy of the designer is

close to c when n is large.

To summarize, we have investigated the behavior in a PCE when players have

little information about the values of others. We find for each of the refund rules

that even less information is needed. The equal-split rule leads to equilibrium

behavior that requires no information about the cost c. Hence this rule can also

be applied when the cost is unknown. The proportional rule leads to equilibrium

behavior that does not depend on the number of players n and hence can also

be applied when n is unknown. The no-refund rule leads to equilibrium behavior

that does not depend on either of these two parameters. This reliance on min-

imal information makes these refund rules, and our solution concept in general,

practically appealing.

3.4. Market for “Lemons”. The following example presents a variation of the

market for “lemons” (Akerlof, 1970) where a buyer is ambiguous about the quality

of a car offered by a seller. We show that trade can only occur in a perfect

compromise equilibrium if the car is offered at a (pooling) price that does not

depend on the quality of the car. Whenever there is trade, the buyer randomizes

between buying or not buying the car. This behavior reflects the buyer’s desire

to balance his losses from buying a low-quality car and not buying a high-quality

car. This example highlights the difference between a PCE and a PBE. Namely,

in a PBE the buyer’s best response is a pure strategy, except when the buyer is

exactly indifferent between buying and not buying.

Consider a seller (she) and a buyer (he). The seller has a car whose quality is

either high (θH) or low (θL). She observes the quality of the car and decides at

what price p ∈ [0, 1] to offer it for sale. The buyer observes the price but not the

quality, and decides whether or not to buy the car at this price. Let vH and vL be

the buyer’s value of high and low quality car, respectively, and let cH and cL be

the seller’s cost of high and low quality car, respectively. Assume that

vL = 0 < 1 < vH and 0 < cL < cH < 1. (13)

In words, no matter which price in [0, 1] is asked, the buyer always wants to buy a

high quality car and never wants to buy a low quality car. In contrast, depending
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on the price, the seller might be willing to sell both types of car, only a low quality

car, or neither type of car.

The buyer’s ambiguity about the quality of the car is captured by a set of K

priors Π = [π1, ..., πK ], where 0 < π1 < ... < πK < 1. When K = 1, the buyer has

a single prior, so this model becomes the classic market of lemons with standard

uncertainty of the buyer.4

The seller’s strategy σ∗S : {θH , θL} → ∆([0, 1]) specifies for each type θ ∈
{θL, θH} a discrete probability distribution σ∗S(·|θ) over prices in [0, 1].5 The

buyer’s strategy σ∗B : [0, 1] → [0, 1] specifies for each price p ∈ [0, 1] a proba-

bility σ∗S(p) that the buyer buys the car. The beliefs are as follows. The seller

knows the type of the car, so her beliefs are trivial. The buyer does not know the

type but observes the price. So, for each price p ∈ [0, 1], the buyer has a distinct

information set, denoted by φp. In this information set, the buyer updates each

of his priors to obtain a set of posterior beliefs {β∗φp(π)}π∈Π, where β∗φp(π) denotes

the posterior belief in the information set φp given a prior π ∈ Π. The buyer’s

belief system is given by β∗ = (β∗φp)p∈[0,1].

We now define the conditions that a profile (σ∗S, σ
∗
B, β

∗) of strategies and beliefs

must satisfy to be called a perfect compromise equilibrium. Because the seller has

no ambiguity, the seller’s choice of price must be her best response. The seller

chooses with a positive probability only those prices that maximize the expected

payoff given the buyer’s strategy σ∗B. Formally,

Supp(σ∗S(·|θj)) ⊂ arg max
p∈[0,1]

(p− cj)σ∗B(p) for each j = H,L. (14)

Next, we define the buyer’s maximum loss and the associated best compromise

strategy. For each probability b ∈ [0, 1] that the car has high quality, the buyer

obtains bvH−p if he buys the car and zero if he does not. Thus, given a belief b and

a price p, the optimal choice yields the payoff of max {bvH − p, 0}. The buyer’s

loss from a strategy σ∗B(p) describes how much more payoff the buyer could have

obtained if he made the optimal choice under b instead of σ∗B(p). This loss is given

by

max {bvH − p, 0} − (bvH − p)σ∗B(p)

= max
{

(bvH − p)(1− σ∗B(p)), (p− bvH)σ∗B(p)
}
.

4To streamline the exposition, we consider a continuum of prices [0, 1], rather than a finite set as
assumed in Section 2.1. The insights of this illustrative example do not change if we discretize
the set of prices.
5We restrict attention to discrete probability distributions to simplify the derivation of posterior
beliefs.
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Consequently, the buyer’s maximum loss from the choice σ∗B(p) in the information

set φp given the seller’s strategy σ∗S and the belief system β∗ is

lB(σ∗B(p)|φp, σ∗S, β∗) = max
b∈{β∗φp (π)}π∈Π

max
{

(bvH − p)(1− σ∗B(p)), (p− bvH)σ∗B(p)
}
.

Observe that among the set of the buyer’s beliefs, only two – the highest and the

lowest – are relevant for the calculation of this maximum loss. Let

¯
b(p) = min

π∈Π
β∗φp(π) and b̄(p) = max

π∈Π
β∗φp(π).

On the one hand, the probability of high quality can be high, so the buyer makes

a loss by rejecting the offer. The greatest such loss occurs when the posterior

belief is the highest, namely, when the prior π ∈ Π is such that β∗φp(π) = b̄(p). On

the other hand, the probability of high quality can be low, so the buyer makes

a loss by buying the car. The greatest such loss occurs when the belief is the

lowest, namely, when the prior π ∈ Π is such that β∗φp(π) =
¯
b(p). Consequently,

the maximum loss can be summarized as

lB(σ∗B(p)|φp, σ∗S, β∗) = max
{

(b̄(p)vH − p)(1− σ∗B(p)), (p−
¯
b(p)vH)σ∗B(p)

}
.

The buyer’s best-compromise strategy σ∗B minimizes the maximum loss, so for

each p ∈ [0, 1] the probability of buying the car satisfies

σ∗B(p) ∈ arg min
q∈[0,1]

(
max

{
(b̄(p)vH − p)(1− q), (p−

¯
b(p)vH)q

})
. (15)

Next, consider the buyer’s beliefs. For any price p ∈ [0, 1], the buyer has,

potentially, multiple beliefs in his information set φp. In order to be a part of a

PCE, the buyer’s belief mapping must be consistent with the strategy σ∗S of the

seller. Specifically, each prior π ∈ Π is transformed into a posterior belief β∗φp(π)

using Bayes’ rule whenever possible, so

β∗φp(π) =
πσ∗S(p|θH)

(1− π)σ∗S(p|θL) + πσ∗S(p|θH)
if (1− π)σ∗S(p|θL) + πσ∗S(p|θH) > 0, (16)

and otherwise β∗φp(π) can have any value in [0, 1].

In summary, a profile (σ∗S, σ
∗
B, β

∗) of strategies and beliefs is a perfect compro-

mise equilibrium if it satisfies conditions (14), (15), and (16).

Before characterizing the PCE, we introduce the following notation. We say

that a PCE involves no-trade if the buyer does not buy the car at any price that

can be offered in equilibrium. Specifically, for each p ∈ [0, 1],

if πσ∗S(p|θH) + (1− π)σ∗S(p|θL) > 0 then σ∗B(p) = 0.

We say that a PCE is pooling on a single price if the seller offers the car at a fixed,

nonrandom price irrespective of the car quality. Formally, a profile (σ∗S, σ
∗
B, β

∗) is
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a PCE that is pooling on single price p∗ if

σ∗S(p∗|θH) = σ∗S(p∗|θL) = 1.

Observe that in such a PCE the buyer’s beliefs must satisfy the following. When

observing p∗, the buyer’s set of posterior beliefs is equal to the set of priors,

so β∗φp∗ (π) = π for each π ∈ Π. When observing p 6= p∗, the buyer’s beliefs and

behavior are such that no type of seller has incentive to deviate to p. For example,

the buyer is certain that the car has low quality and does not buy it.

In addition, given such beliefs, the buyer’s probability to buy the car at the

equilibrium price p∗ can be easily derived from (15). When there is a single prior,

so Π = {π̄}, it satisfies

σ∗B(p∗) ∈


{1} if p∗ < π̄vH ,

[0, 1] if p∗ = π̄vH ,

{0} if p∗ > π̄vH .

(17)

When there are multiple priors, so Π = {π1, ..., πK} with K > 1, it is given by

σ∗B(p∗) =


1 if p∗ < π1vH ,
πKvH−p∗

(πK−π1)vH
if π1vH ≤ p∗ ≤ πKvH ,

0 if p∗ > π1vH .

(18)

Note that the probability that the buyer buys the car at price p∗ is also equal to

the probability that trade takes place. In particular, such a PCE need not involve

trade.

Proposition 4. Every PCE either involves no trade, or is pooling on a single

price, or has both of these properties.

The proof is in Appendix A.5. Intuitively, suppose by contradiction there is a

PCE that has trade and is not pooling on a single price. Specifically, suppose that

there are at least two prices that can be offered in equilibrium by the seller such

that the buyer buys with positive probabilities at these prices. Because cL < cH ,

so the low-type car is cheaper than the high-type car, it follows that whenever the

seller of one type is indifferent among several prices and plays a mixed strategy, the

seller of the other type strictly prefers a single price in this set. This means that

all but one equilibrium prices reveal the car type to the buyer. If the revealed type

is low, then the buyer does not buy. If the revealed type is high, then the buyer

buys with probability one, but then the low-type seller would want to deviate and

choose that price to pretend to be the high type.

Proposition 4 has established that every PCE that has trade must be pooling

on a single price. We now characterize the set of equilibrium prices for such PCE,
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both for the case of a single prior where it coincides with a PBE and for the more

general case of multiple priors.

Proposition 5.

(a) Suppose that there is a single prior, so Π = {π̄}. There exists a PBE that has

trade and is pooling on price p∗ if and only if p∗ ∈ [cH , π̄vH ].

(b) Suppose that there are multiple priors, so Π = {π1, ..., πK} with K > 1.

There exists a PCE that has trade and is pooling on price p∗ if and only if

p∗ ∈ [cH , πKvH).

The proof is in Appendix A.6.

0

1

1π1vH πKvHπ̄vH p
∗

σ
∗

B
(p∗)

cH

Figure 1. Trade under different pooling equilibrium prices in the
market of “lemons”. Dashed line shows the probability of trade
under PBE with a single prior π̄. Solid line shows the probability
of trade under PCE with a set of priors Π = {π1, ..., πK}.

The crucial difference between the PCE under multiple priors and the PBE

(that has a single prior) is in the equilibrium behavior of the buyer. Figure 1

illustrates how the buyer’s equilibrium behavior σ∗B(p∗), which is equal to the

probability of trade, depends on the equilibrium price p∗ in the continuum of the

pooling equilibria as the price increases from cH to πKvH . The dashed line, which

corresponds to equation (17), shows what happens in the PBE under a single prior

π̄. The buyer compares the price p∗ with the expected value π̄vH , and then buys

the car when p∗ < π̄vH , is indifferent when p∗ = π̄vH , and does not buy the car

when p∗ > π̄vH . In contrast, the probability of trade is different in the PCE under

a set of priors Π. This is described by equation (18) and depicted by the solid

line in Figure 1. When the price is below the most pessimistic expected value,

so p∗ < π1vH , then the buyer buys the car. Otherwise, as long as the price does
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not exceed the most optimisitic expected value, π1vH < p∗ < πKvH , the buyer

smoothes out his response by randomizing his choice, where the probability of

buying decreases as p∗ goes up. This shows the feature of PCE that captures

the buyer’s hesitancy or the desire to balance losses under different contingencies

when facing multiple priors.

3.5. Job Market Signaling. Here we investigate Spence’s job market signaling

(Spence, 1973) when the worker’s productivity and cost of education are unknown

to the firms. We find that, unlike in the classic setting with a single prior, there is

no longer a clear separation between workers with different levels of productivity.

Consider a single worker and two firms. The worker has productivity θ ∈ [0, 1].

The worker publicly chooses a level of education e, either low (eL) or high (eH),

to signal her productivity to the firms. The cost of low education is zero. The

cost of high education is c with c ≥ 0. The firms observe the worker’s education

level e and simultaneously offer wages w1 and w2. The worker chooses the better

of the two wages. Her payoff is given by

v(w1, w2, e; c) = max{w1, w2} −

0, if e = eL,

c, if e = eH .

Each firm i’s payoff is given by

ui(wi, w−i; θ, γ) =


θ − wi, if wi > w−i,

(θ − wi)γi, if wi = w−i,

0, if wi < w−i,

where γi is the probability that the worker chooses firm i when she is indifferent

between the offers of two firms. We refer to γ = (γ1, γ2) as tie-breaking type, where

γ ∈ ∆2 = {(γ1, γ2) ∈ [0, 1]2 : γ1 + γ2 = 1}.

The worker knows her productivity type θ, her cost of high education c, and her tie-

breaking type γ. The firms know none of these. They only know that the worker

can have any productivity θ in [0, 1] and that her cost of high education c lies

between two linearly decreasing functions of θ. Specifically, c is between a−θ−ε/2
and a − θ + ε/2, where a and ε are commonly known parameters. Parameter a

is interpreted as the benchmark cost of education of the lowest productivity type

θ = 0, and ε is related to the amount of uncertainty about the cost of education

for a given productivity. Formally, the firms know that (θ, c, γ) belongs to the set

Ω given by

Ω =
{

(θ, c, γ) ∈ [0, 1]× R+ ×∆2 : a− θ − ε

2
≤ c ≤ a− θ +

ε

2

}
. (19)
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We assume that

a ∈ [1, 3/2], ε ∈ [0, 1/3], and 0 ≤ a− 1− ε

2
≤ 1

2
− 3ε

2
. (20)

The last condition implies that the lower bound on the cost of education for the

highest productivity type θ = 1, which is given by a − θ − ε/2 = a − 1 − ε/2, is

nonnegative but not too large. We impose this condition to reduce the number of

cases to consider, thus simplifying the exposition.

The worker’s strategy e∗(θ, c, γ) describes her choice of the education level for

each profile (θ, c, γ) ∈ Ω. Each firm i’s strategy w∗i (e) describes its wage offer

conditional on each education level e ∈ {eL, eH}.
Consider how a firm makes inference from the observed level of education of the

worker. This is formalized with the notion of speculated states. Formally, these are

the firms’ degenerate beliefs that put probability one on specific states. Speculated

states are the profiles (θ, c, γ) that a firm thinks are possible after observing the

education level of the worker. The set of speculated states is denoted by Si(e).

This set is consistent with the worker’s equilibrium strategy e∗ if it includes all

pairs (θ, c) under which the worker chooses e ∈ {eL, eH}, so (θ, c, γ) ∈ Si(e) if

e∗(θ, c, γ) = e.

For each education level e, firm i’s maximum loss of choosing wage wi when the

other firm chooses the wage according to its strategy w∗−i is given by

li(wi, w
∗
−i; e) = sup

(θ,c,γ)∈Si(e)

(
sup
w′i≥0

ui(w
′
i, w

∗
−i(e); θ)− ui(wi, w∗−i(e); θ)

)
.

The maximum loss describes how much more profit firm i could have obtained if it

had known the true productivity and cost of education of the worker, anticipating

that the other firm follows its strategy w∗−i. Firm i’s best compromise given e is a

wage w∗i (e) that achieves the lowest maximum loss for a given strategy w∗−i of the

other firm:

w∗i (e) ∈ arg min
wi≥0

li(wi, w
∗
−i; e). (21)

Observe that the worker has complete information. There is no need for a com-

promise. So, the worker simply chooses a best response:

e∗(θ, c, γ) ∈ arg max
e∈{eL,eH}

v(w∗1(e), w∗2(e), e; θ, c). (22)

A profile (e∗, w∗1, w
∗
2, S1, S2) of strategies and speculated states is a perfect com-

promise equilibrium (PCE) if two conditions hold. First, the strategies satisfy (21)

and (22), so each firm i chooses a best compromise, and the worker chooses a best

response to the strategies of the others. Second, the firms’ sets of speculated states

are consistent with the worker’s strategy e∗.
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A PCE is pooling if the worker chooses the same level of education for all

(θ, c, γ) ∈ Ω. A PCE is separating if the set Ω can be partitioned into two sub-

sets such that worker types belonging to the same subset choose the same level of

education, but these levels differ between the two subsets.

Proposition 6.

(i) There exists a pooling PCE in which the worker chooses low education, so

e∗(θ, c, γ) = eL for all (θ, c, γ) ∈ Ω,

and the firms’ wages are given by

w∗i (eH) = w∗i (eL) =
1

2
, i = 1, 2.

After each observed education level e, each firm i’s set of speculated states Si(e)

contains all states.

(ii) There exists a separating PCE in which the worker chooses high education if

and only if her cost c is at most 1
2
, so for all (θ, c, γ) ∈ Ω

e∗(θ, c, γ) =

eH , if c ≤ 1
2
,

eL, if c > 1
2
,

and the firms’ wages are given by

w∗i (eH) =
2a+ 1

4
and w∗i (eL) =

2a− 1 + ε

4
, i = 1, 2. (23)

After each observed education level e, each firm i’s set of speculated states Si(e)

contains each state (θ, c, γ) ∈ Ω that satisfies

θ ∈
[
0, a− 1

2
+ ε

]
if e = eL, and θ ∈

[
a− 1

2
, 1

]
if e = eH . (24)

The proof is in Appendix A.7.

Let us discuss the strategic concerns underlying these PCE. Each firm i, when

facing unknown productivity of the worker and deciding about the wage offer

wi, worries about two possible situations. It could be that the productivity is

high, so offering a wage that is marginally greater than that of the competitor

would improve profit. The greatest such loss occurs when the productivity is

the highest possible. Alternatively, it could be that the productivity is low, so

offering a wage that is smaller than the competitor’s would prevent employing a

worker whose productivity is below the wage. The greatest such loss occurs when

the productivity is the lowest possible. The firm thus offers the best compromise

wage that balances these the losses of not hiring a productive worker and hiring an

unproductive worker, assuming that the other firm follows its equilibrium strategy.

The particular wage offer depends on the greatest and smallest productivities

that are inferred from the level of education e that the worker chooses. In the
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pooling equilibrium, e = eL or e = eH do not provide any useful information, so

all productivity types are possible. However, in the separating equilibrium, the

firms believe that the productivity belongs to different intervals when observing

different levels of education. For example, if a = 7/6 and ε = 1/3, then the firms

believe that θ ∈ [0, 1] if the education is low, and that θ ∈ [2/3, 1] if the education

is high. This leads to different wages charged in the separating equilibrium. In

anticipation of the difference between wages associated with high and low educa-

tion, the workers base their choice of education on their own cost, independent

of their own productivity. Due to the heterogeneity in costs and productivity, a

worker who chooses high education might be less productive than another worker

who chooses low education, just because the cost of the former worker is lower.

Without knowing the cost, one cannot predict which education level a worker with

productivity between a− 1/2 and a− 1/2 + ε will choose.

Parameter ε captures the degree of uncertainty about the productivity condi-

tional on the cost of education, and thus, conditional on the chosen education level

that reveals information about the cost. The higher the uncertainty, the less reli-

ably the education level signals about productivity. This results in a higher wage

to low educated workers and a smaller wage gap, making the differentiation of

higher and lower productivity types less effective. To see why this occurs, observe

that an increase in ε expands the sets of speculated states conditional on each

education level. The threshold θ̄L increases and
¯
θH decreases, so both [0, θ̄L] and

[
¯
θH , 1] expand. This results in a higher wage to low educated workers and a lower

wage to higher educated workers. In turn, this reduction in the wage gap makes

more types of workers prefer low education, thus shifting both thresholds θ̄L and

¯
θH upward. This leads to even higher wages for low educated workers, although it

partially offsets the initial negative effect on the wage for high educated workers.

In summary, our analysis shows that Spence’s insights carry over to this novel

setting that does not rely on probabilities and distributions. It also shows how

easy the analysis captures richer uncertainty about workers than that in the classic

Spence’s framework. A particular consequence of richer uncertainty is that, unlike

in the traditional model, the strict separation between the productivity of the

workers choosing different education levels in the separating equilibrium no longer

holds in our setting.

3.6. Bilateral Trade with Common Value. In this example we consider how

prices emerge in bilateral trade when two traders value the good the same and have

uncertainty about this value. Bilateral trade is modeled by assuming that the seller

sets the price and then the buyer decides whether to buy at this price. This yields

a signaling game where the price set by the seller may reveal information about

the value to the buyer. We show that in a perfect compromise equilibrium trade
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can occur, even though the buyer makes inference about the seller’s information

from observing the price.

The fact that trade can occur stands in stark contrast to the no-trade theorem

under common values as predicted by PBE (Milgrom and Stokey, 1982). This

extends the insights on the possibility of trade with common value under multiple

priors found by Billot et al. (2000), Kajii and Ui (2006), and Rigotti, Shannon

and Strzalecki (2008). Our novelty is that we have an explicit sequential move

game that describes how trade takes place. Thus the occurrence of trade has to

incorporate the information revealed when the traders take actions. In contrast,

the existing literature on trade under multiple priors has identified whether there

are allocations of goods that benefit both traders. However, it remains unclear

whether this trade would take place in a market game where offers are being made.

The worry is that information revealed by the choice of an offer might eliminate

the incentive to trade.

Consider the following model of bilateral trade. A seller wants to sell an indi-

visible good to a buyer. The value of the good is the same for each of the traders,

it is denoted by v. If the good is traded at some price p, then the buyer obtains

v − p and the seller obtains p − v. If the good is not traded, then both traders

obtain zero.6

The traders commonly know an upper and a lower bound on the possible val-

ues. These will be normalized to be 0 and 1, so v ∈ [0, 1]. Each trader also has

private information about this value. Specifically, the seller knows the value be-

longs to [x0, x1], and the buyer knows it belongs to [y0, y1]. As both have correct

information, it follows that

v ∈ [x0, x1] ∩ [y0, y1]. (25)

An interpretation is that each trader privately consults an independent expert.

The expert privately informs the trader about the most pessimistic and the most

optimistic assessments of the true value.

The traders have no prior beliefs about each other’s information. Instead, all

they know is the setting. Specifically, the seller with private information [x0, x1]

knows that the buyer’s private information [y0, y1] has a nonempty intersection

with [x0, x1], and the buyer holds symmetric knowledge.

Trade occurs according to the following take-it-or-leave-it protocol. First, the

seller chooses a price p ∈ [0, 1]. Then, the buyer decides whether or not to trade

at this price, and the game is over.

Let us describe the traders’ strategies. The seller’s strategy p∗, referred to

as pricing rule, specifies a price p∗(x0, x1) ∈ [0, 1] given the seller’s information

6The same analysis applies if the seller obtains p when the good is sold and v when the good is
not sold.
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[x0, x1]. The buyer’s strategy α∗, referred to as acceptance rule, specifies a de-

cision α∗(p, y0, y1) ∈ {0, 1} whether or not to trade at price p given the buyer’s

information [y0, y1], where α∗(p, y0, y1) = 1 means to buy, and α∗(p, y0, y1) = 0

means not to buy.

Next we describe how the buyer makes inference from the price chosen by the

seller. This is formalized with the concept of speculated values. These are the

values of v that the buyer thinks are possible after he observes the price chosen

by the seller. Formally, a set of speculated values, denoted by Vb(p, y0, y1), is a

nonempty subset of [y0, y1] that depends on the price p.

In equilibrium, the set of speculated values comprises the values that can emerge

under a given pricing rule p∗ of the seller. Formally, for given [y0, y1] ⊂ [0, 1]

and p ∈ [0, 1], we say that Vb(p, y0, y1) is consistent with pricing rule p∗ if the

following conditions hold. If price p can occur under the pricing rule p∗, that is, if

there exists [x0, x1] ⊂ [0, 1] whose intersection with [y0, y1] is nonempty such that

p∗(y0, y1) = p, then

Vb(p, y0, y1) = [y0, y1]∩( ⋃
0≤x0≤x1≤1

{
[x0, x1] : p∗(x0, x1) = p and [x0, x1] ∩ [y0, y1] 6= ∅

})
. (26)

Otherwise, if p cannot occur under the pricing rule p∗, then Vb(p, y0, y1) can be an

arbitrary nonempty subset of [y0, y1].

The buyer’s maximum loss from his choice α ∈ {0, 1} given price p and specu-

lated values Vb(p, y0, y1) is

lb(α; p, y0, y1) = sup
v∈Vb(p,y0,y1)

(
max {v − p, 0} − (v − p)α

)
.

It describes how much more the buyer could have obtained if he knew the true

value v. The seller’s maximum loss of asking price p, given the buyer’s acceptance

rule α∗, is

ls(p;x0, x1) = sup
(v,y0,y1)∈[0,1]3:
v∈[x0,x1]∩[y0,y1]

(
sup
p′∈[0,1]

(p′ − v)α∗(p′, y0, y1)− (p− v)α∗(p, y0, y1)

)
.

It describes how much more the seller could have obtained if she knew both v and

the buyer’s private information [y0, y1], anticipating that the buyer would follow

the acceptance rule α∗. Each trader’s best compromise is a choice that achieves the

lowest maximum loss for a given strategy of the other trader. A profile (p∗, α∗, Vb)

is a perfect compromise equilibrium (PCE) if each trader chooses a best compromise

given the strategy of the other trader, and the buyer’s set of speculated values

Vb(p, y0, y1) is consistent with the seller’s pricing rule p∗.
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Proposition 7. For each lower bound on the price p0 ∈ [1/2, 1], a perfect com-

promise equilibrium is given as follows. The seller asks

p∗(x0, x1) = max

{
x0 + x1

2
+

1− x1

4
, p0

}
. (27)

If the seller asks p ≥ p0, then the buyer speculates that

v ∈ Vb(p, y0, y1) = [max{y0, 2p− 1}, y1]

and accepts this price if and only if

p ≤ y0 + y1

2
.

If the seller asks p < p0, then the buyer speculates that v ∈ Vb(p, y0, y1) = {y0}
and accepts this price if and only if p ≤ y0.

The formal proof is in Appendix A.8.

Let us discuss the strategic concerns underlying this PCE. Note that in absence

of any strategic interaction, the buyer would buy if and only if the price is below

his midpoint (y0 + y1)/2. This is because the buyer is balancing two worst cases

where the true value is at the extreme points of the interval [y0, y1]. Similarly, the

seller would sell if and only if the price is above her midpoint (x0 + x1)/2.

In the strategic trade setting, the seller would want to sell the good at least

at her midpoint. However, she is worried that the buyer might be extremely

optimistic and willing to accept even higher price. Hence, as a compromise, she

optimally sets the price above her midpoint.

In equilibrium, the buyer agrees to trade when the price is below his midpoint.

He does not take into account the information contained in the price as this in-

formation is coarser that what he already knows when the price is above a given

lower bound p0 ≥ 1/2. This leads to a range of equilibrium prices, [p0, 1], which is

narrow enough so that the seller who anticipates the behavior of the buyer never

reveals information that the buyer would want to use. Note that when p0 = 1, we

obtain the no-trade equilibirum where the seller always sets p = 1 and the buyer

rejects it (except when he is certain that the value is 1).

We obtain the possibility of trade under common values when p0 < 1. The

trade is possible because the traders do not want to miss out on a good trade

opportunity, but also they do not want to make an unprofitable deal. They make

compromise decisions so that they do not lose too much either way.

3.7. Forecasting. In this final example we are interested in how to forecast a

random variable with known mean but unknown dispersion based on a signal with

known distribution. This is a classical updating problem under multiple priors. We

find that the best compromise forecast is given by a convex combination between

the signal and the known mean. The weights depend on the precision of the signal
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and on the bound on the dispersion of the random variable. For instance, it is

close to the midpoint between the signal and the known mean when the random

variable is very dispersed.

Consider an agent who has to forecast a random variable θ that belongs to [0, 1].

The agent’s payoff is the quadratic loss given by

u(a, θ) = −(a− θ)2,

where a ∈ [0, 1] denotes a forecast.

The true distribution of θ is denoted by F . However, the agent does not know

F . She only knows the mean θ0 of F , and that F admits a density f such that

δ ≤ f(θ) ≤ 1/δ for some δ ∈ (0, 1). This assumption on the density excludes holes

in the support and point masses. Parameter δ can be interpreted as a lower bound

on the degree of dispersion of θ. The set of such distributions is

Fδ = {F ∈ ∆([0, 1]) : EF [θ] = θ0 and δ ≤ f(θ) ≤ 1/δ for all θ ∈ [0, 1]} .

The agent bases her forecast on a noisy signal z of the parameter of interest

θ. She knows how this signal is generated. Specifically we assume that signal z

reveals the true value θ with probability 1− ε and is drawn uniformly from [0, 1]

with probability ε. So, the conditional distribution of z given θ is

Gε(z|θ) =

εz, if z < θ,

1− ε+ εz, if z ≥ θ.
(28)

Let EF,Gε [·|z] denote the conditional mean of θ when the agent speculates that

θ is distributed according to F . The maximum loss of a forecast a ∈ [0, 1] given a

signal z ∈ [0, 1] is

l(a; z) = sup
F∈Fδ

(
sup
a′∈[0,1]

EF,Gε [−(a′ − θ)2|z]− EF,Gε [−(a− θ)2|z]

)
.

It describes how much greater payoff the agent could have obtained if she knew

the distribution F . A forecast a∗(z) is a best compromise if it achieves the smallest

maximum loss,

a∗(z) ∈ arg min
a∈[0,1]

l(a; z).

Proposition 8. The best compromise forecast is given by

a∗(z) = (1− λ)z + λθ0,

where

λ =
ε

2

(
δ

1− ε(1− δ)
+

1

δ + ε(1− δ)

)
.

The proof is in Appendix A.9.
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Let us present some intuition behind Proposition 8. Due to the quadratic

penalty of making inaccurate forecasts, the loss of a forecast is equal to its distance

from the expected mean conditional on the signal. The forecaster is worried about

two possible situations, namely, when this conditional mean is high and when it

is low. Consequently, the best compromise involves a forecast at the midpoint of

these two extreme conditional means. Solving for this midpoint yields the formu-

lae given in the statement of the proposition. In particular, the best compromise

forecast lies between the ex-ante mean θ0 and the signal z.

Note that the best compromise forecast depends on the signal’s precision ε and

on the degree of dispersion δ of the variable of interest. We now show how each

of these two parameters influences the best compromise forecast.

Fix the degree of dispersion δ. On the one hand, when the signal is very precise,

then the best compromise forecast is close to the signal. This is because a∗ is

continuous in ε and limε→0 a
∗(z) = z. On the other hand, when the signal is

very noisy, then the best compromise forecast is close to the ex-ante mean, as

limε→1 a
∗(z) = θ0.

Now we fix the precision ε of the noise and vary the bound δ on the degree of

dispersion of θ. As we relax the constraints on F imposed by δ, we obtain that the

forecast approximates the midpoint between θ0 and z. Formally, limδ→0 a
∗(z) =

(θ0 + z)/2. This is because the best compromise balances two extreme situations.

It could be that F has very high dispersion, thus making the signal extremely

valuable. On the other hand, it could that F has very low dispersion, in which

case the signal has very little value. The agent seeks the best compromise between

these two situations and selects the midpoint.

Note that the above analysis and discussion reveals a discontinuity in the fore-

cast a∗ at ε = δ = 0.

In summary, when using a signal to update information about a random variable

with known mean but unknown dispersion, the best compromise forecast has a

simple form. It is a convex combination of the known mean and the observed

signal. Under extreme uncertainty where the imposed bounds on the density

vanish, the forecast is particularly simple, namely, it is equal to the midpoint

between the mean and the signal.

In Appendix B we consider an alternative setting, where the agent knows the

distribution of the random variable but she does not know the conditional distri-

bution of the noisy signal. We also deal with the case where the agent is ambiguous

about both distributions (Remark 3).
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4. Conclusion

This paper adds to the literature aimed at a better understanding of how play-

ers can deal with uncertainty in dynamic contexts without necessitating a single

prior. We are particularly interested in allowing players to have only an intu-

itive understanding of uncertainty that can be expressed in terms of bounds. The

uncertainty of a player is modeled by confronting the player with multiple “asses-

sors”, each of whom holding a different prior. The assessors process information

and compute posterior beliefs independently, leading to updating prior by prior

using Bayes’ rule whenever possible. The player searches for a compromise among

all the assessors anticipating future moves of her own and the other players. This

leads to the best compromise choices and sophisticated behavior.

Our objective is to present a solution concept that is as close as possible to

perfect Bayesian Equilibrium while allowing for multiple priors. The proximity to

PBE should facilitate the understanding and acceptance of the new concept and

simplify the interpretation of new insights. This design objective also allows us to

build on the discipline underlying the concept of PBE.

We identify six reasons that motivated us to create this new solution concept,

each of them is associated with contexts where PBE has deficiencies. These rea-

sons are robustness, ambiguity, non-probabilistic reasoning, parsimony, tractabil-

ity, and accessibility. We explain each of these in more detail.

Robustness. The PCE concept can be used to investigate the robustness of

insights gained by PBE analyses when players are not willing to commit to a

specific prior. Similarly it can be used to understand how predictions depend on

the degree of understanding of the different players.

Ambiguity. Preferences that allow for decision makers to care about ambiguity

have become popular. Our concept allows us to include players with such prefer-

ences and to estimate the degree of ambiguity of players in the data. The formalism

we introduce is not limited to the use of best compromises as the solution concept.

We could have also inserted any alternative concept for decision making under am-

biguity. The most prominent alternative is maxmin utility preferences that leads

to a pessimistic mindset. We prefer the flavor of finding compromises. Compro-

mises seems necessary in a globalizing world where decision making is made in

front of growing audiences and when there is less willingness to base decisions on

specific distributional assumptions.

Non-probabilistic reasoning. Uncertainty per se seems to mean that details

are hard to describe. And yet traditional models often focus on two types of

workers, high and low, or capture the uncertainty by a small number of parameters.

Uncertainty seems to preclude that players agree on likelihoods of events, and yet
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this is done in PBE. We introduce PCE to open the door to understanding more

realistic uncertainty.

Parsimony. The traditional PBE framework reveals a different solution for

each prior. Such flexibility can be useful to fit data. But flexibility in terms

of a multitude of different answers gives little guidance to those who need to

make choices. One easily loses the big picture if there are many details that

determine what happens. To achieve clear and transparent results, one often

gives up realism and adapts simplistic uncertainty with only a few types for each

player. In contrast, the PCE concept under genuine ambiguity is by design very

parsimonious. Making best compromises across many different situations allows

to abstract from many details.

Tractability. The usefulness of our solution concept is demonstrated in relevant

economic examples where uncertainty is rich. This richness can prevent a tractable

analysis of PBE. In our examples, PCE is shown to yield tractable results with

simple proofs, as players focus on extreme situations, allowing them to ignore

intermediate constellations.

Accessibility. The PCE concept under genuine ambiguity is undemanding and

easy to teach. Uncertainty can be described with bounds. There is no need for

probabilities, and Bayes’ rule can be put back on the shelf.

Of course, there are several alternative approaches to learning under ambiguity.

We hope to add to this literature, and to see more future work on economics

applications, and empirical testing and comparison of different theories.

Appendix A. Proofs.

A.1. Proof of Theorem 1. Consider a game Γ = (N,G,Ω, (Π1, ...,Πn), (u1, ...,

un)). Let Φ be the set of information sets excluding the initial node φ0, so Φ =⋃
i∈N Φi. Recall that Aφ is the set of pure actions of the player who moves at

information set φ ∈ Φ. A strategy profile s associates with each information set φ

a mixed action sφ ∈ Aφ = ∆(Aφ) at φ.

We now define an ε-perturbed game. Let ε be a small enough positive number.

Let ∆ε(A(φ)) be the set of mixed actions at information set φ such that each

pure action in A(φ) is played with probability at least ε. Let Sε be the set of

strategy profiles such that sφ ∈ ∆ε(A(φ)) for each φ ∈ Φ. So the strategies in Sε
are completely mixed. An ε-perturbed game Γε is the original game Γ where the

players’ strategies are confined to Sε.
Consider a strategy profile s ∈ Sε. Because s is fully mixed, the belief system

that is consistent with s is uniquely defined by Bayes’ rule. Denote this belief

system by β(s), and let βφ(π; s) is the posterior probability distribution over the
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decision nodes in the information set φ derived from a prior π. Let

Bφi(β, s) = {βφi(πi; s) : πi ∈ Πi}

be the set of beliefs at each φi ∈ Φi for each player i ∈ N . Let Uφi(s) be the

negative of player i’s maximum loss at φi ∈ Φi when player i follows her strategy

sφi , so

Uφi(s) = −l(sφi |s, β(s), φ)

= inf
bi∈Bφi (β,s)

(
ūi(sφi |s, φi, bi)− sup

ai∈A(φi)

ūi(ai|s, φi, bi)

)
. (29)

Two observations are in order. First, Uφi(s) = Uφi(sφi , s−φi) is continuous in sφi .

This is because ū is continuous, and the set Bφi(β, s) of beliefs at φi is independent

of sφi (it only depends on the choices in the information sets preceding φi). Second,

Uφi(sφi , s−φi) is also continuous in s−φi when s ∈ Sε, so the strategies are fully

mixed. This is because Bφi(β, s) is a continuous correspondence w.r.t. s ∈ Sε, as

it is derived by Bayes’ rule from the set of priors pointwise, and Bayes’ rule is a

well defined and continuous operator for s ∈ Sε. In addition, both Bφi(β, s) and

A(φi) are compact. The continuity of Uφi(sφi , s−φi) in s−φi then follows from the

Maximum Theorem (Berge, 1963).

We now construct an augmented game (Φ,G,Ω, π0, U) as follows. Let each

information set φ ∈ Φ be associated with a different player, so the set of players

is the set of information sets Φ. The game tree G and the set of states Ω remain

unchanged. Let π0 be a common prior over the states, and assume that π0 has

full support over Ω. Nature moves first by choosing a state ω ∈ Ω according to

the prior π0. Each player φ ∈ Φ moves only once, at her information set φ, by

choosing a mixed action from the set ∆ε(A(φ)). The interim payoff of each player

φ ∈ Φ at the information set φ is given by Uφ(s). Let U = (Uφ)φ∈Φ.

The augmented game (Φ,G,Ω, π0, U) can be seen as a game of incomplete in-

formation with a nonstandard specification of the players’ payoffs. While in a

standard game the payoffs are specified ex-post at each terminal node, in this

augmented game the payoff Uφ of each player φ ∈ Φ is specified in the interim, at

the information set where the player makes a move. Because each player moves

only once, the specification of the interim payoffs is sufficient to apply the concept

of PBE or sequential equilibrium to the augmented game.

Another nonstandard feature of the augmented game is that each player’s in-

terim payoff Uφ(s) depends on the set of beliefs Bφ(s) at φ, but it is independent

of the state ω itself. So, the prior π0 does not affect the best-response actions by

the players, it only affects the likelihood of reaching different information sets in

the game tree.
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Let (s′φ, s−φ) ∈ Sε denote the strategy profile where s′φ is played by player φ

and s−φ is the profile of strategies at all other players. Observe that maximizing

Uφ(s′φ, s−φ) with respect to player φ’s own decision s′φ ∈ ∆ε(A(φ)) is the same as

minimizing the maximum loss at φ in the perturbed game Γε. Consequently, if s̄ is

a strategy profile in a sequential equilibrium of the augmented game, then (s̄, β(s̄))

is a PCE of Γε. The existence of PCE follows from the existence of sequential

equilibrium for finite games. We refer the reader to Chakrabarti and Topolyan

(2016) for the backward-induction proof of existence of sequential equilibrium

that uses interim payoffs at information sets to determine players’ best-response

correspondences.

Thus we have shown the existence of a PCE in every perturbed game Γε. It

remains to show the existence of a PCE in the original, unperturbed game Γ.

Consider a sequence (εk)
∞
k=1 such that limk→∞ εk = 0. Let (sk, βk) be a PCE for the

perturbed game Γεk . By Bolzano-Weierstrass theorem there exists a subsequence

(kt)
∞
t=1 such that (skt , βkt) converges to some (s∗, β∗) as t → ∞. Observe that

the belief system β∗ is consistent with s∗. This is because for each player i, each

information set φi ∈ Φi, and each prior πi ∈ Πi, either β∗φi(πi) is derived by Bayes

rule that is continuous as (skt , βkt) approaches (s∗, β∗), or Bayes rule is undefined

in the limit, in which case β∗φi(πi) is also consistent by definition. Next, for all

ε > 0, all t such that ε ≥ εkt , and all s′φ ∈ ∆ε(Aφ) we have

0 ≤Uφ(sktφ , s
kt
−φ)− Uφ(s′φ, s

kt
−φ) = −l(sktφ |s

kt , βkt , φ) + l(s′φ|skt , βkt , φ)
t→∞−−−→

− l(s∗φ|s∗, β∗, φ) + l(s′φ|s∗, β∗, φ) = Uφ(s∗φ, s
∗
−φ)− Uφ(s′φ, s

∗
−φ),

where the inequality is by sktφ being a best response in the augmented game, the

first equality is by (29), the limit is by the continuity of l(sφ|s, β, φ) in s and β,

and the second equality is because the set Bφ(skt) of beliefs at φ is independent

of the mixed action sktφ at φ. It follows that s∗φ is a best response to s∗−φ. So s∗

is a best compromise strategy profile in the unperturbed game Γ. We thus have

shown that (s∗, β∗) is a PCE of Γ. �

A.2. Proof of Proposition 1. To prove the existence of a unique PCE, we find

a unique profile of best-compromise strategies and a unique profile of beliefs that

satisfy Definition 1.

First, we find the beliefs. The firms have genuine ambiguity, so the set of priors

Πi of firm i is equal to the set of degenerate beliefs over P . By Definition 1 and

the consistency requirement in PCE, the set Bi(φi) of beliefs of firm i at its unique

information set φi must be equal to the set of priors, so Bi(φi) = Πi.

Next, we find each firm’s equilibrium quantity. For derivations, we assume that

the quantities and the price are always nonnegative, and then we verify that this

is indeed the case in equilibrium.
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Let x∗i (q−i, P ) be a best response strategy of player i given the knowledge of q−i
and the inverse demand function P . The loss of firm i from choosing quantity qi,

given q−i and P , is denoted by ∆ui(qi, q−i;P ) and given by

∆ui(qi, q−i;P ) = P (x∗i (q−i, P ) + q−i)x
∗
i (q−i, P )− P (qi + q−i)qi.

By (2), the marginal revenue of firm i satisfies

¯
P (qi+q−i)+

¯
P ′(qi+q−i)qi ≤ P (qi+q−i)+P ′(qi+q−i)qi ≤ P̄ (qi+q−i)+P̄ ′(qi+q−i)qi.

Therefore, for given qj and P , the best-response quantity x∗i (q−i, P ) of firm i

always lies between x∗i (q−i, ¯
P ) and x∗i (q−i, P̄ ). While the profit function need not

be concave in general, it is concave when P =
¯
P or when P = P̄ . So the highest

loss will always be attained in one of these two extreme cases:

li(qi, q−i) = sup
P

∆ui(qi, q−i;P ) = max{∆ui(qi, q−i;
¯
P ),∆ui(qi, q−i; P̄ )}.

It is easy to see that the maximum loss is minimized by balancing the two expres-

sions under the maximum:

∆ui(qi, q−i; P̄ ) = ∆ui(qi, q−i;
¯
P ).

Substituting
¯
P and P̄ and simplifying the expressions yields the equation

(ā− b̄q−i)2

4b̄
− (ā− b̄(qi + q−i))qi =

(
¯
a−

¯
bq−i)

2

4
¯
b

− (
¯
a−

¯
b(qi + q−i))qi. (30)

Solving for qi yields the unique best compromise quantity:

q∗i = ¯
a
√
b̄+ ā

√
¯
b

2(
¯
b
√
b̄+ b̄

√
¯
b)
− qj

2
, i = 1, 2.

Solving this pair of equations for (q∗1, q
∗
2), we find (3). It is easy to verify that under

our assumptions, q∗i > 0, and moreover, P (q∗1 + q∗2) ≥
¯
P (q∗1 + q∗2) > 0. Substituting

the solution into (30) yields the maximum loss of each firm (4). �

A.3. Proof of Proposition 2. Similarly to the proof of Proposition 1, to prove

the existence of a unique PCE, we find a unique profile of best-compromise strate-

gies and a unique profile of beliefs that satisfy Definition 1.

First, we determine the beliefs. The firms have genuine ambiguity, so the set of

priors Πi of firm i is equal to the set of degenerate beliefs over [
¯
c, c̄]2. By Definition

1 and the consistency requirement in PCE, firm i with cost ci must have the set

Bi(ci) of beliefs equal to the set of priors, so Bi(φi) = Πi.

Next, we find each firm’s equilibrium quantity. For derivations, we assume that

each firm prices at or above marginal cost, and then we verify that this is indeed

the case in equilibrium.

Consider firm i with type ci ∈ [
¯
c, c̄]. Let sm(ci) be the profit-maximizing pricing

strategy if firm i were the monopoly, so sm(ci) = (a + ci)/2. Since we have
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assumed that c̄ ≤ a/2, this means that sm(ci) ≥ c̄ for all ci. The monopoly profit

is (a− ci)2/(4b).

Fix the other firm’s strategy s∗−i(c−i) and let p̄ be the maximum price of the

other firm, so p̄ = supc−i∈[
¯
c,c̄] s

∗
−i(c−i). Given the other firm’s cost c−i, and thus

the price p−i = s∗−i(c−i), firm i’s maximum profit is

u∗i (p−i; ci) = sup
xi≥0

ui(xi, p−i; ci) =


0, if p−i ≤ ci,

(p−i − ci)a−p−ib
, if ci < p−i ≤ sm(ci),

(a−ci)2

4b
, if p−i > sm(ci)

= max

{
0, (p−i − ci)

a− p−i
b

,
(a− ci)2

4b

}
.

Let pi be a price of firm i. We now find the maximum loss of firm i from choosing

pi, given its marginal cost ci and the strategy s∗−i of the other firm. There are

three cases.

First, suppose that p−i ≤ ci ≤ pi. Then firm i cannot make positive profit, so pi
is a best response. Thus, firm i behaves optimally in this case, so the loss is zero.

Second, suppose that ci < p−i ≤ pi. Then firm i could have been better off by

marginally undercutting p−i. Maximizing the loss over p−i ∈ (ci, pi], we obtain

sup
p−i∈(ci,pi)

(u∗i (p−i; ci)− ui(pi, p−i; ci)) =

(pi − ci)a−pib , if pi ≤ sm(ci),
(a−ci)2

4b
, if pi > sm(ci).

(31)

Third, suppose that pi < p−i. Then firm i could have made more profit by

increasing its price, so its maximum loss is

sup
p−i∈(pi,p̄]

(u∗i (p−i; ci)− ui(pi, p−i; ci)) = u∗i (p̄;ci)− ui(pi, p̄; ci)

= −(pi − ci)
a− pi
b

+

(p̄− ci)a−p̄b , if pi ≤ sm(ci),
(a−ci)2

4b
, if pi > sm(ci).

(32)

To minimize the maximum loss, we need to minimize the greater of the expressions

in (31) and (32). Observe that, by the definition of sm(ci), the right-hand side

in (31) is constant and the right-hand side in (32) is strictly increasing in pi for

pi > sm(ci). So we only need to consider pi ≤ sm(ci). Under this assumption, the

greater of the expressions in (31) and (32) can be simplified to

li(pi, s
∗
−i; ci) = max

{
(pi − ci)

a− pi
b

, (p̄− ci)
a− p̄
b
− (pi − ci)

a− pi
b

}
.
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Because one expression is increasing and the other is decreasing in pi for pi ≤
sm(ci), the maximum loss is minimized at the solution of

(pi − ci)
a− pi
b

= (p̄− ci)
a− p̄
b
− (pi − ci)

a− pi
b

. (33)

Solving the above for pi and assigning s∗i (ci) = pi, we obtain (5).

To see that s∗i (ci) ≥ ci, observe that

s∗i (ci)− ci =
1

2

(
a− ci −

√
(a− c̄)2 + (c̄− ci)2

)
≥ 0

by the triangle inequality and a > c̄ ≥ ci. Moreover, s∗i (ci) > ci when ci < c̄, and

s∗i (c̄) = c̄. Finally, substituting s∗i (ci) into the maximum loss expression in (33)

yields (6). �

A.4. Proof of Proposition 3. We prove only part (iii) of Proposition 3 for the

proportional rule given by (10). The proof of parts (i) and (ii) for the other two

rules is analogous but easier, and thus omitted.

Let the refunds ri be given by the proportional rule (10). First we derive an

agent i’s best compromise strategy s∗i . Agent i who chooses xi worries about two

possible situations. It could be that the total contribution is marginally below c,

so xi +
∑

j 6=i sj(vj) = c− ε for a small ε > 0. The good is not provided, but had

i contributed ε more it would have been provided. As ε → 0, agent i’s loss is

vi− xi. Alternatively, it could be that all other agents contribute enough to cover

c, so
∑

j 6=i sj(vj) ≥ c. Thus the agent could have contributed nothing and still

received the good. In this case the loss is the amount of contribution net of the

refund, xi − ri(x). This loss is maximized when the other agents’ contributions

exactly equal to the cost, so
∑

j 6=i sj(vj) = c, so by (10) we have

xi − ri(x) =
cxi

xi +
∑

j 6=i sj(vj)
≤ cxi
xi + c

.

The loss in the first case is weakly decreasing and the loss in the second case is

strictly increasing in xi. To find xi that minimizes the maximum loss, we solve

the equation

vi − xi =
cxi
xi + c

for xi. Denote the solution by s∗(vi). It is easy to verify that it is as given in

part (iii) of the statement of Proposition 3. Note that it is symmetric across the

players, so we drop the subscript i.

The above argument requires that there exist values vj ∈ [0, v̄] such that∑
j 6=i s

∗(vj) = c. Observe that s∗(0) = 0 and s∗(vi) is increasing in vi. So, we

only need to verify that
∑

j 6=i s
∗(v̄) ≥ c, which holds under condition (7).

It remains to determine the maximum welfare loss L(s∗) as defined in (12). As

s∗(vi) is increasing in vi, the constraint
∑n

i=1 s
∗(vi) < cmust be binding. Moreover,
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it is easy to verify that s∗(vi) is convex in vi. Thus, by Jensen’s inequality we have∑n

j=1
s∗(vj) ≥ ns∗

(
1

n

∑n

j=1
vj

)
.

Thus, the maximum is attained for v1 = ... = vn = z for z ∈ [0, v̄] such that

ns∗(z) = c. Solving the equation

n

(
z

2
− c+

1

2

√
z2 + 4c2

)
= c

for z yields

z =
2n+ 1

n(n+ 1)
c.

We thus obtain

L(s∗) = nz − c =
2n+ 1

n+ 1
c− c =

n

n+ 1
c. �

A.5. Proof of Proposition 4. Let (σ∗S, σ
∗
B, β

∗) be a PCE, and let P ∗ be the set

of equilibrium prices, so

P ∗ = Supp(σ∗S(·|θH)) ∪ Supp(σ∗S(·|θL)).

Recall that σ∗S(·|·) is discrete, so P ∗ is countable. By contradiction, suppose that

P ∗ contains at least two prices and that there is a positive probability of trade, so

|P ∗| ≥ 2 and
∑
p∈p∗

σ∗B(p) > 0.

Consider a price p ∈ P ∗ that might be offered by the low-type seller, so σ∗S(p|θL) >

0. Then p must also be offered with a positive probability by the high-type seller,

and the trade must be possible at p, so

σ∗S(p|θL) > 0 implies σ∗S(p|θH) > 0 and σ∗B(p) > 0. (34)

Otherwise, if σ∗S(p|θH) = 0, then the buyer would have inferred that the car

had low quality with certainty, and therefore would not buy it at that price, so

σ∗B(p) = 0. But if σ∗B(p) = 0, then the low-type seller’s payoff from choosing p

would be zero, and thus she would have had a profitable deviation to another price

p′ such that σ∗B(p′) > 0.

By (34) and the definition of P ∗, it follows that Supp(σ∗S(·|θH)) = P ∗, so the

high-type seller randomizes over all prices in P ∗. Hence she must be indifferent

among them all, so

(p′ − cH)σ∗B(p′) = (p′′ − cH)σ∗B(p′′) for all p′, p′′ ∈ P ∗. (35)

However, because cL < cH , the low-type seller cannot be indifferent between the

prices in P ∗, in fact, she strictly prefers the smallest of these prices, so

(p′ − cL)σ∗B(p′) > (p′′ − cL)σ∗B(p′′) for all p′, p′′ ∈ P ∗, p′ < p′′.
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Hence the low-type seller assigns probability one on the smallest price in P ∗, so

Supp(σ∗S(·|θL)) = {p∗}, where p∗ = min{p : p ∈ P ∗}.

Consequently, for each price p′ ∈ P ∗ such that p′ > p∗, the buyer infers that that

the type is high with certainty, irrespective of the prior. That is, β∗φp′ (π) = 1 for

all π ∈ Π. In this case, by (15), the buyer buys with certainty, so σ∗B(p′) = 1. But

then we have

(p′ − cH)σ∗B(p′) = p′ − cH > p∗ − cH ≥ (p∗ − cH)σ∗B(p∗),

which contradicts (35). Thus we have reached a contradiction. �

A.6. Proof of Proposition 5. Here we only prove claims for PCE, as this is

equivalent to a PBE when there is a single prior. Consider a PCE (σ∗S, σ
∗
B, β

∗)

that involves trade and thus, by Proposition 4, is pooling on a single price p∗. So,

σ∗S(p∗|θH) = σ∗S(p∗|θL) = 1, and σ∗B(p∗) > 0. (36)

Moreover, when observing p∗, the buyer’s set of posterior beliefs is equal to the

set of priors, so

β∗φp∗ (π) = π for each π ∈ Π. (37)

We show that p∗ necessarily satisfies the conditions on its range that are specified

in Proposition 5.

First, in case of single prior, so Π = {π̄}, by (15) and (37), σ∗B(p∗) must satisfy

(17) when p∗ ≤ π̄vH , and σ∗B(p∗) = 0 when p∗ > π̄vH . Thus, if there exists

a buyer’s strategy σ∗B that satisfies (15) and (36), then p∗ ≤ π̄vH . In case of

multiple priors, so Π = {π1, ..., πK} with K ≥ 2, by (15) and (37), σ∗B(p∗) must

satisfy (18) when p∗ < πKvH , and σ∗B(p∗) = 0 when p∗ ≥ πKvH . Thus, if there

exists a buyer’s strategy σ∗B that satisfies (15) and (36), then p∗ < πKvH .

Second, by (14), when p∗ < cH , the seller would not want to sell a high-quality

car. So, as σ∗B(p∗) > 0, this seller would want to deviate to another p′ such that

σ∗B(p′) = 0, for instance, p′ = 1. Thus, if the seller’s strategy σ∗S satisfies (14) and

(36), then p∗ ≥ cH .

It remains to show that for every p∗ ∈ [cH , π̄vH ] in the case of Π = {π̄} and for

every p∗ ∈ [cH , πKvH) in the case of Π = {π1, ..., πK} with K ≥ 2, we can find the

buyer’s out-of-equilibrium beliefs and behavior to support the PCE that is pooling

on p∗. Indeed, when observing any p 6= p∗, let the buyer be certain that the car

has low quality, and let σ∗B(p) = 0. Given that p∗ ≥ cH and σ∗B(p∗) > 0, by (14),

the seller will prefer p∗ to any price p 6= p∗ irrespective of the car type. �

A.7. Proof of Proposition 6. First we find the equilibrium wages wH and wL

after the worker’s level of education eH and eL. For each j = L,H, each firm i
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has the set of speculated states Si(ej) ⊂ Ω. Let this set be the same for each firm.

Denote this set by S(ej), so S(ej) = S1(ej) = S2(ej).

Let
¯
θj and θ̄j be the lowest and highest productivity levels given ej, so

¯
θj = inf{θ : (θ, c, γ) ∈ S(ej)}, θ̄j = sup{θ : (θ, c, γ) ∈ S(ej)}, j = L,H. (38)

Consider a firm i, some wages wi and w−i, and a state (θ, c, γ). Firm i’s maximum

profit u∗i (w−i; θ) is obtained by marginally outbidding w−i when it is below θ, and

by choosing the wage below w−i and thus not hiring the worker if θ ≤ w−i, so

u∗i (w−i; θ) = sup
wi≥0

ui(wi, w−i; θ, γ) = max{θ − w−i, 0}.

Observe that we only need to consider wi and w−i in [
¯
θj, θ̄j]. A wage above θ̄j

is dominated and cannot be a best compromise; a wage below
¯
θj will always be

overbid by the rival’s wage, as there is common knowledge that θ ≥
¯
θj.

Suppose that wi < w−i, so ui(wi, w−i; θ, γ) = 0. Then the largest loss is obtained

when θ is the greatest conditional on ej, so

sup
θ:(θ,c,γ)∈S(ej)

(u∗i (w−i; θ)− ui(wi, w−i; θ, γ)) = sup
θ∈[

¯
θj ,θ̄j ]

max{θ − w−i, 0} = θ̄j − w−i.

Next, suppose that wi > w−i, so ui(wi, w−i; θ, γ) = θ − wi. Then the largest loss

is obtained when θ is the smallest conditional on ej, so

sup
θ:(θ,c,γ)∈S(ej)

(u∗i (w−i; θ)− ui(wi, w−i; θ, γ)) = sup
θ∈[

¯
θj ,θ̄j ]

(max{θ − w−i, 0} − (θ − wi))

= wi −
¯
θj.

Finally, suppose that wi = w−i, so ui(wi, w−i; θ, γ) = (θ − wi)γi. Then

sup
θ:(θ,c,γ)∈S(ej)

(u∗i (w−i; θ)− ui(wi, w−i; θ, γ)) = sup
θ∈[

¯
θj ,θ̄j ],γ∈∆2

(max{θ − w−i, 0} − (θ − wi)γi)

= max
{
θ̄j − w−i, wi −

¯
θj
}
,

Consequently, the maximum loss li(wi, w−i) is given by

li(wi, w−i) = max
{
θ̄j − w−i, wi −

¯
θj
}
.

Clearly, in the best compromise equilibrium, wi = w−i, and no one can reduce the

loss by deviating to wi above or below w−i, so the best compromise w∗i (ej) is the

solution of

w∗i (ej)− ¯
θj = θ̄j − w∗i (ej).

Solving the above equation yields

w∗i (ej) =
θ̄j +

¯
θj

2
, i = 1, 2. (39)
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The associated maximum losses are

li(w
∗
i (ej), w

∗
−i(ej)) = w∗i (ej)− ¯

θj =
θ̄j −

¯
θj

2
. (40)

Next, observe that the worker operates under complete information. Given each

choice of ej, she anticipates the wages wj = w∗1(ej) = w∗2(ej), j ∈ {L,H}. So,

given a state (θ, c, γ), the worker chooses e = eH if and only if7

c ≤ wH − wL.

Pooling PCE. If wH ≤ wL, then every type chooses low level of education eL, so

the equilibrium is pooling. After observing e = eL, the consistent set of speculated

states S(eL) is thus the entire set of states, so S(eL) = Ω. By (19), the highest and

lowest θ in S(eL) are θ̄L = 1 and
¯
θL = 0. By (39), we obtain the equilibrium wages

wi(eL) = 1/2. After observing an out-of-equilibrium education e = eH , the set of

speculated states S(eH) must induce the wage w∗i (eH) ≤ w∗i (eL). In particular, we

can assume S(eH) = Ω, and thus w∗i (eH) = 1/2.

Substituting the upper and lower productivity bounds
¯
θj = 1 and

¯
θj = 0 into

(40), we obtain the maximum loss for each firm i,

li(w
∗
i (ej), w

∗
−i; ej) =

1

2
, i = 1, 2, j = L,H.

Separating PCE. Consider now wH > wL, so that the worker with cost c ≤
wH − wL chooses high education. Let

S(eL) = {(θ, c, γ) ∈ Ω : c > wH−wL} and S(eH) = {(θ, c, γ) ∈ Ω : c ≤ wH−wL}

be the sets of beliefs of each firm when the level of education is eL and eH , re-

spectively. So, S(eL) and S(eH) contain all profiles (θ, c, γ) such that low and

high education is chosen, respectively. These sets thus satisfy the consistency

requirement (Definition 1).

By (19) and (38), the highest and lowest θ in S(eH) are given by

θ̄H = 1 and
¯
θH = a− ε

2
− wH + wL. (41)

So, S(eH) is nonempty when
¯
θH = a− ε

2
− wH + wL ≤ 1.

Similarly, the highest and lowest θ in S(eL) are given by

θ̄L = max
{
a+

ε

2
− wH + wL, 1

}
and

¯
θL = 0. (42)

Because wH −wL ≤ 1 and by assumption a+ ε
2
≥ 1, we have θ̄L ≥ 0. So S(eL) is

always nonempty.

7The tie breaking is arbitrary, because the set of types is a continuum.
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From (39), we have

wH =
θ̄H +

¯
θH

2
and wL =

θ̄L +
¯
θL

2
. (43)

Solving the system of six equations in (41), (42), and (43) with six unknowns (wH ,

wL, θ̄H ,
¯
θH , θ̄L, and

¯
θL) when taking into account the condition (20), we obtain

the unique equilibrium wages and the bounds on the productivity types as shown

in (23) and (24).

Finally, substituting the upper and lower productivity bounds
¯
θj and

¯
θj into

into (40), we obtain firm i’s maximum loss when e = eH ,

li(w
∗
i (eH), w∗−i(eH); eH) =

θ̄H −
¯
θH

2
=

3

4
− a

2
,

and the maximum loss when e = eL,

li(w
∗
i (eL), w∗−i(eL); eL) =

θ̄L −
¯
θL

2
=
a

2
− 1

4
+
ε

2
. �

A.8. Proof of Proposition 7. Consider how a buyer who knows that v is in

[y0, y1] reacts when the seller asks p. Let p0 ∈ [1/2, 1]. Suppose that p < p0.

Assume that the buyer speculates that v in {y0}. This is consistent with the

strategy of the seller as p < p0 is out of equilibrium. Given this speculation,

accepting p if and only if p ≤ y0 is a best compromise.

Now suppose that p ≥ p0. The largest interval [x0, x1] ⊂ [0, 1] that satisfies (27)

is [2p− 1, 1]. So the buyer concludes that

v ∈ Vb(p, y0, y1) = [y0, y1] ∩ [2p− 1, 1] = [max{y0, 2p− 1}, y1].

Given this information about the set of possible values, the buyer now compares

her maximum losses when accepting (α = 1) and rejecting (α = 0) the price p.

The maximum loss from rejecting p is

lb(0; p, y0, y1) = sup
v∈[max{y0,2p−1},y1]

(v − p) = y1 − p.

The maximum loss from accepting p is

lb(1; p, y0, y1) = sup
v∈[max{y0,2p−1},y1]

(p− v) = min{p− y0, 1− p}.

Because y1 ≤ 1, it is easy to verify that lb(0; p, y0, y1) ≥ lb(1; p, y0, y1) if and only if

p ≤ 1
2
(y0+y1). Thus, it is the best compromise to buy the good when p ≤ 1

2
(y0+y1)

and not to buy it otherwise.

Let us consider the first stage of the game. Anticipating the buyer’s equilibrium

behavior α∗, the seller chooses a price that minimizes his maximal loss. Observe

that choosing a price p < p0 is dominated by p = p0. This is because when p < p0,

the buyer accepts p if and only if the value v is guaranteed to be at least as high

as the price p. In this case, the seller’s payoff cannot be positive.
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Let p ≥ p0. Suppose first that p > 1
2
(y0 + y1) > v. So p is rejected, but it would

be optimal to reduce the price so that the buyer accepts it, specifically, to ask

p′ = (y0 + y1)/2, and thus gain p′ − v. The supremum of this loss is given by

sup
(v,y0,y1): p> 1

2
(y0+y1)>v,

v∈[x0,x1]∩[y0,y1]

(
y0 + y1

2
− v
)

= p− x0.

Second, suppose that p ≤ 1
2
(y0 +y1) < v. So p is accepted, but it would be optimal

not to sell, and thus gain v − p. The supremum of this loss is given by

sup
(v,y0,y1): p≤ 1

2
(y0+y1)<v,

v∈[x0,x1]∩[y0,y1]

(v − p) = x1 − p.

Third, suppose that p ≤ 1
2
(y0 + y1) and v ≤ 1

2
(y0 + y1). So p is accepted, but it

would be optimal to sell at a higher price, specifically, at p′ = 1
2
(y0 + y1), and thus

gain p′ − p. The supremum of this loss is given by

sup
(v,y0,y1): p,v≤ 1

2
(y0+y1),

v∈[x0,x1]∩[y0,y1]

(
y0 + y1

2
− p
)

=
x1 + 1

2
− p.

Finally, suppose that p > 1
2
(y0 + y1) and v ≥ 1

2
(y0 + y1). So, p is rejected, but any

price p′ > v would have been rejected too, so the loss is zero in this case.

The maximum loss associated with the price p ≥ p0 is the largest of the four

losses computed above, so

ls(p;x0, x1) = max

{
p− x0, x1 − p,

x1 + 1

2
− p, 0

}
= max

{
p− x0,

x1 + 1

2
− p
}
.

The best compromise price minimizes the maximum loss ls(p;x0, x1) among all

prices p ≥ p0, leading to the seller’s equilibrium strategy (27). �

A.9. Proof of Proposition 8. Before proving Proposition 8, we present a simple

lemma on how the loss of a forecast is computed.

Lemma 1. l(a; z) = supF∈Fδ(a− EF,Gε [θ|z])2.

The intuition is as follows. The variance of θ conditional on a signal z enters

the payoffs additively, and thus cancels out when computing the loss. As a result,

the maximum loss l(a; z) is simply the maximum quadratic distance between a

forecast a and the mean value of θ conditional on z.

Proof of Lemma 1. Fix Gε. Let āF (z) = EF,Gε [θ|z]. Observe that

āF (z) ∈ arg max
a′∈[0,1]

EF,Gε [−(a′ − θ)2|z]. (44)
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So, we have

sup
a′∈[0,1]

EF,Gε [−(a′−θ)2|z]−EF,Gε [−(a−θ)2|z] = EF,Gε [−(āF (z)−θ)2 +(a−θ)2|z]

= EF,Gε [(a− āF (z))(a+ āF (z)− 2θ)|z] = (a− āF (z))2,

where the first equality is by (44) and the last equality is by EF,Gε [θ|z] = āF (z).

Thus,

l(a; z) = sup
F∈Fδ

(a− āF (z))2 = sup
F∈Fδ

(a− EF,Gε [θ|z])2. �

We now prove Proposition 8. Different distributions F ∈ Fδ induce different

conditional means EF,Gε [θ|z]. Let H(z) and L(z) be the highest and lowest con-

ditional means, respectively, so

H(z) = sup
F∈Fδ

EF,Gε [θ|z] and L(z) = inf
F∈Fδ

EF,Gε [θ|z]. (45)

The loss of a forecast a given a signal z is

l(a; z) = sup
F∈Fδ

(a− EF,Gε [θ|z])2 = max
{

(a−H(z))2, (a− L(z))2
}

where the first equality is by Lemma 1, and the last equality is by the convexity

of the expression. Thus, the best compromise forecast is the midpoint between

the highest and lowest conditional means, so

a∗(z) = inf
a∈[0,1]

l(a; z) =
1

2
(H(z) + L(z)) .

It remains to find H(z) and L(z). Suppose that z ≥ θ0. Observe that

EF,Gε [θ|z] =
(1− ε)f(z)z + ε

∫ 1

0
θf(θ)dθ

(1− ε)f(z) + ε
∫ 1

0
f(θ)dθ

=
(1− ε)f(z)z + εθ0

(1− ε)f(z) + ε

is increasing in f(z). Using the assumption that f(z) ≤ 1/δ, we have

H(z) = sup
F∈Fδ

(1− ε)f(z)z + εθ0

(1− ε)f(z) + ε
=

(1− ε)f(z)z + εθ0

(1− ε)f(z) + ε

∣∣∣∣
f(z)=1/δ

=
(1− ε)z + εδθ0

1− ε+ εδ
.

Using the assumption that f(z) ≥ δ, we have

L(z) = inf
F∈Fδ

(1− ε)f(z)z + εθ0

(1− ε)f(z) + ε
=

(1− ε)f(z)z + εθ0

(1− ε)f(z) + ε

∣∣∣∣
f(z)=δ

=
(1− ε)δz + εθ0

(1− ε)δ + ε
.

Analogously, for z ≤ θ0 we obtain H(z) = (1−ε)δz+εθ0
(1−ε)δ+ε and L(z) = (1−ε)z+εδθ0

1−ε+εδ . Thus

we obtain

a∗(z) =
1

2
(H(z) + L(z)) =

1

2

(
(1− ε)z + εδθ0

1− ε+ εδ
+

(1− ε)δz + εθ0

(1− ε)δ + ε

)
.
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Appendix B. Alternative Model of Forecasting

This section considers an alternative an alternative forecasting model to the one

presented in Section 3.7. Here we are interested in how to forecast a random vari-

able with a known distribution after receiving a noisy signal that has an unknown

distribution.

Suppose that the agent knows the distribution F of θ, but is uncertain about

how the noisy signal z is generated. The following assumptions are made about

this signal. The signal z is known to be not too far from the true value of θ, where

a parameter δ > 0 describes the maximal distance. So δ can also be interpreted as

the precision of the signal. Let y = z − θ be called the noise. So it is known that

|y| ≤ δ. The distribution of the noise y has a certain and an uncertain component.

Let ε ∈ [0, 1] be a known parameter. With probability 1− ε the noise y is drawn

from a known distribution G0 and with probability ε it is drawn from an unknown

distribution G1. So ε measures how uncertain the agent is about how the noise

is generated. Given the support restrictions on y, it follows that G0 and G1 both

have support contained in [−δ, δ]. Let Gδ be the set of all distributions of y that

satisfy the above description.

Let EF,Gδ,ε[·|z] denote the conditional mean of θ given z for Gδ ∈ Gδ. The

maximum loss associated with a forecast a ∈ [0, 1] given a signal z ∈ [0, 1] is

l(a; z) = sup
Gδ∈Gδ

(
sup
a′∈[0,1]

EF,Gδ,ε[−(a′ − θ)2|z]− EF,Gδ,ε[−(a− θ)2|z]

)
.

Let H(z) and L(z) be the highest and lowest conditional means, so

H(z) = sup
Gδ∈Gδ

EF,Gδ,ε[θ|z] and L(z) = inf
Gδ∈Gδ

EF,Gδ,ε[θ|z].

It is straightforward to verify that

H(z) = sup
x∈[−δ,δ]

εf(z − x)(z − x) + (1− ε)
∫ δ
−δ(z − y)f(z − y)dG0(y)

εf(z − x) + (1− ε)
∫ δ
−δ f(z − y)dG0(y)

,

with an analogous expression for L(z). We obtain the following result.

Proposition 9. The agent’s best compromise is

a∗(z) =
1

2
(H(z) + L(z)) .

The proof is analogous to that of Proposition 8 and thus omitted.

The best compromise is the midpoint between the highest and lowest conditional

means. The agent’s best compromise forecast depends on the precision δ of her

signal, as well as on the degree ε of her uncertainty. We show how each of these

two parameters independently influences the best compromise forecast.
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Fix the degree of uncertainty ε. If the signal is very precise in the sense that δ is

very small, then each of the two extreme conditional means are close to z. Hence,

the best compromise forecast will also be close to z. Formally, limδ→0 a
∗(z) = z.

Fix the precision δ of the signal. As the degree of uncertainty ε vanishes, both

extreme conditional means converge to the conditional mean under the benchmark

distribution G0. Formally, limε→0 a
∗(z) = EF,G0,0[θ|z]. For instance, if G0 is the

uniform distribution, then the best compromise forecast converges to the expected

value of θ conditional on θ being within δ of the signal.

As the degree of uncertainty ε becomes large, the role of the benchmark G0

diminishes and almost any noise within [−δ, δ] becomes possible. When ε = 1, it

could be that G1 puts all mass on −δ, in which case EF,Gδ,ε[θ|z] = z + δ. This is

the highest conditional mean given z, so H(z) = z + δ. It could also be that G1

puts all mass on δ, in which case EF,Gδ,ε[θ|z] = z−δ. This is the lowest conditional

mean given z, so L(z) = z − δ. Consequently, the best compromise forecast is

close to the signal z when the agent is very uncertain about how z is generated.

Formally, a∗(z)→ z as ε→ 1.

Remark 3. Note that the distribution F of the underlying variable of interest

plays no role when the degree of uncertainty is extreme, so ε = 1. Consequently,

we obtain that if the agent knows neither F nor the distribution of the noise, then

the best compromise forecast is to choose the signal.
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